Download citation
Download citation
link to html
In the title compound, C30H20N4O10, a typical bonding pattern is observed for the cyclo­butane ring, with an average bond length of 1.560 (3) Å and bond angles of around 90°. In the crystal structure, the relatively short distances between the centroids of the benzene rings of neighbouring mol­ecules [3.865 (3) and 3.845 (3) Å] indicate the existence of π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028954/cv2260sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028954/cv2260Isup2.hkl
Contains datablock I

CCDC reference: 654999

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.055
  • wR factor = 0.134
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C1 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C4 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Since the work of Schmidt which delineated a 'topochemical principle' for [2 + 2] photoreactions in the solid state(Schmidt, 1971) chemists have strived to design molecules that will predictably crystallize to allow such reactions to occur (MacGillivray et al., 2000; Toh et al., 2005; Papaefstathiou et al., 2001). Such an approach to the synthesis can lead to the formation of covalent bonds 'at will' in solids to facilitate the high yield, solvent-free synthesis of molecules available either in low yields, as part of mixtures, or are not accessible in the liquid phase. Herein we present the crystal structure of the title compound, (I), accidentally synthesized through photochemical [2 + 2] cycloaddition.

The crystal data shows that in the title compound, C30H20N4O10, there is a rigid four-membered rings A (C1—C4), The C—C bond lendths of C1—C2, C2—C3, C3—C4 and C1—C4 are 1.587 (3), 1.534 (3), 1.567 (3) and 1.553 (3) Å, respectively. It's average bond lendths is 1.560 (3) Å which is longer than the typical Csp3—Csp3 bond distance and is almost same observed in 1,2-dibenzoyl-3,4-bis(4-methoxyphenyl)cyclobutane (Steyl et al., 2005), where the average C—C bond length is 1.563 (3) Å. Such an elongation has also been observed in another rigid four-membered rings derivative (Toda et al., 1998) and is considered to be caused by the tensile force of rigid four-membered rings. The relatively short distances Cg1···Cg1i of 3.865 (3) Å and Cg2···Cg3ii of 3.845 (3) Å [Cg1, Cg2 and Cg3 are centroids of C18—C23, C11—C16 and C25—C30 rings, respectively] show an existence of weak π···π interactions, which contribute to the crystal packing stabilization [symmetry codes: (i) 1 - x, -y, -z; (ii) x, 1/2 - y, -1/2 + z].

Related literature top

For background and details of the `topochemical principle' for [2 + 2] photoreactions in the solid state, see: Schmidt (1971); MacGillivray et al. (2000); Toh et al. (2005); Papaefstathiou et al. (2001). For crystal structures of related compounds, see: Steyl et al. (2005) and Toda et al. (1998).

Experimental top

1,3-Bis(4-nitrophenyl)prop-2-en-1-one (0.298 g, 2 mmol) was dissolved in ethanol (25 ml) and evaporated slowly in the air affording yellow block crystals of complex I under sunlight.

Refinement top

All H atoms were geometrically positioned (C—H 0.93–0.98 Å) and included in the refinement in riding motion approximation, with Uiso = 1.2Ueq of the carrier atom.

Structure description top

Since the work of Schmidt which delineated a 'topochemical principle' for [2 + 2] photoreactions in the solid state(Schmidt, 1971) chemists have strived to design molecules that will predictably crystallize to allow such reactions to occur (MacGillivray et al., 2000; Toh et al., 2005; Papaefstathiou et al., 2001). Such an approach to the synthesis can lead to the formation of covalent bonds 'at will' in solids to facilitate the high yield, solvent-free synthesis of molecules available either in low yields, as part of mixtures, or are not accessible in the liquid phase. Herein we present the crystal structure of the title compound, (I), accidentally synthesized through photochemical [2 + 2] cycloaddition.

The crystal data shows that in the title compound, C30H20N4O10, there is a rigid four-membered rings A (C1—C4), The C—C bond lendths of C1—C2, C2—C3, C3—C4 and C1—C4 are 1.587 (3), 1.534 (3), 1.567 (3) and 1.553 (3) Å, respectively. It's average bond lendths is 1.560 (3) Å which is longer than the typical Csp3—Csp3 bond distance and is almost same observed in 1,2-dibenzoyl-3,4-bis(4-methoxyphenyl)cyclobutane (Steyl et al., 2005), where the average C—C bond length is 1.563 (3) Å. Such an elongation has also been observed in another rigid four-membered rings derivative (Toda et al., 1998) and is considered to be caused by the tensile force of rigid four-membered rings. The relatively short distances Cg1···Cg1i of 3.865 (3) Å and Cg2···Cg3ii of 3.845 (3) Å [Cg1, Cg2 and Cg3 are centroids of C18—C23, C11—C16 and C25—C30 rings, respectively] show an existence of weak π···π interactions, which contribute to the crystal packing stabilization [symmetry codes: (i) 1 - x, -y, -z; (ii) x, 1/2 - y, -1/2 + z].

For background and details of the `topochemical principle' for [2 + 2] photoreactions in the solid state, see: Schmidt (1971); MacGillivray et al. (2000); Toh et al. (2005); Papaefstathiou et al. (2001). For crystal structures of related compounds, see: Steyl et al. (2005) and Toda et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecule structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1,2-Bis(4-nitrobenzoyl)-3,4-bis(4-nitrophenyl)cyclobutane top
Crystal data top
C30H20N4O10F(000) = 1232
Mr = 596.50Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5718 reflections
a = 17.1005 (11) Åθ = 2.1–26.1°
b = 10.6509 (6) ŵ = 0.11 mm1
c = 15.0484 (9) ÅT = 291 K
β = 98.1630 (11)°Block, yellow
V = 2713.1 (3) Å30.30 × 0.26 × 0.24 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
5326 independent reflections
Radiation source: sealed tube3493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2112
Tmin = 0.97, Tmax = 0.97k = 1313
14024 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0937P]
where P = (Fo2 + 2Fc2)/3
5326 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C30H20N4O10V = 2713.1 (3) Å3
Mr = 596.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.1005 (11) ŵ = 0.11 mm1
b = 10.6509 (6) ÅT = 291 K
c = 15.0484 (9) Å0.30 × 0.26 × 0.24 mm
β = 98.1630 (11)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5326 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3493 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.97Rint = 0.034
14024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
5326 reflectionsΔρmin = 0.20 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.24207 (14)0.1731 (2)0.27043 (15)0.0513 (6)
H10.24860.19380.33450.062*
C20.27985 (14)0.2795 (2)0.21614 (15)0.0478 (5)
H20.31390.33180.25900.057*
C30.33138 (13)0.1800 (2)0.17889 (15)0.0465 (5)
H30.30640.15440.11900.056*
C40.30906 (14)0.0838 (2)0.25000 (15)0.0465 (5)
H40.28860.00480.22250.056*
C50.15684 (14)0.1418 (2)0.23690 (16)0.0516 (6)
C60.13487 (16)0.0522 (3)0.17200 (18)0.0612 (7)
H60.17310.00350.15020.073*
C70.05493 (16)0.0347 (3)0.13901 (19)0.0630 (7)
H70.03960.02550.09530.076*
C80.00024 (13)0.1065 (2)0.17144 (16)0.0487 (5)
C90.02065 (15)0.1967 (2)0.23477 (17)0.0564 (6)
H90.01800.24660.25460.068*
C100.09907 (15)0.2134 (2)0.26906 (18)0.0578 (6)
H100.11330.27260.31380.069*
C110.22659 (14)0.3643 (2)0.15479 (17)0.0510 (6)
C120.20188 (15)0.4766 (2)0.18928 (17)0.0549 (6)
H120.22020.49810.24850.066*
C130.15098 (16)0.5565 (2)0.13770 (18)0.0593 (7)
H130.13500.63130.16140.071*
C140.12455 (16)0.5239 (3)0.05148 (19)0.0615 (7)
C150.14666 (15)0.4132 (2)0.01427 (18)0.0588 (6)
H150.12710.39220.04470.071*
C160.19831 (16)0.3346 (2)0.06639 (17)0.0601 (7)
H160.21440.26050.04180.072*
C170.41546 (15)0.2195 (2)0.17426 (15)0.0497 (5)
C180.47535 (14)0.1283 (2)0.15019 (15)0.0466 (5)
C190.54917 (15)0.1712 (3)0.14035 (18)0.0584 (6)
H190.56150.25540.15130.070*
C200.60527 (15)0.0923 (2)0.11459 (17)0.0560 (6)
H200.65560.12200.10980.067*
C210.58645 (14)0.0291 (2)0.09623 (15)0.0493 (6)
C220.51468 (15)0.0784 (2)0.10701 (16)0.0535 (6)
H220.50370.16310.09640.064*
C230.45837 (14)0.0018 (2)0.13435 (16)0.0515 (6)
H230.40900.02950.14210.062*
C240.36941 (14)0.0631 (2)0.33040 (15)0.0453 (5)
C250.34748 (13)0.0183 (2)0.40435 (15)0.0451 (5)
C260.39091 (14)0.0081 (2)0.48922 (16)0.0523 (6)
H260.43130.05090.49920.063*
C270.37552 (16)0.0831 (2)0.55852 (18)0.0587 (6)
H270.40520.07660.61510.070*
C280.31505 (15)0.1683 (2)0.54202 (17)0.0539 (6)
C290.27006 (15)0.1799 (2)0.46023 (17)0.0552 (6)
H290.22970.23910.45100.066*
C300.28551 (14)0.1019 (2)0.39095 (17)0.0529 (6)
H300.25390.10610.33540.063*
N10.08286 (14)0.0903 (2)0.13593 (15)0.0591 (5)
N20.07123 (13)0.6107 (2)0.00524 (16)0.0608 (6)
N30.64516 (13)0.1109 (2)0.06240 (13)0.0562 (5)
N40.30011 (13)0.2532 (2)0.61511 (15)0.0561 (5)
O10.13121 (11)0.16035 (19)0.16093 (12)0.0681 (5)
O20.10009 (11)0.00350 (18)0.08137 (13)0.0669 (5)
O30.04865 (12)0.57942 (18)0.08239 (15)0.0708 (5)
O40.05367 (11)0.70834 (19)0.02810 (13)0.0674 (5)
O50.71007 (11)0.06971 (17)0.06117 (12)0.0618 (5)
O60.62652 (10)0.21424 (16)0.03760 (11)0.0532 (4)
O70.43348 (10)0.32942 (16)0.18512 (12)0.0588 (4)
O80.33738 (11)0.24460 (17)0.68674 (12)0.0636 (5)
O90.25094 (11)0.33148 (18)0.59804 (12)0.0681 (5)
O100.43402 (10)0.11166 (17)0.33775 (12)0.0590 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0532 (14)0.0555 (14)0.0430 (12)0.0094 (11)0.0011 (10)0.0029 (10)
C20.0485 (13)0.0510 (13)0.0429 (11)0.0063 (10)0.0031 (10)0.0036 (10)
C30.0492 (12)0.0489 (13)0.0397 (11)0.0089 (10)0.0003 (9)0.0022 (9)
C40.0480 (13)0.0484 (13)0.0437 (12)0.0042 (10)0.0086 (10)0.0044 (10)
C50.0528 (14)0.0532 (14)0.0492 (13)0.0076 (11)0.0080 (11)0.0114 (11)
C60.0532 (15)0.0659 (16)0.0620 (15)0.0087 (12)0.0003 (12)0.0079 (13)
C70.0588 (16)0.0633 (16)0.0618 (15)0.0047 (13)0.0088 (13)0.0081 (13)
C80.0433 (12)0.0533 (13)0.0515 (13)0.0105 (11)0.0140 (10)0.0147 (11)
C90.0597 (15)0.0497 (14)0.0598 (15)0.0166 (12)0.0081 (12)0.0136 (12)
C100.0609 (15)0.0561 (15)0.0599 (14)0.0143 (12)0.0203 (12)0.0095 (12)
C110.0510 (13)0.0500 (13)0.0541 (13)0.0116 (11)0.0147 (11)0.0058 (11)
C120.0545 (14)0.0590 (15)0.0528 (14)0.0183 (12)0.0132 (11)0.0002 (11)
C130.0663 (16)0.0515 (14)0.0651 (16)0.0170 (12)0.0266 (13)0.0165 (12)
C140.0620 (16)0.0591 (16)0.0653 (16)0.0108 (12)0.0157 (13)0.0305 (13)
C150.0600 (16)0.0597 (16)0.0541 (14)0.0070 (12)0.0007 (12)0.0139 (12)
C160.0673 (16)0.0534 (14)0.0576 (15)0.0265 (12)0.0015 (12)0.0058 (12)
C170.0582 (14)0.0444 (13)0.0459 (12)0.0028 (11)0.0053 (10)0.0024 (10)
C180.0480 (12)0.0505 (13)0.0407 (11)0.0028 (10)0.0041 (9)0.0051 (10)
C190.0562 (15)0.0601 (15)0.0586 (14)0.0125 (12)0.0074 (12)0.0097 (12)
C200.0557 (15)0.0589 (16)0.0564 (14)0.0107 (12)0.0184 (12)0.0023 (12)
C210.0466 (13)0.0590 (15)0.0420 (12)0.0068 (11)0.0052 (10)0.0048 (10)
C220.0615 (15)0.0461 (13)0.0534 (14)0.0022 (11)0.0097 (11)0.0044 (11)
C230.0477 (13)0.0531 (14)0.0559 (14)0.0010 (11)0.0142 (11)0.0080 (11)
C240.0455 (13)0.0430 (12)0.0478 (12)0.0076 (10)0.0077 (10)0.0049 (10)
C250.0466 (12)0.0420 (12)0.0460 (12)0.0087 (10)0.0039 (10)0.0006 (9)
C260.0492 (13)0.0545 (14)0.0501 (13)0.0020 (11)0.0031 (10)0.0060 (11)
C270.0560 (15)0.0634 (16)0.0532 (14)0.0083 (13)0.0045 (11)0.0092 (12)
C280.0593 (15)0.0425 (13)0.0602 (15)0.0093 (11)0.0090 (12)0.0130 (11)
C290.0551 (14)0.0508 (14)0.0586 (14)0.0033 (11)0.0047 (11)0.0039 (11)
C300.0450 (13)0.0599 (15)0.0524 (13)0.0018 (11)0.0026 (10)0.0015 (11)
N10.0540 (12)0.0598 (13)0.0608 (13)0.0059 (11)0.0017 (10)0.0126 (11)
N20.0618 (13)0.0553 (13)0.0653 (14)0.0142 (11)0.0088 (11)0.0298 (11)
N30.0546 (13)0.0653 (15)0.0479 (11)0.0064 (11)0.0049 (9)0.0010 (10)
N40.0564 (13)0.0480 (12)0.0615 (13)0.0013 (10)0.0005 (11)0.0181 (9)
O10.0551 (11)0.0851 (14)0.0651 (11)0.0209 (10)0.0122 (9)0.0273 (10)
O20.0621 (11)0.0652 (12)0.0650 (11)0.0193 (9)0.0194 (9)0.0111 (10)
O30.0671 (12)0.0650 (12)0.0735 (13)0.0146 (9)0.0133 (10)0.0153 (10)
O40.0670 (12)0.0633 (12)0.0662 (11)0.0141 (10)0.0104 (9)0.0162 (10)
O50.0615 (12)0.0660 (11)0.0625 (11)0.0013 (9)0.0247 (9)0.0231 (9)
O60.0545 (10)0.0524 (10)0.0579 (10)0.0135 (8)0.0260 (8)0.0019 (8)
O70.0618 (10)0.0510 (10)0.0661 (11)0.0042 (8)0.0177 (9)0.0080 (8)
O80.0646 (11)0.0615 (11)0.0602 (11)0.0165 (9)0.0063 (9)0.0229 (8)
O90.0729 (12)0.0657 (11)0.0595 (10)0.0248 (10)0.0116 (9)0.0278 (9)
O100.0528 (10)0.0618 (11)0.0622 (11)0.0123 (9)0.0076 (8)0.0047 (8)
Geometric parameters (Å, º) top
C1—C51.510 (3)C17—O71.215 (3)
C1—C41.553 (3)C17—C181.493 (3)
C1—C21.587 (3)C18—C191.370 (3)
C1—H10.9800C18—C231.392 (3)
C2—C111.503 (3)C19—C201.372 (4)
C2—C31.534 (3)C19—H190.9300
C2—H20.9800C20—C211.352 (3)
C3—C171.509 (3)C20—H200.9300
C3—C41.567 (3)C21—C221.366 (3)
C3—H30.9800C21—N31.474 (3)
C4—C241.491 (3)C22—C231.392 (3)
C4—H40.9800C22—H220.9300
C5—C61.379 (4)C23—H230.9300
C5—C101.388 (3)C24—O101.211 (3)
C6—C71.399 (4)C24—C251.500 (3)
C6—H60.9300C25—C301.377 (3)
C7—C81.351 (4)C25—C261.387 (3)
C7—H70.9300C26—C271.369 (3)
C8—C91.364 (4)C26—H260.9300
C8—N11.456 (3)C27—C281.371 (4)
C9—C101.378 (4)C27—H270.9300
C9—H90.9300C28—C291.361 (4)
C10—H100.9300C28—N41.474 (3)
C11—C161.386 (4)C29—C301.388 (3)
C11—C121.394 (3)C29—H290.9300
C12—C131.375 (3)C30—H300.9300
C12—H120.9300N1—O11.212 (3)
C13—C141.357 (4)N1—O21.244 (3)
C13—H130.9300N2—O41.211 (3)
C14—C151.381 (4)N2—O31.217 (3)
C14—N21.481 (3)N3—O61.191 (3)
C15—C161.378 (3)N3—O51.196 (3)
C15—H150.9300N4—O81.175 (3)
C16—H160.9300N4—O91.186 (3)
C5—C1—C4120.2 (2)C15—C16—C11121.0 (2)
C5—C1—C2115.44 (18)C15—C16—H16119.5
C4—C1—C288.26 (17)C11—C16—H16119.5
C5—C1—H1110.4O7—C17—C18119.3 (2)
C4—C1—H1110.4O7—C17—C3119.2 (2)
C2—C1—H1110.4C18—C17—C3121.3 (2)
C11—C2—C3121.33 (19)C19—C18—C23118.5 (2)
C11—C2—C1119.33 (19)C19—C18—C17118.9 (2)
C3—C2—C189.53 (17)C23—C18—C17122.6 (2)
C11—C2—H2108.3C18—C19—C20121.2 (2)
C3—C2—H2108.3C18—C19—H19119.4
C1—C2—H2108.3C20—C19—H19119.4
C17—C3—C2115.09 (19)C21—C20—C19119.2 (2)
C17—C3—C4122.68 (18)C21—C20—H20120.4
C2—C3—C489.65 (17)C19—C20—H20120.4
C17—C3—H3109.2C20—C21—C22122.4 (2)
C2—C3—H3109.2C20—C21—N3118.8 (2)
C4—C3—H3109.2C22—C21—N3118.8 (2)
C24—C4—C1112.03 (18)C21—C22—C23118.0 (2)
C24—C4—C3116.30 (19)C21—C22—H22121.0
C1—C4—C389.60 (17)C23—C22—H22121.0
C24—C4—H4112.3C18—C23—C22120.6 (2)
C1—C4—H4112.3C18—C23—H23119.7
C3—C4—H4112.3C22—C23—H23119.7
C6—C5—C10119.4 (2)O10—C24—C4121.9 (2)
C6—C5—C1122.8 (2)O10—C24—C25120.0 (2)
C10—C5—C1117.6 (2)C4—C24—C25118.1 (2)
C5—C6—C7119.8 (3)C30—C25—C26119.0 (2)
C5—C6—H6120.1C30—C25—C24122.2 (2)
C7—C6—H6120.1C26—C25—C24118.7 (2)
C8—C7—C6119.2 (2)C27—C26—C25121.3 (2)
C8—C7—H7120.4C27—C26—H26119.3
C6—C7—H7120.4C25—C26—H26119.3
C7—C8—C9122.0 (2)C26—C27—C28118.0 (2)
C7—C8—N1119.4 (2)C26—C27—H27121.0
C9—C8—N1118.7 (2)C28—C27—H27121.0
C8—C9—C10119.4 (2)C29—C28—C27122.6 (2)
C8—C9—H9120.3C29—C28—N4118.9 (2)
C10—C9—H9120.3C27—C28—N4118.5 (2)
C9—C10—C5120.1 (3)C28—C29—C30118.8 (2)
C9—C10—H10119.9C28—C29—H29120.6
C5—C10—H10119.9C30—C29—H29120.6
C16—C11—C12118.1 (2)C25—C30—C29120.1 (2)
C16—C11—C2123.4 (2)C25—C30—H30119.9
C12—C11—C2118.5 (2)C29—C30—H30119.9
C13—C12—C11121.5 (3)O1—N1—O2123.6 (2)
C13—C12—H12119.3O1—N1—C8119.1 (2)
C11—C12—H12119.3O2—N1—C8117.2 (2)
C14—C13—C12118.7 (2)O4—N2—O3124.5 (2)
C14—C13—H13120.7O4—N2—C14117.8 (2)
C12—C13—H13120.7O3—N2—C14117.7 (2)
C13—C14—C15122.2 (2)O6—N3—O5122.8 (2)
C13—C14—N2119.1 (3)O6—N3—C21119.3 (2)
C15—C14—N2118.7 (3)O5—N3—C21117.9 (2)
C16—C15—C14118.6 (3)O8—N4—O9121.9 (2)
C16—C15—H15120.7O8—N4—C28120.5 (2)
C14—C15—H15120.7O9—N4—C28117.5 (2)

Experimental details

Crystal data
Chemical formulaC30H20N4O10
Mr596.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)17.1005 (11), 10.6509 (6), 15.0484 (9)
β (°) 98.1630 (11)
V3)2713.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.97, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
14024, 5326, 3493
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.134, 1.04
No. of reflections5326
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds