Download citation
Download citation
link to html
In the title compound, C26H33N3O, the central heterocyclic ring exhibits a flattened boat conformation, with the N and the opposite C atom displaced from the plane of the other four C atoms. The dihedral angles between the planar part of the heterocycle and the two almost flat fragments which include the benzene rings and attached C atoms are 17.1 (1) and 14.8 (1)°. This conformation helps promote conjugation in the mol­ecule. Bond-length distributions in the π-conjugated bridges and p-dimethyl­amino­phenyl fragments show an alternation of single C—C and double C=C bond lengths. In the crystal structure, weak C—H...O hydrogen bonds link the mol­ecules into ribbons along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024385/wn2143sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024385/wn2143Isup2.hkl
Contains datablock I

CCDC reference: 651533

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.052
  • wR factor = 0.134
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.53 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As a continuation of our work that includes synthesis and structural investigations of nonlinear optical organic compounds with two-photon absorption properties and potential as biophotonic materials (Nesterov et al., 2003; Nesterov, 2004; Sarkisov et al., 2005; Nesterov et al., 2007), we have investigated the structure of the title compound that has a general motif D-π-A-π-D (Scheme). This compound may find application as an agent for locating cancer cells with two-photon excited fluorescence and as a potential agent for a photodynamic treatment of cancer (Nesterov et al., 2003; Sarkisov et al., 2005).

The title compound belongs to a group that has shown anticancer activity (Dimmock et al., 2001) and here we describe its structure (Fig. 1). The central heterocycle adopts a flattened boat conformation; atoms N1 and C4 lie 0.699 (2) and 0.118 (2) Å, respectively, out of the C2/C3/C5/C6 plane [planar within 0.023 (2) Å]. Dihedral angles between the planar part of the heterocycle and two almost flat fragments that include the benzene rings and attached C atoms are 17.1 (1) and 14.8 (1)° for C7—C13 and C14—C20, respectively. This might be partly due to the presence in the molecule of short intramolecular contacts H2B···H13A and H6A···H20A with distances 2.06 and 2.18 Å, respectively, that are somewhat shorter than the sum of the van der Waals radii (2.2 Å) of the hydrogen atoms (Rowland & Taylor, 1996).

Atom N1 in the piperidone ring is pyramidal, with the sum of bond angles equal to 328.0°; the propyl substituent attached to it occupies the equatorial position. Bond length distributions in the π-conjugated bridges and p-dimethylaminophenyl fragments definitely show an alternation of single C—C and double CC bond lengths (Table) and close to the standard conjugated values (Allen et al., 1987). In the crystal structure, there are weak intermolecular C—H···O contacts that can be considered as weak hydrogen bonds (Desiraju & Steiner, 1999). Such weak hydrogen bonds link the molecules into ribbons along the b axis (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Desiraju & Steiner (1999); Dimmock et al. (2001); Jia et al. (1989); Nesterov (2004); Nesterov et al. (2003, 2007); Rowland & Taylor (1996); Sarkisov et al. (2005).

Experimental top

The title compound was obtained according to literature procedures (Jia et al., 1989; Nesterov et al., 2003) by the reaction of p-dimethylaminobenzaldehyde with 1-propyl-4-piperidone. The precipitate was isolated and recrystallized from ethanol/tetrahydrofuran (1:1) (melting point 464 K, yield 76%). Crystals were obtained by isothermic evaporation of an ethanolic solution. The structure of the compound was characterized by 1H and 13C NMR spectroscopy.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.95 Å for Csp2, with Uiso(H) = 1.2Ueq(C); 0.99 Å for CH2, with Uiso (H) = 1.2Ueq(C); 0.98 Å for CH3, with Uiso(H) = 1.5Ueq(C).

Structure description top

As a continuation of our work that includes synthesis and structural investigations of nonlinear optical organic compounds with two-photon absorption properties and potential as biophotonic materials (Nesterov et al., 2003; Nesterov, 2004; Sarkisov et al., 2005; Nesterov et al., 2007), we have investigated the structure of the title compound that has a general motif D-π-A-π-D (Scheme). This compound may find application as an agent for locating cancer cells with two-photon excited fluorescence and as a potential agent for a photodynamic treatment of cancer (Nesterov et al., 2003; Sarkisov et al., 2005).

The title compound belongs to a group that has shown anticancer activity (Dimmock et al., 2001) and here we describe its structure (Fig. 1). The central heterocycle adopts a flattened boat conformation; atoms N1 and C4 lie 0.699 (2) and 0.118 (2) Å, respectively, out of the C2/C3/C5/C6 plane [planar within 0.023 (2) Å]. Dihedral angles between the planar part of the heterocycle and two almost flat fragments that include the benzene rings and attached C atoms are 17.1 (1) and 14.8 (1)° for C7—C13 and C14—C20, respectively. This might be partly due to the presence in the molecule of short intramolecular contacts H2B···H13A and H6A···H20A with distances 2.06 and 2.18 Å, respectively, that are somewhat shorter than the sum of the van der Waals radii (2.2 Å) of the hydrogen atoms (Rowland & Taylor, 1996).

Atom N1 in the piperidone ring is pyramidal, with the sum of bond angles equal to 328.0°; the propyl substituent attached to it occupies the equatorial position. Bond length distributions in the π-conjugated bridges and p-dimethylaminophenyl fragments definitely show an alternation of single C—C and double CC bond lengths (Table) and close to the standard conjugated values (Allen et al., 1987). In the crystal structure, there are weak intermolecular C—H···O contacts that can be considered as weak hydrogen bonds (Desiraju & Steiner, 1999). Such weak hydrogen bonds link the molecules into ribbons along the b axis (Fig. 2).

For related literature, see: Allen et al. (1987); Desiraju & Steiner (1999); Dimmock et al. (2001); Jia et al. (1989); Nesterov (2004); Nesterov et al. (2003, 2007); Rowland & Taylor (1996); Sarkisov et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2001); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: SHELXTL-NT.

Figures top
[Figure 1] Fig. 1. The moleculatr structure of the title compound, with the atom-numbering scheme. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as circles of arbitrary small radius.
[Figure 2] Fig. 2. Projection of the crystal packing along the b axis. Dashed lines denote intermolecular C—H···O hydrogen bonds. Only H atoms participating in hydrogen bonds are shown.
3,5-Bis(4-dimethylaminobenzylidene)-1-propyl-4-piperidone top
Crystal data top
C26H33N3OF(000) = 872
Mr = 403.55Dx = 1.223 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.7200 (9) ÅCell parameters from 117 reflections
b = 6.1434 (4) Åθ = 4–24°
c = 24.2503 (16) ŵ = 0.08 mm1
β = 92.262 (1)°T = 100 K
V = 2191.3 (2) Å3Needle, yellow
Z = 40.12 × 0.04 × 0.04 mm
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
4296 independent reflections
Radiation source: fine-focus sealed tube2976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
φ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1818
Tmin = 0.912, Tmax = 0.997k = 77
18187 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.060P)2 + 1.P]
where P = (Fo2 + 2Fc2)/3
4296 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H33N3OV = 2191.3 (2) Å3
Mr = 403.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.7200 (9) ŵ = 0.08 mm1
b = 6.1434 (4) ÅT = 100 K
c = 24.2503 (16) Å0.12 × 0.04 × 0.04 mm
β = 92.262 (1)°
Data collection top
Bruker SMART APEX II CCD area-detector
diffractometer
4296 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2976 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.997Rint = 0.057
18187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.01Δρmax = 0.57 e Å3
4296 reflectionsΔρmin = 0.23 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24493 (10)0.9379 (2)0.58185 (6)0.0272 (4)
N10.36050 (11)0.4318 (3)0.50843 (7)0.0226 (4)
N20.13269 (12)0.4966 (3)0.34015 (7)0.0271 (4)
N30.66819 (13)0.5195 (3)0.79613 (7)0.0294 (4)
C10.40071 (15)0.2306 (4)0.48621 (9)0.0292 (5)
H1A0.37830.10470.50730.035*
H1B0.46750.23720.49250.035*
C20.26123 (13)0.4304 (3)0.50017 (9)0.0230 (5)
H2A0.23550.30670.52050.028*
H2B0.24500.41100.46050.028*
C30.22117 (13)0.6403 (3)0.52019 (8)0.0201 (4)
C40.26981 (14)0.7562 (3)0.56591 (8)0.0215 (5)
C50.34805 (13)0.6429 (3)0.59400 (8)0.0205 (4)
C60.38466 (14)0.4402 (3)0.56754 (8)0.0225 (5)
H6A0.45170.43700.57290.027*
H6B0.35980.31020.58580.027*
C70.14321 (13)0.7289 (3)0.49991 (8)0.0206 (4)
H7A0.12920.86550.51590.025*
C80.07633 (13)0.6557 (3)0.45827 (8)0.0201 (4)
C90.01067 (14)0.8070 (3)0.43939 (8)0.0239 (5)
H9A0.01350.95060.45390.029*
C100.05739 (14)0.7584 (3)0.40107 (9)0.0242 (5)
H10A0.10000.86760.39000.029*
C110.06472 (14)0.5473 (3)0.37789 (8)0.0216 (4)
C120.00081 (13)0.3930 (3)0.39659 (8)0.0214 (5)
H12A0.00140.24980.38180.026*
C130.06775 (13)0.4452 (3)0.43573 (8)0.0209 (4)
H13A0.10940.33560.44790.025*
C140.37999 (13)0.7282 (3)0.64231 (9)0.0226 (5)
H14A0.34990.85770.65270.027*
C150.45150 (13)0.6596 (3)0.68130 (8)0.0214 (4)
C160.48335 (14)0.8106 (3)0.72105 (9)0.0255 (5)
H16A0.45540.94990.72180.031*
C170.55279 (15)0.7671 (3)0.75880 (9)0.0266 (5)
H17A0.57200.87630.78440.032*
C180.59610 (14)0.5619 (3)0.76001 (8)0.0234 (5)
C190.56228 (14)0.4060 (3)0.72189 (8)0.0235 (5)
H19A0.58800.26410.72230.028*
C200.49298 (14)0.4537 (3)0.68410 (8)0.0239 (5)
H20A0.47250.34370.65900.029*
C210.19772 (15)0.6606 (4)0.32053 (9)0.0290 (5)
H21A0.22110.73950.35210.044*
H21B0.24820.58950.30010.044*
H21C0.16760.76290.29620.044*
C220.13508 (15)0.2850 (3)0.31302 (9)0.0274 (5)
H22A0.07460.25060.29990.041*
H22B0.17910.28870.28170.041*
H22C0.15310.17330.33930.041*
C230.69416 (16)0.6790 (4)0.83827 (10)0.0354 (6)
H23A0.71500.81230.82060.053*
H23B0.74330.61970.86220.053*
H23C0.64160.71230.86040.053*
C240.70289 (16)0.3012 (4)0.80339 (9)0.0304 (5)
H24A0.71070.23440.76720.046*
H24B0.65990.21480.82410.046*
H24D0.76160.30630.82380.046*
C250.38018 (16)0.1914 (4)0.42620 (9)0.0323 (6)
H25A0.40250.31580.40460.039*
H25C0.31360.18080.41940.039*
C260.42548 (16)0.0191 (4)0.40712 (10)0.0335 (6)
H26D0.40990.04360.36800.050*
H26A0.40390.14200.42880.050*
H26B0.49160.00620.41240.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0317 (8)0.0175 (7)0.0320 (8)0.0061 (6)0.0055 (7)0.0053 (6)
N10.0213 (9)0.0218 (9)0.0244 (9)0.0036 (7)0.0033 (7)0.0061 (7)
N20.0326 (10)0.0173 (9)0.0303 (10)0.0027 (8)0.0105 (8)0.0004 (8)
N30.0348 (11)0.0213 (10)0.0311 (10)0.0020 (8)0.0116 (8)0.0021 (8)
C10.0250 (11)0.0277 (12)0.0348 (13)0.0076 (10)0.0027 (10)0.0095 (10)
C20.0243 (11)0.0174 (10)0.0271 (11)0.0020 (9)0.0021 (9)0.0061 (9)
C30.0226 (10)0.0156 (10)0.0220 (11)0.0004 (8)0.0022 (8)0.0008 (8)
C40.0254 (11)0.0145 (10)0.0249 (11)0.0009 (9)0.0035 (9)0.0017 (8)
C50.0201 (10)0.0167 (10)0.0248 (11)0.0003 (8)0.0007 (8)0.0004 (8)
C60.0224 (11)0.0178 (10)0.0271 (11)0.0046 (8)0.0036 (9)0.0025 (9)
C70.0252 (11)0.0157 (10)0.0211 (10)0.0020 (8)0.0017 (8)0.0007 (8)
C80.0210 (10)0.0178 (10)0.0216 (11)0.0004 (8)0.0014 (8)0.0017 (8)
C90.0298 (12)0.0176 (10)0.0241 (11)0.0039 (9)0.0009 (9)0.0015 (9)
C100.0275 (11)0.0176 (10)0.0271 (12)0.0060 (9)0.0034 (9)0.0021 (9)
C110.0261 (11)0.0181 (10)0.0203 (10)0.0007 (8)0.0007 (9)0.0021 (8)
C120.0256 (11)0.0141 (10)0.0244 (11)0.0004 (8)0.0004 (9)0.0002 (8)
C130.0219 (10)0.0151 (10)0.0256 (11)0.0043 (8)0.0007 (8)0.0033 (8)
C140.0228 (11)0.0165 (10)0.0284 (12)0.0027 (8)0.0021 (9)0.0029 (9)
C150.0221 (11)0.0199 (10)0.0221 (11)0.0012 (8)0.0005 (8)0.0020 (9)
C160.0287 (11)0.0185 (11)0.0290 (12)0.0040 (9)0.0019 (9)0.0064 (9)
C170.0311 (12)0.0221 (11)0.0262 (12)0.0005 (9)0.0030 (9)0.0078 (9)
C180.0251 (11)0.0228 (11)0.0221 (11)0.0009 (9)0.0004 (9)0.0014 (9)
C190.0289 (11)0.0157 (10)0.0257 (11)0.0024 (9)0.0015 (9)0.0012 (9)
C200.0304 (12)0.0174 (10)0.0236 (11)0.0001 (9)0.0012 (9)0.0046 (9)
C210.0317 (12)0.0239 (11)0.0306 (12)0.0040 (10)0.0100 (10)0.0015 (10)
C220.0327 (12)0.0203 (11)0.0287 (12)0.0001 (9)0.0055 (9)0.0031 (9)
C230.0370 (13)0.0356 (14)0.0324 (13)0.0049 (11)0.0124 (11)0.0076 (11)
C240.0329 (13)0.0285 (12)0.0292 (12)0.0070 (10)0.0074 (10)0.0004 (10)
C250.0316 (12)0.0320 (13)0.0331 (13)0.0069 (10)0.0015 (10)0.0062 (10)
C260.0306 (12)0.0339 (13)0.0356 (13)0.0070 (10)0.0029 (10)0.0150 (11)
Geometric parameters (Å, º) top
O1—C41.242 (2)C12—H12A0.9500
N1—C61.464 (3)C13—H13A0.9500
N1—C21.467 (3)C14—C151.449 (3)
N1—C11.481 (3)C14—H14A0.9500
N2—C111.365 (3)C15—C161.405 (3)
N2—C211.456 (3)C15—C201.405 (3)
N2—C221.457 (3)C16—C171.371 (3)
N3—C181.374 (3)C16—H16A0.9500
N3—C241.443 (3)C17—C181.412 (3)
N3—C231.456 (3)C17—H17A0.9500
C1—C251.494 (3)C18—C191.409 (3)
C1—H1A0.9900C19—C201.376 (3)
C1—H1B0.9900C19—H19A0.9500
C2—C31.506 (3)C20—H20A0.9500
C2—H2A0.9900C21—H21A0.9800
C2—H2B0.9900C21—H21B0.9800
C3—C71.346 (3)C21—H21C0.9800
C3—C41.478 (3)C22—H22A0.9800
C4—C51.487 (3)C22—H22B0.9800
C5—C141.351 (3)C22—H22C0.9800
C5—C61.510 (3)C23—H23A0.9800
C6—H6A0.9900C23—H23B0.9800
C6—H6B0.9900C23—H23C0.9800
C7—C81.453 (3)C24—H24A0.9800
C7—H7A0.9500C24—H24B0.9800
C8—C91.405 (3)C24—H24D0.9800
C8—C131.408 (3)C25—C261.535 (3)
C9—C101.372 (3)C25—H25A0.9900
C9—H9A0.9500C25—H25C0.9900
C10—C111.416 (3)C26—H26D0.9800
C10—H10A0.9500C26—H26A0.9800
C11—C121.414 (3)C26—H26B0.9800
C12—C131.379 (3)
C6—N1—C2109.64 (16)C5—C14—C15132.23 (19)
C6—N1—C1107.48 (16)C5—C14—H14A113.9
C2—N1—C1110.84 (16)C15—C14—H14A113.9
C11—N2—C21121.08 (17)C16—C15—C20115.38 (18)
C11—N2—C22120.68 (17)C16—C15—C14118.03 (18)
C21—N2—C22117.76 (17)C20—C15—C14126.60 (19)
C18—N3—C24121.00 (18)C17—C16—C15123.31 (19)
C18—N3—C23119.62 (18)C17—C16—H16A118.3
C24—N3—C23117.24 (17)C15—C16—H16A118.3
N1—C1—C25114.85 (18)C16—C17—C18120.78 (19)
N1—C1—H1A108.6C16—C17—H17A119.6
C25—C1—H1A108.6C18—C17—H17A119.6
N1—C1—H1B108.6N3—C18—C19122.22 (19)
C25—C1—H1B108.6N3—C18—C17121.29 (19)
H1A—C1—H1B107.5C19—C18—C17116.48 (18)
N1—C2—C3110.58 (16)C20—C19—C18121.71 (19)
N1—C2—H2A109.5C20—C19—H19A119.1
C3—C2—H2A109.5C18—C19—H19A119.1
N1—C2—H2B109.5C19—C20—C15122.25 (19)
C3—C2—H2B109.5C19—C20—H20A118.9
H2A—C2—H2B108.1C15—C20—H20A118.9
C7—C3—C4117.38 (18)N2—C21—H21A109.5
C7—C3—C2124.58 (18)N2—C21—H21B109.5
C4—C3—C2118.03 (17)H21A—C21—H21B109.5
O1—C4—C3121.77 (18)N2—C21—H21C109.5
O1—C4—C5120.70 (18)H21A—C21—H21C109.5
C3—C4—C5117.48 (17)H21B—C21—H21C109.5
C14—C5—C4116.91 (18)N2—C22—H22A109.5
C14—C5—C6124.78 (18)N2—C22—H22B109.5
C4—C5—C6118.29 (17)H22A—C22—H22B109.5
N1—C6—C5111.59 (16)N2—C22—H22C109.5
N1—C6—H6A109.3H22A—C22—H22C109.5
C5—C6—H6A109.3H22B—C22—H22C109.5
N1—C6—H6B109.3N3—C23—H23A109.5
C5—C6—H6B109.3N3—C23—H23B109.5
H6A—C6—H6B108.0H23A—C23—H23B109.5
C3—C7—C8132.31 (19)N3—C23—H23C109.5
C3—C7—H7A113.8H23A—C23—H23C109.5
C8—C7—H7A113.8H23B—C23—H23C109.5
C9—C8—C13115.55 (18)N3—C24—H24A109.5
C9—C8—C7117.40 (18)N3—C24—H24B109.5
C13—C8—C7127.00 (18)H24A—C24—H24B109.5
C10—C9—C8123.47 (19)N3—C24—H24D109.5
C10—C9—H9A118.3H24A—C24—H24D109.5
C8—C9—H9A118.3H24B—C24—H24D109.5
C9—C10—C11120.68 (19)C1—C25—C26110.83 (19)
C9—C10—H10A119.7C1—C25—H25A109.5
C11—C10—H10A119.7C26—C25—H25A109.5
N2—C11—C12122.34 (18)C1—C25—H25C109.5
N2—C11—C10121.15 (18)C26—C25—H25C109.5
C12—C11—C10116.50 (18)H25A—C25—H25C108.1
C13—C12—C11121.67 (18)C25—C26—H26D109.5
C13—C12—H12A119.2C25—C26—H26A109.5
C11—C12—H12A119.2H26D—C26—H26A109.5
C12—C13—C8122.10 (18)C25—C26—H26B109.5
C12—C13—H13A118.9H26D—C26—H26B109.5
C8—C13—H13A118.9H26A—C26—H26B109.5
C6—N1—C1—C25178.10 (19)C22—N2—C11—C10174.65 (19)
C2—N1—C1—C2558.3 (2)C9—C10—C11—N2179.3 (2)
C6—N1—C2—C364.4 (2)C9—C10—C11—C120.3 (3)
C1—N1—C2—C3177.10 (17)N2—C11—C12—C13178.40 (19)
N1—C2—C3—C7151.68 (19)C10—C11—C12—C130.6 (3)
N1—C2—C3—C429.3 (2)C11—C12—C13—C81.7 (3)
C7—C3—C4—O16.5 (3)C9—C8—C13—C121.7 (3)
C2—C3—C4—O1174.41 (19)C7—C8—C13—C12179.35 (19)
C7—C3—C4—C5171.03 (18)C4—C5—C14—C15177.6 (2)
C2—C3—C4—C58.1 (3)C6—C5—C14—C151.0 (4)
O1—C4—C5—C1410.8 (3)C5—C14—C15—C16164.8 (2)
C3—C4—C5—C14166.72 (18)C5—C14—C15—C2015.8 (4)
O1—C4—C5—C6170.44 (19)C20—C15—C16—C172.8 (3)
C3—C4—C5—C612.0 (3)C14—C15—C16—C17177.7 (2)
C2—N1—C6—C560.5 (2)C15—C16—C17—C180.8 (3)
C1—N1—C6—C5178.94 (17)C24—N3—C18—C1910.8 (3)
C14—C5—C6—N1159.57 (19)C23—N3—C18—C19173.8 (2)
C4—C5—C6—N121.8 (3)C24—N3—C18—C17170.1 (2)
C4—C3—C7—C8175.9 (2)C23—N3—C18—C177.1 (3)
C2—C3—C7—C83.1 (4)C16—C17—C18—N3177.3 (2)
C3—C7—C8—C9168.4 (2)C16—C17—C18—C191.8 (3)
C3—C7—C8—C1314.0 (4)N3—C18—C19—C20176.8 (2)
C13—C8—C9—C100.8 (3)C17—C18—C19—C202.4 (3)
C7—C8—C9—C10178.65 (19)C18—C19—C20—C150.3 (3)
C8—C9—C10—C110.2 (3)C16—C15—C20—C192.3 (3)
C21—N2—C11—C12178.29 (19)C14—C15—C20—C19178.3 (2)
C22—N2—C11—C126.4 (3)N1—C1—C25—C26179.46 (19)
C21—N2—C11—C102.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.952.563.371 (3)143
C22—H22C···O1ii0.982.483.364 (3)150
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H33N3O
Mr403.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)14.7200 (9), 6.1434 (4), 24.2503 (16)
β (°) 92.262 (1)
V3)2191.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART APEX II CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.912, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
18187, 4296, 2976
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.134, 1.01
No. of reflections4296
No. of parameters276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXTL-NT (Sheldrick, 2001), SHELXTL-NT.

Selected geometric parameters (Å, º) top
O1—C41.242 (2)C5—C141.351 (3)
N2—C111.365 (3)C7—C81.453 (3)
N3—C181.374 (3)C14—C151.449 (3)
C3—C71.346 (3)
C4—C3—C7—C8175.9 (2)C4—C5—C14—C15177.6 (2)
C3—C7—C8—C9168.4 (2)C5—C14—C15—C16164.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.952.563.371 (3)143
C22—H22C···O1ii0.982.483.364 (3)150
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds