Download citation
Download citation
link to html
In the title structure, C23H25ClN2O2, there are weak intra­molecular C—H...N and C—H...O hydrogen bonds. There is a C=O...Cg inter­action (Cg is the centroid of the pyrazole ring) and the distance between the centroids of the ring and the C=O bond is 3.017 (3) Å. The angle between the pyrazole ring and the chloro­phenyl ring is 12.85 (13)°. The crystal packing is stabilized mainly by van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028814/fb2052sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028814/fb2052Isup2.hkl
Contains datablock I

CCDC reference: 654995

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.059
  • wR factor = 0.198
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C20
Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 5 PLAT230_ALERT_2_C Hirshfeld Test Diff for C20 - C21 .. 6.48 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C20 - C23 .. 6.10 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C15 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C16 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C17 PLAT360_ALERT_2_C Short C(sp3)-C(sp3) Bond C11 - C12 ... 1.43 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 8 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrazole nucleus has pronounced pharmacological applications in antibacterial (Finn et al., 2003), anti-anxiety (Wustrow et al., 1998) antipyretic, analgesic and anti-inflammatory drugs (Menozzi et al., 1997). Due to the easy preparation and rich biological activity the pyrazole framework represents an interesting template for combinatorial as well as for medicinal chemistry (Regan et al., 2002; Pevarello et al., 2004).

Related literature top

For related literature, see: Finn et al. (2003); Menozzi et al. (1997); Pevarello et al. (2004); Regan et al. (2002); Wustrow et al. (1998); Xia et al. (2007).

Experimental top

The title compound has been synthesized according to Xia et al. (2007): A mixture of ethyl 3-(4-chlorophenyl)-1H-pyrazole-5-carboxylate (0.01 mol), 1-tert-butyl-4-(chloromethyl)benzene (0.01 mol) and potassium carbonate (0.01 mol) in acetonitrile (20 ml) was heated to reflux for 5 h. The solvent was removed under reduced pressure and the residue was extracted with ethyl acetate (30 ml). The organic phase was washed with brine and dried over anhydrous magnesium sulfate. After evaporation of the solvent under reduced pressure, a solid was obtained with a yield equal to 75%. The solid was dissolved in ethyl acetate/petroleum ether (1:2 v/v). The crystals of the title compound were obtained by evaporation of the solution at room temperature over a period of one week.

Refinement top

All the H atoms except H11B and H23A were discernible in the difference Fourier map. Nevertheless, the found H atoms as well as H11B and H23A were placed into calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups); Uiso(H) = 1.2Ueq(CH2) or Uiso(H) = 1.5Ueq(CH3).

Structure description top

Pyrazole nucleus has pronounced pharmacological applications in antibacterial (Finn et al., 2003), anti-anxiety (Wustrow et al., 1998) antipyretic, analgesic and anti-inflammatory drugs (Menozzi et al., 1997). Due to the easy preparation and rich biological activity the pyrazole framework represents an interesting template for combinatorial as well as for medicinal chemistry (Regan et al., 2002; Pevarello et al., 2004).

For related literature, see: Finn et al. (2003); Menozzi et al. (1997); Pevarello et al. (2004); Regan et al. (2002); Wustrow et al. (1998); Xia et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title molecule showing displacement ellipsoids drawn at the 50% probability level. The H atoms are depicted as spheres of arbitrary radii.
Ethyl 1-(4-tert-butylbenzyl)-3-(4-chlorophenyl)-1H-pyrazole-5- carboxylate top
Crystal data top
C23H25ClN2O2Z = 2
Mr = 396.90F(000) = 420
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9351 (1) ÅCell parameters from 4831 reflections
b = 11.9430 (2) Åθ = 2.7–24.0°
c = 12.6558 (2) ŵ = 0.20 mm1
α = 70.432 (1)°T = 293 K
β = 79.340 (1)°Block, colourless
γ = 71.023 (1)°0.44 × 0.35 × 0.32 mm
V = 1064.78 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4824 independent reflections
Radiation source: fine-focus sealed tube3237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1010
Tmin = 0.841, Tmax = 0.939k = 1415
15955 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.198H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.098P)2 + 0.2242P]
where P = (Fo2 + 2Fc2)/3
4824 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
96 constraints
Crystal data top
C23H25ClN2O2γ = 71.023 (1)°
Mr = 396.90V = 1064.78 (3) Å3
Triclinic, P1Z = 2
a = 7.9351 (1) ÅMo Kα radiation
b = 11.9430 (2) ŵ = 0.20 mm1
c = 12.6558 (2) ÅT = 293 K
α = 70.432 (1)°0.44 × 0.35 × 0.32 mm
β = 79.340 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4824 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
3237 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.939Rint = 0.021
15955 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
4824 reflectionsΔρmin = 0.29 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8400 (3)0.1190 (3)0.2742 (2)0.0733 (6)
C20.9389 (4)0.0694 (2)0.1824 (2)0.0757 (6)
H21.00900.01270.16450.091*
C30.9325 (3)0.1431 (2)0.1173 (2)0.0693 (6)
H31.00110.11010.05600.083*
C40.8268 (3)0.26521 (19)0.14063 (17)0.0581 (5)
C50.7294 (3)0.3124 (2)0.2340 (2)0.0731 (6)
H50.65780.39410.25200.088*
C60.7373 (3)0.2398 (3)0.3006 (2)0.0818 (7)
H60.67260.27310.36370.098*
C70.8169 (3)0.34127 (18)0.06786 (17)0.0570 (5)
C80.7448 (3)0.46923 (19)0.08634 (18)0.0615 (5)
H80.69160.52740.14970.074*
C90.7694 (3)0.4904 (2)0.00879 (18)0.0613 (5)
C100.7236 (3)0.6070 (2)0.0386 (2)0.0695 (6)
C110.6048 (5)0.8229 (3)0.0261 (3)0.1026 (10)
H11A0.53880.81960.04690.123*
H11B0.71250.84510.02700.123*
C120.4977 (6)0.9139 (3)0.1125 (4)0.1328 (14)
H12A0.56840.92410.18350.199*
H12B0.45500.99150.09540.199*
H12C0.39780.88730.11650.199*
C130.8939 (3)0.3461 (2)0.19562 (19)0.0672 (6)
H13A0.93020.41200.20500.081*
H13B0.99300.27100.21190.081*
C140.7343 (3)0.32618 (18)0.27736 (17)0.0570 (5)
C150.6616 (4)0.2337 (2)0.2844 (2)0.0899 (9)
H150.71220.18270.23840.108*
C160.5160 (4)0.2151 (2)0.3581 (2)0.0894 (9)
H160.47050.15170.36030.107*
C170.4343 (3)0.28730 (17)0.42923 (16)0.0550 (5)
C180.5076 (3)0.37929 (19)0.42172 (18)0.0625 (5)
H180.45750.43000.46810.075*
C190.6542 (3)0.3991 (2)0.34712 (19)0.0649 (5)
H190.69910.46300.34420.078*
C200.2712 (3)0.2639 (2)0.50910 (19)0.0656 (5)
C210.3156 (5)0.1280 (3)0.5793 (3)0.1250 (13)
H21A0.34160.07660.53060.188*
H21B0.21530.11370.63190.188*
H21C0.41790.10810.61960.188*
C220.2155 (5)0.3413 (4)0.5903 (3)0.1224 (13)
H22A0.31280.32240.63440.184*
H22B0.11390.32270.63910.184*
H22C0.18460.42770.54860.184*
C230.1175 (4)0.2919 (4)0.4406 (3)0.1135 (11)
H23A0.08800.37750.39670.170*
H23B0.01550.27540.49020.170*
H23C0.15150.24050.39150.170*
Cl10.85235 (12)0.02856 (9)0.35989 (7)0.1085 (3)
N10.8817 (2)0.28689 (16)0.03336 (14)0.0599 (4)
N20.8527 (2)0.37855 (16)0.07868 (14)0.0608 (4)
O10.6522 (3)0.70272 (15)0.04525 (16)0.0877 (5)
O20.7491 (3)0.61609 (18)0.12555 (17)0.0940 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0674 (14)0.0919 (16)0.0694 (14)0.0270 (12)0.0013 (11)0.0345 (13)
C20.0834 (16)0.0710 (14)0.0694 (15)0.0120 (11)0.0080 (12)0.0254 (11)
C30.0754 (14)0.0671 (12)0.0588 (12)0.0090 (10)0.0143 (10)0.0166 (10)
C40.0538 (11)0.0643 (11)0.0507 (11)0.0168 (9)0.0002 (8)0.0125 (9)
C50.0651 (13)0.0763 (14)0.0687 (14)0.0062 (11)0.0145 (11)0.0185 (11)
C60.0742 (15)0.1045 (19)0.0702 (15)0.0202 (14)0.0202 (12)0.0279 (14)
C70.0513 (10)0.0613 (11)0.0526 (11)0.0147 (8)0.0003 (8)0.0131 (9)
C80.0615 (12)0.0595 (11)0.0563 (12)0.0159 (9)0.0030 (9)0.0103 (9)
C90.0567 (11)0.0627 (11)0.0608 (12)0.0207 (9)0.0039 (9)0.0147 (9)
C100.0684 (14)0.0683 (13)0.0700 (15)0.0245 (10)0.0044 (11)0.0187 (11)
C110.128 (3)0.0693 (16)0.114 (2)0.0187 (16)0.021 (2)0.0345 (16)
C120.190 (4)0.0763 (19)0.129 (3)0.015 (2)0.047 (3)0.031 (2)
C130.0619 (13)0.0826 (14)0.0589 (12)0.0215 (10)0.0065 (10)0.0215 (11)
C140.0607 (11)0.0599 (11)0.0504 (10)0.0151 (9)0.0077 (8)0.0167 (8)
C150.110 (2)0.0854 (16)0.0934 (19)0.0455 (15)0.0363 (16)0.0576 (15)
C160.109 (2)0.0850 (16)0.0991 (19)0.0534 (15)0.0329 (16)0.0563 (15)
C170.0585 (11)0.0550 (10)0.0524 (11)0.0129 (8)0.0085 (8)0.0182 (8)
C180.0717 (13)0.0629 (11)0.0592 (12)0.0157 (10)0.0041 (10)0.0300 (10)
C190.0761 (14)0.0671 (12)0.0645 (13)0.0285 (10)0.0059 (10)0.0281 (10)
C200.0584 (12)0.0759 (13)0.0676 (13)0.0196 (10)0.0026 (10)0.0285 (11)
C210.102 (2)0.116 (2)0.112 (3)0.0306 (19)0.0248 (19)0.005 (2)
C220.108 (2)0.179 (4)0.122 (3)0.072 (2)0.043 (2)0.095 (3)
C230.0793 (19)0.162 (3)0.105 (2)0.0364 (19)0.0122 (17)0.042 (2)
Cl10.1159 (6)0.1348 (7)0.1051 (6)0.0420 (5)0.0072 (5)0.0687 (5)
N10.0590 (10)0.0627 (10)0.0534 (10)0.0146 (7)0.0020 (7)0.0155 (8)
N20.0589 (10)0.0675 (10)0.0535 (10)0.0187 (8)0.0008 (7)0.0160 (8)
O10.1104 (14)0.0619 (9)0.0899 (13)0.0174 (9)0.0180 (10)0.0233 (9)
O20.1237 (16)0.0853 (12)0.0800 (12)0.0315 (11)0.0052 (11)0.0333 (10)
Geometric parameters (Å, º) top
C1—C61.367 (4)C13—C141.509 (3)
C1—C21.376 (4)C13—H13A0.9700
C1—Cl11.741 (3)C13—H13B0.9700
C2—C31.377 (3)C14—C191.375 (3)
C2—H20.9300C14—C151.375 (3)
C3—C41.388 (3)C15—C161.372 (4)
C3—H30.9300C15—H150.9300
C4—C51.386 (3)C16—C171.384 (3)
C4—C71.472 (3)C16—H160.9300
C5—C61.378 (4)C17—C181.371 (3)
C5—H50.9300C17—C201.529 (3)
C6—H60.9300C18—C191.386 (3)
C7—N11.340 (3)C18—H180.9300
C7—C81.400 (3)C19—H190.9300
C8—C91.369 (3)C20—C231.510 (4)
C8—H80.9300C20—C221.519 (4)
C9—N21.361 (3)C20—C211.525 (4)
C9—C101.479 (3)C21—H21A0.9600
C10—O21.200 (3)C21—H21B0.9600
C10—O11.320 (3)C21—H21C0.9600
C11—C121.430 (5)C22—H22A0.9600
C11—O11.452 (3)C22—H22B0.9600
C11—H11A0.9700C22—H22C0.9600
C11—H11B0.9700C23—H23A0.9600
C12—H12A0.9600C23—H23B0.9600
C12—H12B0.9600C23—H23C0.9600
C12—H12C0.9600N1—N21.337 (2)
C13—N21.470 (3)
C6—C1—C2120.5 (2)C19—C14—C15116.9 (2)
C6—C1—Cl1120.0 (2)C19—C14—C13122.20 (19)
C2—C1—Cl1119.5 (2)C15—C14—C13120.86 (19)
C1—C2—C3119.0 (2)C16—C15—C14121.4 (2)
C1—C2—H2120.5C16—C15—H15119.3
C3—C2—H2120.5C14—C15—H15119.3
C2—C3—C4121.9 (2)C15—C16—C17122.4 (2)
C2—C3—H3119.1C15—C16—H16118.8
C4—C3—H3119.1C17—C16—H16118.8
C5—C4—C3117.6 (2)C18—C17—C16115.9 (2)
C5—C4—C7121.28 (19)C18—C17—C20123.57 (18)
C3—C4—C7121.12 (19)C16—C17—C20120.53 (19)
C6—C5—C4120.8 (2)C17—C18—C19122.06 (18)
C6—C5—H5119.6C17—C18—H18119.0
C4—C5—H5119.6C19—C18—H18119.0
C1—C6—C5120.2 (2)C14—C19—C18121.34 (19)
C1—C6—H6119.9C14—C19—H19119.3
C5—C6—H6119.9C18—C19—H19119.3
N1—C7—C8110.64 (19)C23—C20—C22109.6 (2)
N1—C7—C4119.66 (18)C23—C20—C21108.9 (3)
C8—C7—C4129.70 (19)C22—C20—C21107.4 (3)
C9—C8—C7105.23 (19)C23—C20—C17109.0 (2)
C9—C8—H8127.4C22—C20—C17112.5 (2)
C7—C8—H8127.4C21—C20—C17109.21 (19)
N2—C9—C8106.89 (19)C20—C21—H21A109.5
N2—C9—C10122.4 (2)C20—C21—H21B109.5
C8—C9—C10130.7 (2)H21A—C21—H21B109.5
O2—C10—O1123.6 (2)C20—C21—H21C109.5
O2—C10—C9125.8 (2)H21A—C21—H21C109.5
O1—C10—C9110.6 (2)H21B—C21—H21C109.5
C12—C11—O1109.3 (3)C20—C22—H22A109.5
C12—C11—H11A109.8C20—C22—H22B109.5
O1—C11—H11A109.8H22A—C22—H22B109.5
C12—C11—H11B109.8C20—C22—H22C109.5
O1—C11—H11B109.8H22A—C22—H22C109.5
H11A—C11—H11B108.3H22B—C22—H22C109.5
C11—C12—H12A109.5C20—C23—H23A109.5
C11—C12—H12B109.5C20—C23—H23B109.5
H12A—C12—H12B109.5H23A—C23—H23B109.5
C11—C12—H12C109.5C20—C23—H23C109.5
H12A—C12—H12C109.5H23A—C23—H23C109.5
H12B—C12—H12C109.5H23B—C23—H23C109.5
N2—C13—C14111.33 (17)N2—N1—C7105.59 (16)
N2—C13—H13A109.4N1—N2—C9111.65 (17)
C14—C13—H13A109.4N1—N2—C13118.38 (17)
N2—C13—H13B109.4C9—N2—C13129.60 (19)
C14—C13—H13B109.4C10—O1—C11115.5 (2)
H13A—C13—H13B108.0
C6—C1—C2—C30.2 (4)C15—C16—C17—C180.1 (4)
Cl1—C1—C2—C3177.90 (19)C15—C16—C17—C20179.4 (3)
C1—C2—C3—C41.2 (4)C16—C17—C18—C190.2 (3)
C2—C3—C4—C51.4 (4)C20—C17—C18—C19179.0 (2)
C2—C3—C4—C7177.9 (2)C15—C14—C19—C180.5 (3)
C3—C4—C5—C60.3 (4)C13—C14—C19—C18180.0 (2)
C7—C4—C5—C6178.9 (2)C17—C18—C19—C140.6 (3)
C2—C1—C6—C51.2 (4)C18—C17—C20—C23113.9 (3)
Cl1—C1—C6—C5178.9 (2)C16—C17—C20—C2365.4 (3)
C4—C5—C6—C11.0 (4)C18—C17—C20—C228.0 (3)
C5—C4—C7—N1166.2 (2)C16—C17—C20—C22172.7 (3)
C3—C4—C7—N113.0 (3)C18—C17—C20—C21127.2 (3)
C5—C4—C7—C812.9 (3)C16—C17—C20—C2153.5 (3)
C3—C4—C7—C8167.9 (2)C8—C7—N1—N20.4 (2)
N1—C7—C8—C90.2 (2)C4—C7—N1—N2179.63 (17)
C4—C7—C8—C9179.34 (19)C7—N1—N2—C90.4 (2)
C7—C8—C9—N20.1 (2)C7—N1—N2—C13174.07 (17)
C7—C8—C9—C10179.0 (2)C8—C9—N2—N10.3 (2)
N2—C9—C10—O22.0 (4)C10—C9—N2—N1179.39 (18)
C8—C9—C10—O2179.1 (2)C8—C9—N2—C13173.1 (2)
N2—C9—C10—O1176.88 (19)C10—C9—N2—C137.9 (3)
C8—C9—C10—O11.9 (3)C14—C13—N2—N189.9 (2)
N2—C13—C14—C19117.6 (2)C14—C13—N2—C982.4 (3)
N2—C13—C14—C1561.9 (3)O2—C10—O1—C110.1 (4)
C19—C14—C15—C160.2 (4)C9—C10—O1—C11178.9 (2)
C13—C14—C15—C16179.7 (3)C12—C11—O1—C10168.5 (3)
C14—C15—C16—C170.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.562.865 (3)100
C13—H13A···O20.972.372.925 (3)116

Experimental details

Crystal data
Chemical formulaC23H25ClN2O2
Mr396.90
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.9351 (1), 11.9430 (2), 12.6558 (2)
α, β, γ (°)70.432 (1), 79.340 (1), 71.023 (1)
V3)1064.78 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.44 × 0.35 × 0.32
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.841, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
15955, 4824, 3237
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.198, 1.07
No. of reflections4824
No. of parameters257
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: APEX2 (Bruker, 2005), APEX2, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N10.932.562.865 (3)100
C13—H13A···O20.972.372.925 (3)116
Y—X···π-ring interactions calculated by PLATON [Spek (2003). J. Appl. Cryst. 36, 7–13]. Cgi is the centroid of the pyrazole ring N1/N2/C9/C8/C7 top
Y-X···CgY-XX···CgY···CgD-H···Cg
C10-O2···Cg1i1.200 (3)3.503 (3)3.623 (3)85.95 (17)
Symmetry code: (i) 2-x, 1-y, -z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds