Download citation
Download citation
link to html
The title compound, Na+·C7H6BrClNO2S·1.5H2O, crystallizes with two cations, two anions and three water mol­ecules in the asymmetric unit; its structure is similar to that of sodium N-bromo­benzene­sulfonamidate and sodium N-bromo-4-chlorobenzene­sulfonamidate. The sodium ion shows octa­hedral coordination by three O atoms of water mol­ecules and by three sulfonyl O atoms of three different N-bromo-4-chloro-2-methyl­benzene­sulfonamide anions. There is no inter­action between the N atoms and sodium ions in the structure. The S—N distance of 1.584 (4) Å is consistent with an S=N double bond. The crystal structure is stabilized by O—H...·N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029248/dn2194sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029248/dn2194Isup2.hkl
Contains datablock I

CCDC reference: 614776

Key indicators

  • Single-crystal X-ray study
  • T = 300 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.070
  • wR factor = 0.091
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.21 Ratio
Alert level G ABSTM02_ALERT_3_G The ratio of expected to reported Tmax/Tmin(RR) is > 1.50 Tmin and Tmax reported: 0.196 0.632 Tmin and Tmax expected: 0.110 0.666 RR = 1.875 Please check that your absorption correction is appropriate. PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemistry of N-halo-arylsulfonamides is of interest due to their diverse characteristics (Usha & Gowda, 2006). In the present work, the structure of sodium N-bromo-2-methyl-4-chloro-benzenesulfonamidate (NaNB2M4CBSA) has been determined to explore the substituent effects on the solid state structures of arylsulfonamides and N-halo arylsulfonamidates (Gowda et al., 2007a, b, c, d). The structure of NaNB2M4CBSA (Fig. 1) resembles those of sodium N-chloro-2-methyl- 4-chloro-benzenesulfonamidate (NaNC2M4CBSA)(Gowda, Srilatha et al., 2007), sodium N-bromo-benzenesulfonamidate (NaNBBSA) (Gowda, Usha et al., 2007) and sodium N-bromo-4-chloro-benzenesulfonamidate (NaNB4CBSA)(Gowda, Kožíšek et al., 2007) and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Gowda, Jyothi et al., 2007). NaNB2M4CBSA crystallizes with two cations, two anions and three water molecules in the asymmetric unit. The sodium ion shows octahedral coordination by three O atoms of water molecules and by three sulfonyl O atoms of three different N-bromo-2-methyl- 4-chloro-benzenesulfonamide anions. There is no interaction between the nitrogen and sodium ions in the molecule. The S—N distances of N1—S1, 1.584 (4) Å is consistent with a S—N double bond and in agreement with those observed with NaNBBSA, NaNB4CBSA and NaNC2M4CBSA. O—H···N hydrogen bonding interactions result in the formation of a polymeric layer structure running parallel to the (0 0 1) plane (Table 1, Fig. 2).

Related literature top

For related literature, see: George et al. (2000); Gowda & Usha (2003); Gowda, Jyothi et al. (2007); Gowda, Kožíšek et al. (2007); Gowda, Usha et al. (2007); Gowda, Srilatha et al. (2007); Usha & Gowda (2006).

Experimental top

The title compound was prepared according to the literature method (Gowda & Usha, 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Gowda & Usha, 2003). Single crystals of the title compound were obtained from its aqueous solution and used for X-ray diffraction studies at room temperature.

Refinement top

All H atoms attached to C and O atoms were positioned geometrically and treated as riding with C—H = 0.93 Å (aromatic) and C—H = 0.96 Å (methyl). H atoms of water molecules were refined using restraint on O—H bond length 0.85 (3) Å and restraint on their mutual distance 1.45 (4) Å. All H atoms have Uiso(H) = 1.2 Ueq(C).

Regarding the discrepancy with reflection numbers, the number of reflections used in the refinement (2049) differs from the total number of reflections (2231) because of applying resolution shel 0.82 to 3.5 Å.

Structure description top

The chemistry of N-halo-arylsulfonamides is of interest due to their diverse characteristics (Usha & Gowda, 2006). In the present work, the structure of sodium N-bromo-2-methyl-4-chloro-benzenesulfonamidate (NaNB2M4CBSA) has been determined to explore the substituent effects on the solid state structures of arylsulfonamides and N-halo arylsulfonamidates (Gowda et al., 2007a, b, c, d). The structure of NaNB2M4CBSA (Fig. 1) resembles those of sodium N-chloro-2-methyl- 4-chloro-benzenesulfonamidate (NaNC2M4CBSA)(Gowda, Srilatha et al., 2007), sodium N-bromo-benzenesulfonamidate (NaNBBSA) (Gowda, Usha et al., 2007) and sodium N-bromo-4-chloro-benzenesulfonamidate (NaNB4CBSA)(Gowda, Kožíšek et al., 2007) and other sodium N-chloro-arylsulfonamidates (George et al., 2000; Gowda, Jyothi et al., 2007). NaNB2M4CBSA crystallizes with two cations, two anions and three water molecules in the asymmetric unit. The sodium ion shows octahedral coordination by three O atoms of water molecules and by three sulfonyl O atoms of three different N-bromo-2-methyl- 4-chloro-benzenesulfonamide anions. There is no interaction between the nitrogen and sodium ions in the molecule. The S—N distances of N1—S1, 1.584 (4) Å is consistent with a S—N double bond and in agreement with those observed with NaNBBSA, NaNB4CBSA and NaNC2M4CBSA. O—H···N hydrogen bonding interactions result in the formation of a polymeric layer structure running parallel to the (0 0 1) plane (Table 1, Fig. 2).

For related literature, see: George et al. (2000); Gowda & Usha (2003); Gowda, Jyothi et al. (2007); Gowda, Kožíšek et al. (2007); Gowda, Usha et al. (2007); Gowda, Srilatha et al. (2007); Usha & Gowda (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Na O interactions are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing diagram of (I) showing hydrogen bonds O3w—H31···N1(i) and O4w—-H41···N1(ii). Symmetry codes: (i) -x, y, -z + 1/2; (ii) x + 1/2, y - 1/2, z. H atoms not involved in hydrogen bonds have been omitted for clarity.
Sodium N-bromo-4-chloro-2-methylbenzenesulfonamidate sesquihydrate top
Crystal data top
Na+·C7H6BrClNO2S·1.5H2OF(000) = 1320
Mr = 333.56Dx = 1.929 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2337 reflections
a = 11.055 (2) Åθ = 2.5–26.4°
b = 6.7804 (14) ŵ = 4.06 mm1
c = 30.727 (6) ÅT = 300 K
β = 98.84 (3)°Block, pale yellow
V = 2275.9 (8) Å30.58 × 0.48 × 0.10 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Rotation method data acquisition using ωand φ scansθmax = 26.4°, θmin = 4.6°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003) using a multifaceted crystal model (Clark & Reid, 1995)
h = 1313
Tmin = 0.196, Tmax = 0.632k = 58
6929 measured reflectionsl = 3838
2231 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0001P)2 + 21.0707P]
where P = (Fo2 + 2Fc2)/3
2049 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.46 e Å3
4 restraintsΔρmin = 0.68 e Å3
Crystal data top
Na+·C7H6BrClNO2S·1.5H2OV = 2275.9 (8) Å3
Mr = 333.56Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.055 (2) ŵ = 4.06 mm1
b = 6.7804 (14) ÅT = 300 K
c = 30.727 (6) Å0.58 × 0.48 × 0.10 mm
β = 98.84 (3)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
2231 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2003) using a multifaceted crystal model (Clark & Reid, 1995)
2066 reflections with I > 2σ(I)
Tmin = 0.196, Tmax = 0.632Rint = 0.067
6929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0704 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0001P)2 + 21.0707P]
where P = (Fo2 + 2Fc2)/3
2049 reflectionsΔρmax = 0.46 e Å3
142 parametersΔρmin = 0.68 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6736 (4)0.3263 (7)0.38143 (14)0.0199 (10)
C20.5880 (4)0.3838 (7)0.40799 (15)0.0236 (11)
C30.6320 (5)0.4536 (8)0.45013 (17)0.0331 (13)
H30.57730.49540.46840.040*
C40.7558 (6)0.4611 (8)0.46494 (18)0.0371 (14)
C50.8403 (5)0.4086 (9)0.43893 (19)0.0399 (14)
H50.92370.41770.44930.048*
C60.7983 (5)0.3415 (9)0.39678 (18)0.0328 (12)
H60.85430.30600.37850.039*
C70.4501 (4)0.3698 (8)0.39352 (17)0.0286 (12)
H7A0.40860.42120.41630.043*
H7B0.42740.44500.36710.043*
H7C0.42740.23430.38810.043*
N10.5374 (4)0.0524 (6)0.32821 (13)0.0242 (9)
O10.5613 (3)0.3788 (5)0.30020 (11)0.0292 (8)
O20.7460 (3)0.1762 (6)0.31310 (12)0.0339 (9)
O3W0.7076 (3)0.1898 (6)0.20927 (12)0.0341 (9)
H310.64900.11900.20010.051*
H320.74900.21700.18860.051*
O4W1.00000.2798 (8)0.25000.0337 (12)
H411.00700.36520.26950.050*
S10.63097 (10)0.22859 (19)0.32722 (4)0.0210 (3)
Cl110.80599 (19)0.5332 (3)0.51941 (5)0.0600 (5)
Br10.60784 (5)0.15106 (9)0.366127 (17)0.03129 (16)
Na10.85419 (18)0.0126 (3)0.26251 (7)0.0323 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.016 (3)0.020 (2)0.000 (2)0.0012 (18)0.003 (2)
C20.028 (2)0.020 (3)0.022 (2)0.000 (2)0.004 (2)0.002 (2)
C30.045 (3)0.029 (3)0.026 (3)0.003 (3)0.008 (2)0.004 (2)
C40.052 (4)0.023 (3)0.030 (3)0.001 (3)0.017 (3)0.002 (2)
C50.030 (3)0.041 (4)0.043 (3)0.007 (3)0.011 (3)0.003 (3)
C60.026 (2)0.032 (3)0.039 (3)0.004 (3)0.002 (2)0.001 (3)
C70.027 (2)0.030 (3)0.031 (3)0.006 (2)0.009 (2)0.004 (2)
N10.025 (2)0.024 (2)0.0217 (19)0.0010 (19)0.0035 (16)0.0016 (18)
O10.0325 (18)0.031 (2)0.0236 (17)0.0036 (17)0.0021 (14)0.0051 (15)
O20.0286 (18)0.042 (2)0.034 (2)0.0017 (18)0.0140 (16)0.0030 (18)
O3W0.0277 (18)0.039 (3)0.035 (2)0.0013 (17)0.0058 (15)0.0010 (18)
O4W0.049 (3)0.027 (3)0.024 (2)0.0000.001 (2)0.000
S10.0214 (6)0.0237 (7)0.0179 (5)0.0006 (5)0.0031 (4)0.0003 (5)
Cl110.0932 (13)0.0454 (11)0.0324 (8)0.0005 (10)0.0190 (8)0.0083 (7)
Br10.0338 (3)0.0274 (3)0.0330 (3)0.0024 (3)0.0062 (2)0.0056 (2)
Na10.0316 (11)0.0338 (12)0.0330 (11)0.0065 (10)0.0101 (9)0.0003 (10)
Geometric parameters (Å, º) top
C1—C61.390 (6)N1—Br11.894 (4)
C1—C21.397 (6)O1—S11.457 (4)
C1—S11.788 (5)O1—Na1i2.441 (4)
C2—C31.394 (7)O2—S11.449 (3)
C2—C71.524 (7)O2—Na12.377 (4)
C3—C41.375 (8)O3W—Na12.436 (4)
C3—H30.9300O3W—Na1i2.488 (4)
C4—C51.366 (8)O3W—H310.8208
C4—Cl111.750 (5)O3W—H320.8585
C5—C61.384 (8)O4W—Na12.494 (4)
C5—H50.9300O4W—H410.8283
C6—H60.9300S1—Na1i3.388 (2)
C7—H7A0.9600Na1—O1ii2.568 (4)
C7—H7B0.9600Na1—S1iii3.388 (2)
C7—H7C0.9600Na1—Na1iv3.427 (4)
N1—S11.584 (4)Na1—Na1i4.105 (3)
C6—C1—C2120.4 (4)C1—S1—Na1i120.60 (16)
C6—C1—S1116.7 (4)O2—Na1—O3W81.90 (14)
C2—C1—S1122.9 (3)O2—Na1—O1iii168.96 (16)
C3—C2—C1117.8 (4)O3W—Na1—O1iii87.06 (14)
C3—C2—C7118.9 (4)O2—Na1—O3Wiii89.42 (14)
C1—C2—C7123.3 (4)O3W—Na1—O3Wiii118.56 (11)
C4—C3—C2120.5 (5)O1iii—Na1—O3Wiii96.15 (14)
C4—C3—H3119.7O2—Na1—O4W99.44 (14)
C2—C3—H3119.7O3W—Na1—O4W85.24 (12)
C5—C4—C3122.1 (5)O1iii—Na1—O4W79.25 (12)
C5—C4—Cl11119.2 (4)O3Wiii—Na1—O4W155.70 (14)
C3—C4—Cl11118.7 (5)O2—Na1—O1ii111.94 (14)
C4—C5—C6118.1 (5)O3W—Na1—O1ii158.82 (14)
C4—C5—H5120.9O1iii—Na1—O1ii78.58 (14)
C6—C5—H5120.9O3Wiii—Na1—O1ii78.81 (13)
C5—C6—C1120.9 (5)O4W—Na1—O1ii76.89 (12)
C5—C6—H6119.5O2—Na1—S1iii152.84 (12)
C1—C6—H6119.5O3W—Na1—S1iii81.03 (11)
C2—C7—H7A109.5O3Wiii—Na1—S1iii80.44 (10)
C2—C7—H7B109.5O4W—Na1—S1iii100.03 (9)
H7A—C7—H7B109.5O1ii—Na1—S1iii90.86 (10)
C2—C7—H7C109.5O2—Na1—Na1iv137.06 (13)
H7A—C7—H7C109.5O3W—Na1—Na1iv113.64 (12)
H7B—C7—H7C109.5O1iii—Na1—Na1iv48.38 (10)
S1—N1—Br1110.7 (2)O3Wiii—Na1—Na1iv113.35 (10)
S1—O1—Na1i118.48 (19)O4W—Na1—Na1iv46.60 (10)
S1—O1—Na1v149.3 (2)O1ii—Na1—Na1iv45.30 (9)
Na1i—O1—Na1v86.31 (13)S1iii—Na1—Na1iv69.67 (6)
S1—O2—Na1149.7 (2)O2—Na1—Na1i54.02 (10)
Na1—O3W—Na1i112.95 (15)O3W—Na1—Na1i33.93 (10)
Na1—O3W—H31110.6O1iii—Na1—Na1i115.51 (12)
Na1i—O3W—H31112.9O3Wiii—Na1—Na1i127.99 (12)
Na1—O3W—H32103.2O4W—Na1—Na1i74.25 (9)
Na1i—O3W—H32106.0O1ii—Na1—Na1i144.31 (12)
H31—O3W—H32110.7S1iii—Na1—Na1i114.39 (9)
Na1iv—O4W—Na186.81 (19)Na1iv—Na1—Na1i118.57 (6)
Na1iv—O4W—H41129.0O2—Na1—Na1iii100.58 (12)
Na1—O4W—H41112.8O3W—Na1—Na1iii89.16 (13)
O2—S1—O1114.3 (2)O1iii—Na1—Na1iii79.46 (10)
O2—S1—N1115.3 (2)O3Wiii—Na1—Na1iii33.12 (9)
O1—S1—N1104.4 (2)O4W—Na1—Na1iii158.22 (11)
O2—S1—C1104.6 (2)O1ii—Na1—Na1iii103.23 (10)
O1—S1—C1108.2 (2)S1iii—Na1—Na1iii58.26 (5)
N1—S1—C1109.9 (2)Na1iv—Na1—Na1iii118.57 (6)
O2—S1—Na1i75.00 (16)Na1i—Na1—Na1iii111.37 (10)
N1—S1—Na1i123.91 (16)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+2, y, z+1/2; (v) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H31···N1vi0.822.162.927 (5)156
O4W—H41···N1vii0.832.193.010 (5)171
Symmetry codes: (vi) x+1, y, z+1/2; (vii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaNa+·C7H6BrClNO2S·1.5H2O
Mr333.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)300
a, b, c (Å)11.055 (2), 6.7804 (14), 30.727 (6)
β (°) 98.84 (3)
V3)2275.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)4.06
Crystal size (mm)0.58 × 0.48 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2003) using a multifaceted crystal model (Clark & Reid, 1995)
Tmin, Tmax0.196, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
6929, 2231, 2066
Rint0.067
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.091, 1.21
No. of reflections2049
No. of parameters142
No. of restraints4
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0001P)2 + 21.0707P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.46, 0.68

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3W—H31···N1i0.822.162.927 (5)156.3
O4W—H41···N1ii0.832.193.010 (5)170.7
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds