Download citation
Download citation
link to html
In the title compound, 4C6H16NO3+P4O124−, the asymmetric unit consists of two organic cations and two linked PO4 tetra­hedra. These tetra­hedra are also linked with symmetry-equivalents to form centrosymmetric P4O12 rings. The organic cations are linked to the cyclo­tetra­phosphate rings by O—H...O=P hydrogen bonds to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021083/sj2299sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021083/sj2299Isup2.hkl
Contains datablock I

CCDC reference: 651394

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](P-O) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.046
  • wR factor = 0.146
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 14.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The present description of the stucture of 2(C6H16NO3)+0.5(P4O12)4- is part of an investigation of materials resulting from interaction between cyclotetraphosphoric acid and organic molecules such as amines, amino-acids and aminoalcohols, with the aim to select a new protonic conductors which are of interest as solid electrolytes.

As shown in figure 2, the crystal structure of bis(triethanolammonium) hemi(cyclotetraphosphate) could be described as a succession of organic and inorganic sheets parallel to the (101) plane. These layers are inteconnected by O2—H2..O11 H-bonds to form a three-dimensional network.

The P4O12 rings lie about inversion centers at (0 1/2 0) and (1/2 0 1/2). The cyclotetraphosphate anion is, as usual, made up of four PO4 tetrahedra sharing corners. It presents a strong distortion as shown by the P···P···P angles within the rings with values of 82.80° and 97.20°. Inside each PO4 tetrahedron, two types of P—O distances are observed. The longest ones correspond to the bridging oxygen atoms OL and the shortest ones correpond to those for the terminal P—O. P—O distances vary from 1.475 (2) Å to 1.606 (2) Å, while the O—P—O angle values vary from 99.77 (9)° to 120.6 (2)°. Such values agree with those previously reported for other studied cyclotetraphosphates (Nahouane et al., 2005; Soumhi, 2006). In addition the asymmetric unit contains two independent organic cations. C—C, C—N, C—O distances and C—C—C, C—C—N, and O—C—C angles are in good agreement with those observed in similar condensed phosphate salts of organic cations (Soumhi, 1998; 2005).

The structure contains six O—H···O H-bonds involving the six hydroxyl groups of the organic cations and external oxygen atoms of P4O12 rings. The O···O distances range from 2.658 (3) to 2.771 (3) Å, Table 1. Thus, this study confirms that the network stability as with most organic cation phosphates is due essentially to the H-bonding system.

Related literature top

For related structures, see: Nahouane et al. (2005) and Soumhi et al. (1998, 2005, 2006).

Experimental top

The title compound was prepared by neutralization of H4P4O12 with triethanolamine in a 1:4 molar ratio. The H4P4O12 solution was prepared using an aqueous solution of Na4P4O12.4H2O and an ion-exchange resin (Amberlite IR-120). Colourless single crystals appeared after evaporation of the solution at room temperature for a few days.

Refinement top

The C1, C3 and C5 atoms of one organic cation and the C7, C9 and C11 atoms of other are equally disordered over two positions a and b. They were refined with fixed occupancy factors. All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms, d(O—H)0.82 Å, Uiso = 1.2Ueq (O) for OH groups and 0.91 Å, Uiso = 1.2Ueq (N) for the NH groups.

Structure description top

The present description of the stucture of 2(C6H16NO3)+0.5(P4O12)4- is part of an investigation of materials resulting from interaction between cyclotetraphosphoric acid and organic molecules such as amines, amino-acids and aminoalcohols, with the aim to select a new protonic conductors which are of interest as solid electrolytes.

As shown in figure 2, the crystal structure of bis(triethanolammonium) hemi(cyclotetraphosphate) could be described as a succession of organic and inorganic sheets parallel to the (101) plane. These layers are inteconnected by O2—H2..O11 H-bonds to form a three-dimensional network.

The P4O12 rings lie about inversion centers at (0 1/2 0) and (1/2 0 1/2). The cyclotetraphosphate anion is, as usual, made up of four PO4 tetrahedra sharing corners. It presents a strong distortion as shown by the P···P···P angles within the rings with values of 82.80° and 97.20°. Inside each PO4 tetrahedron, two types of P—O distances are observed. The longest ones correspond to the bridging oxygen atoms OL and the shortest ones correpond to those for the terminal P—O. P—O distances vary from 1.475 (2) Å to 1.606 (2) Å, while the O—P—O angle values vary from 99.77 (9)° to 120.6 (2)°. Such values agree with those previously reported for other studied cyclotetraphosphates (Nahouane et al., 2005; Soumhi, 2006). In addition the asymmetric unit contains two independent organic cations. C—C, C—N, C—O distances and C—C—C, C—C—N, and O—C—C angles are in good agreement with those observed in similar condensed phosphate salts of organic cations (Soumhi, 1998; 2005).

The structure contains six O—H···O H-bonds involving the six hydroxyl groups of the organic cations and external oxygen atoms of P4O12 rings. The O···O distances range from 2.658 (3) to 2.771 (3) Å, Table 1. Thus, this study confirms that the network stability as with most organic cation phosphates is due essentially to the H-bonding system.

For related structures, see: Nahouane et al. (2005) and Soumhi et al. (1998, 2005, 2006).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with 50% probability ellipsoids. H atoms are omitted. Only one disorder component of the cations is shown with the atom label ending in a.
[Figure 2] Fig. 2. Projection along the b axis of the 2(C6H16NO3)+0.5(P4O12)4- structure. By order of decreasing size, the circles represent O, N and C atoms. H atoms are omitted. Only one component of the disordered cations is shown.
Tetrakis(triethanolammonium) cyclotetraphosphate top
Crystal data top
4C6H16NO3+·O12P44F(000) = 976
Mr = 916.68Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.945 (2) Åθ = 14–16°
b = 14.591 (3) ŵ = 0.27 mm1
c = 14.428 (3) ÅT = 298 K
β = 101.12 (2)°Plate, colourless
V = 2054.3 (7) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.021
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.0°
Graphite monochromatorh = 012
ω/2θ scansk = 118
5112 measured reflectionsl = 1818
4483 independent reflections3 standard reflections every 60 min
3545 reflections with I > 2σ(I) intensity decay: 1.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0821P)2 + 1.2338P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4483 reflectionsΔρmax = 0.33 e Å3
314 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (13)
Crystal data top
4C6H16NO3+·O12P44V = 2054.3 (7) Å3
Mr = 916.68Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.945 (2) ŵ = 0.27 mm1
b = 14.591 (3) ÅT = 298 K
c = 14.428 (3) Å0.30 × 0.20 × 0.10 mm
β = 101.12 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.021
5112 measured reflections3 standard reflections every 60 min
4483 independent reflections intensity decay: 1.2%
3545 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
4483 reflectionsΔρmin = 0.35 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.46835 (6)0.13183 (4)0.50552 (4)0.02529 (17)
P20.61592 (6)0.02263 (4)0.38538 (4)0.03044 (18)
O110.33994 (17)0.12216 (13)0.43540 (12)0.0377 (4)
O210.5100 (2)0.22260 (11)0.54932 (12)0.0392 (4)
O120.76309 (19)0.00145 (15)0.40132 (16)0.0516 (5)
O220.5464 (2)0.05786 (13)0.29148 (12)0.0474 (5)
OL120.59842 (17)0.09636 (12)0.46476 (12)0.0354 (4)
OL210.47489 (17)0.06256 (11)0.59256 (11)0.0322 (4)
O10.4594 (2)0.2708 (2)0.72131 (15)0.0675 (7)
H10.46980.25210.66960.081*
O20.6311 (2)0.26453 (16)0.96937 (17)0.0553 (6)
H20.68770.30490.96720.066*
O30.4951 (2)0.03254 (17)0.87152 (16)0.0569 (6)
H30.48910.00000.82460.068*
O40.5562 (2)0.46793 (18)0.20999 (17)0.0599 (7)
H40.60970.47820.17450.072*
O50.5151 (2)0.37927 (14)0.45598 (15)0.0496 (5)
H50.51990.32850.48080.060*
O60.4491 (2)0.22622 (15)0.23101 (19)0.0604 (6)
H60.47260.17440.24940.072*
N10.3754 (2)0.20659 (15)0.88240 (15)0.0367 (5)
H70.45910.19710.86730.044*
N20.3440 (2)0.39342 (14)0.27570 (15)0.0323 (4)
H80.43220.37320.28580.039*
C1A0.3012 (6)0.2844 (5)0.8161 (5)0.0528 (15)0.50
C3A0.3969 (6)0.2338 (5)0.9816 (4)0.0474 (14)0.50
C5A0.2908 (6)0.1181 (5)0.8594 (5)0.0546 (15)0.50
C1B0.2742 (6)0.2149 (6)0.7979 (4)0.0590 (18)0.50
H90.19080.23940.81380.071*
H100.25340.15440.77110.071*
C3B0.3979 (5)0.2948 (4)0.9414 (4)0.0430 (12)0.50
H110.39320.34640.89860.052*
H120.32290.30110.97510.052*
C5B0.3521 (6)0.1277 (4)0.9459 (4)0.0435 (12)0.50
H130.41800.13141.00490.052*
H140.26100.13250.96030.052*
C20.3187 (3)0.2775 (3)0.7222 (2)0.0626 (9)
H150.28050.33110.68690.075*
H160.27130.22370.69280.075*
C40.5219 (3)0.3005 (2)1.0075 (2)0.0508 (7)
H170.49730.36090.98150.061*
H180.54870.30601.07550.061*
C60.3667 (3)0.0367 (2)0.8992 (2)0.0538 (7)
H190.38010.03860.96760.065*
H200.31410.01780.87760.065*
C7A0.3159 (6)0.4427 (5)0.1794 (4)0.0519 (15)0.50
C9A0.3333 (6)0.4627 (4)0.3538 (4)0.0477 (13)0.50
C11A0.2560 (6)0.3128 (4)0.2764 (4)0.0482 (14)0.50
C7B0.3360 (5)0.4895 (3)0.2464 (4)0.0374 (11)0.50
H210.36490.52830.30130.045*
H220.24180.50480.21900.045*
C9B0.2908 (5)0.3752 (4)0.3648 (4)0.0413 (12)0.50
H230.19960.40110.35850.050*
H240.28360.30960.37320.050*
C11B0.2728 (5)0.3292 (4)0.1986 (4)0.0405 (11)0.50
H250.17450.33720.19150.049*
H260.29810.34660.13940.049*
C80.4285 (3)0.5083 (2)0.1729 (2)0.0461 (7)
H270.42490.52510.10750.055*
H280.41710.56350.20800.055*
C100.3815 (3)0.4153 (2)0.4507 (2)0.0498 (7)
H290.38180.45920.50120.060*
H300.31870.36620.45830.060*
C120.3050 (3)0.2332 (2)0.2160 (2)0.0483 (7)
H310.26730.17550.23250.058*
H320.26960.24450.14950.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0268 (3)0.0232 (3)0.0260 (3)0.0011 (2)0.0053 (2)0.0010 (2)
P20.0333 (3)0.0292 (3)0.0334 (3)0.0001 (2)0.0176 (2)0.0008 (2)
O110.0302 (9)0.0444 (10)0.0355 (9)0.0044 (7)0.0010 (7)0.0000 (7)
O210.0549 (11)0.0243 (8)0.0385 (9)0.0021 (8)0.0091 (8)0.0042 (7)
O120.0367 (10)0.0536 (12)0.0730 (14)0.0034 (9)0.0316 (10)0.0003 (10)
O220.0770 (14)0.0370 (10)0.0321 (9)0.0083 (9)0.0204 (9)0.0054 (8)
OL120.0283 (8)0.0402 (9)0.0399 (9)0.0046 (7)0.0124 (7)0.0109 (7)
OL210.0327 (8)0.0327 (9)0.0305 (8)0.0057 (7)0.0043 (6)0.0047 (7)
O10.0585 (14)0.103 (2)0.0415 (12)0.0086 (13)0.0101 (10)0.0176 (12)
O20.0385 (10)0.0581 (13)0.0727 (14)0.0143 (9)0.0188 (10)0.0170 (11)
O30.0519 (12)0.0640 (15)0.0547 (13)0.0008 (10)0.0100 (10)0.0193 (11)
O40.0311 (10)0.0838 (17)0.0691 (14)0.0108 (10)0.0202 (9)0.0380 (13)
O50.0515 (12)0.0408 (11)0.0568 (12)0.0044 (9)0.0108 (9)0.0113 (9)
O60.0525 (13)0.0374 (11)0.0906 (17)0.0029 (9)0.0120 (12)0.0165 (11)
N10.0257 (10)0.0425 (12)0.0422 (11)0.0007 (8)0.0071 (8)0.0071 (9)
N20.0237 (9)0.0330 (10)0.0415 (11)0.0001 (8)0.0091 (8)0.0043 (9)
C1A0.040 (3)0.066 (4)0.052 (3)0.017 (3)0.008 (3)0.001 (3)
C3A0.041 (3)0.068 (4)0.035 (3)0.009 (3)0.012 (2)0.015 (3)
C5A0.037 (3)0.061 (4)0.066 (4)0.015 (3)0.014 (3)0.012 (3)
C1B0.036 (3)0.072 (5)0.058 (4)0.011 (3)0.019 (3)0.011 (3)
C3B0.035 (3)0.041 (3)0.055 (3)0.004 (2)0.014 (2)0.010 (3)
C5B0.037 (3)0.052 (3)0.045 (3)0.001 (2)0.015 (2)0.001 (2)
C20.0521 (18)0.078 (2)0.0516 (17)0.0115 (17)0.0051 (14)0.0115 (17)
C40.0520 (17)0.0578 (18)0.0457 (15)0.0121 (14)0.0174 (13)0.0161 (14)
C60.0604 (19)0.0489 (17)0.0554 (18)0.0114 (14)0.0190 (15)0.0072 (14)
C7A0.036 (3)0.063 (4)0.054 (3)0.002 (3)0.002 (2)0.029 (3)
C9A0.045 (3)0.040 (3)0.060 (3)0.004 (2)0.015 (3)0.002 (3)
C11A0.045 (3)0.041 (3)0.062 (4)0.018 (2)0.018 (3)0.004 (3)
C7B0.030 (2)0.030 (2)0.054 (3)0.0073 (19)0.013 (2)0.004 (2)
C9B0.036 (3)0.046 (3)0.047 (3)0.001 (2)0.022 (2)0.004 (2)
C11B0.036 (3)0.043 (3)0.038 (3)0.000 (2)0.004 (2)0.001 (2)
C80.0347 (13)0.0455 (15)0.0596 (18)0.0043 (12)0.0130 (12)0.0209 (13)
C100.0582 (17)0.0468 (16)0.0479 (16)0.0050 (13)0.0192 (13)0.0085 (13)
C120.0502 (16)0.0406 (15)0.0510 (16)0.0083 (12)0.0017 (13)0.0015 (12)
Geometric parameters (Å, º) top
P1—O111.475 (2)C3A—C41.566 (6)
P1—O211.491 (2)C5A—C61.464 (8)
P1—OL211.604 (2)C1B—C21.552 (7)
P1—OL121.606 (2)C1B—H90.9700
P2—O121.479 (2)C1B—H100.9700
P2—O221.489 (2)C3B—C41.408 (6)
P2—OL21i1.604 (2)C3B—H110.9700
P2—OL121.605 (2)C3B—H120.9700
OL21—P2i1.6040 (17)C5B—C61.509 (6)
O1—C21.405 (4)C5B—H130.9700
O1—H10.8200C5B—H140.9700
O2—C41.410 (3)C2—H150.9700
O2—H20.8200C2—H160.9700
O3—C61.411 (4)C4—H170.9700
O3—H30.8200C4—H180.9700
O4—C81.408 (3)C6—H190.9700
O4—H40.8200C6—H200.9700
O5—C101.417 (4)C7A—C81.490 (7)
O5—H50.8200C9A—C101.551 (7)
O6—C121.412 (4)C11A—C121.584 (7)
O6—H60.8200C7B—C81.556 (6)
N1—C1B1.429 (5)C7B—H210.9700
N1—C3A1.461 (5)C7B—H220.9700
N1—C5B1.516 (6)C9B—C101.504 (6)
N1—C3B1.535 (6)C9B—H230.9700
N1—C5A1.542 (6)C9B—H240.9700
N1—C1A1.574 (7)C11B—C121.447 (6)
N1—H70.9100C11B—H250.9700
N2—C7B1.463 (5)C11B—H260.9700
N2—C11A1.467 (6)C8—H270.9700
N2—C9B1.505 (5)C8—H280.9700
N2—C11B1.521 (5)C10—H290.9700
N2—C9A1.533 (6)C10—H300.9700
N2—C7A1.541 (6)C12—H310.9700
N2—H80.9100C12—H320.9700
C1A—C21.401 (7)
O11—P1—O21120.6 (2)C1A—C2—H16109.9
O11—P1—OL21112.1 (1)O1—C2—H16109.9
O21—P1—OL21105.2 (1)C1B—C2—H1669.6
O11—P1—OL12111.7 (1)H15—C2—H16108.3
O21—P1—OL12105.3 (1)C3B—C4—O2110.7 (3)
OL21—P1—OL1299.77 (9)O2—C4—C3A108.1 (3)
O12—P2—O22119.7 (2)C3B—C4—H1770.7
O12—P2—OL21i111.3 (2)O2—C4—H17110.1
O22—P2—OL21i105.5 (2)C3A—C4—H17110.1
O12—P2—OL12106.8 (2)C3B—C4—H18136.4
O22—P2—OL12108.8 (1)O2—C4—H18110.1
OL21i—P2—OL12103.60 (9)C3A—C4—H18110.1
P2—OL12—P1133.1 (2)H17—C4—H18108.4
P1—OL21—P2i134.8 (2)O3—C6—C5A110.5 (3)
C2—O1—H1109.5O3—C6—C5B109.5 (3)
C4—O2—H2109.5O3—C6—H19109.6
C6—O3—H3109.5C5A—C6—H19109.6
C8—O4—H4109.5C5B—C6—H1961.7
C10—O5—H5109.5O3—C6—H20109.6
C12—O6—H6109.5C5A—C6—H20109.6
C1B—N1—C5B114.6 (4)C5B—C6—H20140.7
C1B—N1—C3B113.9 (4)H19—C6—H20108.1
C5B—N1—C3B108.9 (3)C8—C7A—N2110.4 (4)
C3A—N1—C5A114.1 (4)N2—C9A—C10108.4 (4)
C3A—N1—C1A111.3 (4)N2—C11A—C12109.7 (4)
C5A—N1—C1A107.5 (4)N2—C7B—C8111.0 (3)
C1B—N1—H7109.6N2—C7B—H21109.4
C3A—N1—H7107.9C8—C7B—H21109.4
C5B—N1—H7106.4N2—C7B—H22109.4
C3B—N1—H7102.6C8—C7B—H22109.4
C5A—N1—H7107.9H21—C7B—H22108.0
C1A—N1—H7107.9C10—C9B—N2112.4 (4)
C7B—N2—C9B114.0 (3)C10—C9B—H23109.1
C7B—N2—C11B112.9 (3)N2—C9B—H23109.1
C9B—N2—C11B109.0 (3)C10—C9B—H24109.1
C11A—N2—C9A113.4 (4)N2—C9B—H24109.1
C11A—N2—C7A112.0 (4)H23—C9B—H24107.8
C9A—N2—C7A109.2 (4)C12—C11B—N2114.4 (3)
C7B—N2—H8110.7C12—C11B—H25108.7
C11A—N2—H8107.3N2—C11B—H25108.7
C9B—N2—H8107.0C12—C11B—H26108.7
C11B—N2—H8102.5N2—C11B—H26108.7
C9A—N2—H8107.3H25—C11B—H26107.6
C7A—N2—H8107.3O4—C8—C7A110.0 (3)
C2—C1A—N1113.9 (4)O4—C8—C7B106.0 (3)
N1—C3A—C4111.2 (4)O4—C8—H27109.7
C6—C5A—N1112.1 (4)C7A—C8—H27109.7
N1—C1B—C2113.6 (4)C7B—C8—H27142.4
N1—C1B—H9108.8O4—C8—H28109.7
C2—C1B—H9108.8C7A—C8—H28109.7
N1—C1B—H10108.8C7B—C8—H2869.3
C2—C1B—H10108.8H27—C8—H28108.2
H9—C1B—H10107.7O5—C10—C9B107.9 (3)
C4—C3B—N1116.1 (4)O5—C10—C9A109.7 (3)
C4—C3B—H11108.3O5—C10—H29109.7
N1—C3B—H11108.3C9B—C10—H29142.2
C4—C3B—H12108.3C9A—C10—H29109.7
N1—C3B—H12108.3O5—C10—H30109.7
H11—C3B—H12107.4C9B—C10—H3060.6
C6—C5B—N1111.0 (4)C9A—C10—H30109.7
C6—C5B—H13109.4H29—C10—H30108.2
N1—C5B—H13109.4O6—C12—C11B106.3 (3)
C6—C5B—H14109.4O6—C12—C11A112.3 (3)
N1—C5B—H14109.4O6—C12—H31109.1
H13—C5B—H14108.0C11B—C12—H31143.1
C1A—C2—O1108.9 (3)C11A—C12—H31109.1
O1—C2—C1B112.7 (3)O6—C12—H32109.1
C1A—C2—H15109.9C11A—C12—H32109.1
O1—C2—H15109.9H31—C12—H32107.9
C1B—C2—H15135.1
O12—P2—OL12—P1161.95 (16)N1—C5A—C6—O353.1 (5)
O22—P2—OL12—P167.58 (19)N1—C5A—C6—C5B46.0 (4)
OL21i—P2—OL12—P144.37 (18)N1—C5B—C6—O354.5 (5)
O11—P1—OL12—P226.5 (2)N1—C5B—C6—C5A46.5 (4)
O21—P1—OL12—P2159.04 (16)C7B—N2—C7A—C854.3 (4)
OL21—P1—OL12—P292.13 (17)C11A—N2—C7A—C8165.6 (4)
O11—P1—OL21—P2i9.38 (19)C9B—N2—C7A—C8120.7 (6)
O21—P1—OL21—P2i142.11 (16)C11B—N2—C7A—C8145.3 (5)
OL12—P1—OL21—P2i108.96 (16)C9A—N2—C7A—C867.9 (5)
C1B—N1—C1A—C258.4 (6)C7B—N2—C9A—C10161.5 (5)
C3A—N1—C1A—C2159.3 (5)C11A—N2—C9A—C1062.0 (5)
C5B—N1—C1A—C2119.3 (6)C9B—N2—C9A—C1042.4 (4)
C3B—N1—C1A—C2139.7 (6)C11B—N2—C9A—C10105.8 (7)
C5A—N1—C1A—C275.0 (6)C7A—N2—C9A—C10172.2 (4)
C1B—N1—C3A—C4116.6 (6)C7B—N2—C11A—C12118.9 (5)
C5B—N1—C3A—C4140.9 (5)C9B—N2—C11A—C12145.4 (5)
C3B—N1—C3A—C448.9 (4)C11B—N2—C11A—C1246.3 (4)
C5A—N1—C3A—C4159.9 (4)C9A—N2—C11A—C12163.0 (4)
C1A—N1—C3A—C478.2 (5)C7A—N2—C11A—C1272.8 (5)
C1B—N1—C5A—C6154.0 (6)C11A—N2—C7B—C8120.4 (5)
C3A—N1—C5A—C670.3 (5)C9B—N2—C7B—C8163.7 (3)
C5B—N1—C5A—C647.0 (4)C11B—N2—C7B—C871.2 (4)
C3B—N1—C5A—C6105.8 (7)C9A—N2—C7B—C8142.9 (5)
C1A—N1—C5A—C6165.8 (4)C7A—N2—C7B—C851.4 (4)
C3A—N1—C1B—C2111.4 (7)C7B—N2—C9B—C1069.2 (5)
C5B—N1—C1B—C2164.4 (5)C11A—N2—C9B—C10154.7 (5)
C3B—N1—C1B—C269.3 (6)C11B—N2—C9B—C10163.7 (4)
C5A—N1—C1B—C2146.9 (7)C9A—N2—C9B—C1045.6 (4)
C1A—N1—C1B—C250.2 (5)C7A—N2—C9B—C10115.2 (6)
C1B—N1—C3B—C4160.8 (5)C7B—N2—C11B—C12166.3 (4)
C3A—N1—C3B—C460.4 (5)C11A—N2—C11B—C1254.9 (5)
C5B—N1—C3B—C470.0 (5)C9B—N2—C11B—C1266.0 (5)
C5A—N1—C3B—C4113.7 (7)C9A—N2—C11B—C12115.3 (6)
C1A—N1—C3B—C4147.8 (5)C7A—N2—C11B—C12151.2 (5)
C1B—N1—C5B—C666.2 (6)N2—C7A—C8—O442.5 (6)
C3A—N1—C5B—C6158.2 (5)N2—C7A—C8—C7B50.5 (4)
C3B—N1—C5B—C6165.0 (4)N2—C7B—C8—O447.6 (5)
C5A—N1—C5B—C644.8 (4)N2—C7B—C8—C7A54.8 (4)
C1A—N1—C5B—C6105.6 (6)N2—C9B—C10—O556.4 (4)
N1—C1A—C2—O152.6 (6)N2—C9B—C10—C9A45.2 (4)
N1—C1A—C2—C1B50.7 (5)N2—C9A—C10—O555.3 (4)
N1—C1B—C2—C1A58.3 (5)N2—C9A—C10—C9B42.7 (4)
N1—C1B—C2—O135.1 (7)N2—C11B—C12—O655.2 (5)
N1—C3B—C4—O240.0 (6)N2—C11B—C12—C11A50.4 (4)
N1—C3B—C4—C3A54.3 (5)N2—C11A—C12—O640.9 (5)
N1—C3A—C4—C3B55.2 (5)N2—C11A—C12—C11B50.5 (4)
N1—C3A—C4—O245.8 (5)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O210.821.902.718 (3)172
O2—H2···O11ii0.821.982.771 (3)164
O3—H3···O22i0.821.852.658 (3)170
O4—H4···O12iii0.821.852.669 (3)177
O5—H5···O210.821.852.659 (3)170
O6—H6···O220.821.912.722 (3)174
N1—H7···O20.912.262.743 (3)113
N2—H8···O40.912.272.703 (3)109
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula4C6H16NO3+·O12P44
Mr916.68
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.945 (2), 14.591 (3), 14.428 (3)
β (°) 101.12 (2)
V3)2054.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5112, 4483, 3545
Rint0.021
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.146, 1.05
No. of reflections4483
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.35

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS for Windows (Dowty, 1995), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O210.821.9032.718 (3)172.23
O2—H2···O11i0.821.9752.771 (3)163.46
O3—H3···O22ii0.821.8472.658 (3)169.76
O4—H4···O12iii0.821.8492.669 (3)177.27
O5—H5···O210.821.8482.659 (3)169.89
O6—H6···O220.821.9052.722 (3)173.89
N1—H7···O20.912.2572.743 (3)113.02
N2—H8···O40.912.2692.703 (3)108.79
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds