Download citation
Download citation
link to html
In the cation of the title compound, C15H17N3O+·PF6, the dihedral angle between the mean planes of the quinoline and imidazole groups is 78.02 (7)°. In the crystal structure, π–π stacking inter­actions, with a ring centroid separation of 3.752 (2) Å, link the mol­ecules into centrosymmetric dimers. In addition, weak inter­molecular C—H...F and C—H...O inter­actions help to stabilize the crystal structure. The F atoms of the anion are disordered over two sites in a ratio of approximately 0.86:0.14.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026955/lh2402sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026955/lh2402Isup2.hkl
Contains datablock I

CCDC reference: 654973

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in solvent or counterion
  • R factor = 0.058
  • wR factor = 0.170
  • Data-to-parameter ratio = 10.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT415_ALERT_2_B Short Inter D-H..H-X H2 .. H3 .. 2.05 Ang.
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.108 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.11 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT214_ALERT_2_C Atom F6' (Anion/Solvent) ADP max/min Ratio 4.90 oblat PLAT221_ALERT_4_C Large Solvent/Anion F Ueq(max)/Ueq(min) ... 3.11 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 46.00 Perc. PLAT431_ALERT_2_C Short Inter HL..A Contact F3 .. N1 .. 2.90 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact F3 .. C3 .. 2.96 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 108
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Room-temperature ionic liquids are attracting significant interest owing to their chemical characteristics and potentially useful solvent properties (Dibrov & Kochi, 2006) and imidazolium salts, which are regarded as a type of ionic liquids, have an extensive application in organic synthesis (Pretti et al., 2006).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the quinoline plane and imidazole plane is 78.02 (7) °. In the crystal structure, π-π stacking internactions link molecules into centrosymmetric dimers. In addtion, weak intermolecular C—H···F and C—H···O interactions help stabilize the crystal structure.

Related literature top

For related literature, see: Bortolini et al. (2003); Dibrov & Kochi (2006); Pretti et al. (2006).

Experimental top

The title compound was synthesized according to the literature procedure (Bortolini et al., 2003).

Refinement top

All H atoms were included in calculated positions and refined as riding (C—H = 0.93–0.97 Å; N—H = 0.88 Å), with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C,N) for all other H atoms. The largest peak in the final difference Fourier of 1.33 e Å-3 is 0.83 Å from atom H7. The F atoms of the anion are disordered over two sites with refined occupancies 0.859 (6) and 0.141 (6) for the major and minor components.

Structure description top

Room-temperature ionic liquids are attracting significant interest owing to their chemical characteristics and potentially useful solvent properties (Dibrov & Kochi, 2006) and imidazolium salts, which are regarded as a type of ionic liquids, have an extensive application in organic synthesis (Pretti et al., 2006).

The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the quinoline plane and imidazole plane is 78.02 (7) °. In the crystal structure, π-π stacking internactions link molecules into centrosymmetric dimers. In addtion, weak intermolecular C—H···F and C—H···O interactions help stabilize the crystal structure.

For related literature, see: Bortolini et al. (2003); Dibrov & Kochi (2006); Pretti et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids. Hydrogen atoms and the minor component of disorder have been omitted.
[Figure 2] Fig. 2. : The packing of the title compound, viewed down the b axis.
3-(8-Methoxyquinolin-2-ylmethyl)-1-methyl-3H-1-imidazolium hexafluorophosphate top
Crystal data top
C15H17N3O+·F6PZ = 8
Mr = 400.29F(000) = 1640
Monoclinic, C2/cDx = 1.527 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 12.2183 (11) ŵ = 0.23 mm1
b = 21.3444 (19) ÅT = 291 K
c = 14.4056 (13) ÅBlock, colourless
β = 112.059 (1)°0.24 × 0.18 × 0.16 mm
V = 3481.9 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3087 independent reflections
Radiation source: fine-focus sealed tube2808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.947, Tmax = 0.964k = 2525
12564 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0848P)2 + 6.8821P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3087 reflectionsΔρmax = 1.13 e Å3
293 parametersΔρmin = 0.67 e Å3
108 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)
Crystal data top
C15H17N3O+·F6PV = 3481.9 (5) Å3
Mr = 400.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 12.2183 (11) ŵ = 0.23 mm1
b = 21.3444 (19) ÅT = 291 K
c = 14.4056 (13) Å0.24 × 0.18 × 0.16 mm
β = 112.059 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2808 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.964Rint = 0.108
12564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059108 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.05Δρmax = 1.13 e Å3
3087 reflectionsΔρmin = 0.67 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.01910 (7)0.33923 (4)0.99358 (6)0.0431 (3)
F10.0575 (5)0.3561 (2)1.1098 (3)0.092 (2)0.859 (6)
F20.0141 (3)0.26827 (11)1.0220 (2)0.0687 (9)0.859 (6)
F30.1135 (2)0.3483 (2)0.9796 (3)0.0951 (13)0.859 (6)
F40.0294 (4)0.41165 (15)0.9733 (3)0.1144 (16)0.859 (6)
F50.1552 (2)0.33103 (19)1.0130 (3)0.0916 (12)0.859 (6)
F60.0185 (5)0.3223 (3)0.8809 (3)0.118 (3)0.859 (6)
F1'0.0459 (14)0.3516 (7)1.1049 (6)0.038 (6)0.141 (6)
F2'0.0984 (11)0.3001 (8)0.9825 (10)0.080 (6)0.141 (6)
F3'0.0593 (16)0.3991 (6)0.9584 (11)0.089 (7)0.141 (6)
F4'0.1291 (12)0.3739 (9)0.9927 (12)0.113 (9)0.141 (6)
F5'0.0894 (16)0.2751 (6)1.0179 (12)0.117 (9)0.141 (6)
F6'0.0142 (12)0.3222 (7)0.8752 (7)0.046 (6)0.141 (6)
N10.35973 (18)0.67281 (10)0.14547 (16)0.0286 (5)
N20.51217 (19)0.55385 (10)0.12278 (15)0.0297 (5)
H20.56990.57990.14550.036*
N30.29978 (19)0.68579 (10)0.26701 (16)0.0324 (5)
O10.73297 (16)0.51432 (9)0.21731 (16)0.0406 (5)
C10.5310 (2)0.49095 (12)0.13432 (18)0.0302 (6)
C20.4026 (2)0.57384 (13)0.07571 (19)0.0326 (6)
C30.3228 (2)0.64369 (12)0.20928 (19)0.0305 (6)
H30.31430.60060.21300.037*
C40.3047 (2)0.53339 (14)0.0384 (2)0.0403 (7)
H40.22900.54940.00630.048*
C50.6489 (2)0.46864 (12)0.1842 (2)0.0336 (6)
C60.3226 (3)0.47019 (14)0.0499 (2)0.0407 (7)
H60.25880.44290.02600.049*
C70.4631 (3)0.38144 (13)0.1118 (2)0.0410 (7)
H70.40250.35220.08820.049*
C80.4378 (2)0.44646 (13)0.09821 (19)0.0338 (6)
C90.3866 (3)0.64389 (13)0.0633 (2)0.0360 (6)
H9A0.45820.66240.06120.043*
H9B0.32290.65280.00000.043*
C100.3589 (3)0.73643 (13)0.1622 (2)0.0385 (6)
H100.37990.76800.12750.046*
C110.6706 (3)0.40540 (13)0.1961 (2)0.0407 (7)
H110.74750.39100.22840.049*
C120.3219 (3)0.74401 (13)0.2382 (2)0.0401 (7)
H120.31300.78200.26630.048*
C130.5766 (3)0.36226 (13)0.1594 (2)0.0436 (7)
H130.59270.31960.16800.052*
C140.2529 (3)0.67183 (15)0.3445 (2)0.0460 (7)
H14A0.16840.67520.31660.069*
H14B0.28460.70110.39870.069*
H14C0.27500.63000.36900.069*
C150.8535 (3)0.49475 (17)0.2664 (3)0.0613 (10)
H15A0.86220.47250.32660.092*
H15B0.90400.53090.28270.092*
H15C0.87490.46780.22260.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0324 (5)0.0473 (5)0.0488 (5)0.0030 (3)0.0140 (3)0.0112 (3)
F10.112 (4)0.076 (3)0.066 (3)0.004 (3)0.009 (2)0.017 (2)
F20.092 (2)0.0408 (13)0.0805 (18)0.0165 (13)0.0406 (16)0.0023 (12)
F30.0347 (14)0.126 (3)0.115 (3)0.0141 (16)0.0167 (14)0.015 (2)
F40.113 (3)0.068 (2)0.128 (3)0.0150 (19)0.006 (2)0.0528 (19)
F50.0423 (15)0.118 (3)0.122 (3)0.0103 (16)0.0385 (16)0.007 (2)
F60.125 (5)0.168 (5)0.057 (3)0.007 (4)0.029 (3)0.003 (3)
F1'0.047 (8)0.035 (9)0.034 (9)0.004 (6)0.019 (7)0.015 (7)
F2'0.082 (10)0.101 (11)0.067 (8)0.024 (8)0.039 (7)0.009 (7)
F3'0.102 (11)0.073 (9)0.094 (10)0.033 (8)0.039 (8)0.015 (7)
F4'0.100 (12)0.111 (12)0.134 (13)0.018 (9)0.052 (9)0.002 (9)
F5'0.114 (12)0.101 (12)0.116 (12)0.033 (9)0.021 (9)0.005 (9)
F6'0.037 (8)0.083 (11)0.033 (9)0.009 (7)0.032 (7)0.002 (7)
N10.0253 (10)0.0285 (11)0.0319 (11)0.0030 (8)0.0105 (8)0.0018 (8)
N20.0319 (11)0.0288 (11)0.0321 (11)0.0008 (9)0.0165 (9)0.0039 (9)
N30.0322 (11)0.0332 (11)0.0325 (11)0.0028 (9)0.0130 (9)0.0019 (9)
O10.0328 (10)0.0339 (10)0.0514 (12)0.0035 (8)0.0113 (9)0.0043 (9)
C10.0380 (14)0.0310 (13)0.0274 (12)0.0017 (10)0.0190 (11)0.0021 (10)
C20.0354 (13)0.0364 (14)0.0305 (13)0.0051 (11)0.0174 (11)0.0016 (11)
C30.0335 (13)0.0269 (12)0.0314 (13)0.0033 (10)0.0124 (10)0.0017 (10)
C40.0318 (14)0.0500 (17)0.0410 (15)0.0025 (12)0.0159 (12)0.0058 (13)
C50.0377 (14)0.0323 (14)0.0337 (13)0.0018 (11)0.0166 (11)0.0033 (10)
C60.0378 (15)0.0461 (17)0.0433 (15)0.0078 (12)0.0210 (12)0.0107 (13)
C70.0544 (18)0.0345 (14)0.0419 (15)0.0075 (12)0.0270 (14)0.0057 (12)
C80.0418 (14)0.0340 (14)0.0323 (13)0.0042 (11)0.0215 (11)0.0052 (11)
C90.0391 (14)0.0381 (15)0.0357 (14)0.0082 (11)0.0195 (12)0.0039 (11)
C100.0421 (15)0.0278 (13)0.0478 (16)0.0030 (11)0.0193 (13)0.0012 (12)
C110.0483 (16)0.0335 (14)0.0420 (15)0.0088 (12)0.0190 (13)0.0016 (12)
C120.0465 (16)0.0276 (13)0.0471 (16)0.0012 (11)0.0183 (13)0.0052 (12)
C130.0627 (19)0.0275 (13)0.0463 (16)0.0018 (13)0.0271 (15)0.0005 (12)
C140.0552 (18)0.0516 (18)0.0409 (16)0.0011 (14)0.0290 (14)0.0024 (13)
C150.0341 (16)0.051 (2)0.084 (3)0.0072 (14)0.0059 (16)0.0075 (18)
Geometric parameters (Å, º) top
P1—F1'1.534 (8)C2—C41.409 (4)
P1—F4'1.539 (8)C2—C91.510 (4)
P1—F61.555 (4)C3—H30.9300
P1—F3'1.563 (8)C4—C61.367 (4)
P1—F31.568 (3)C4—H40.9300
P1—F21.576 (2)C5—C111.374 (4)
P1—F5'1.584 (8)C6—C81.409 (4)
P1—F41.587 (3)C6—H60.9300
P1—F51.589 (3)C7—C131.358 (5)
P1—F11.601 (4)C7—C81.420 (4)
P1—F2'1.616 (8)C7—H70.9300
P1—F6'1.639 (8)C9—H9A0.9700
N1—C31.322 (3)C9—H9B0.9700
N1—C101.380 (3)C10—C121.343 (4)
N1—C91.478 (3)C10—H100.9300
N2—C21.323 (3)C11—C131.411 (4)
N2—C11.362 (3)C11—H110.9300
N2—H20.8600C12—H120.9300
N3—C31.324 (3)C13—H130.9300
N3—C121.369 (4)C14—H14A0.9600
N3—C141.464 (3)C14—H14B0.9600
O1—C51.366 (3)C14—H14C0.9600
O1—C151.436 (4)C15—H15A0.9600
C1—C81.423 (4)C15—H15B0.9600
C1—C51.429 (4)C15—H15C0.9600
F1'—P1—F4'94.7 (6)C10—N1—C9124.7 (2)
F1'—P1—F6174.1 (6)C2—N2—C1118.2 (2)
F4'—P1—F691.2 (7)C2—N2—H2120.9
F1'—P1—F3'93.6 (5)C1—N2—H2120.9
F4'—P1—F3'92.0 (6)C3—N3—C12108.3 (2)
F6—P1—F3'87.0 (7)C3—N3—C14125.2 (2)
F1'—P1—F385.3 (6)C12—N3—C14126.5 (2)
F4'—P1—F3143.4 (8)C5—O1—C15117.5 (2)
F6—P1—F390.5 (2)N2—C1—C8122.6 (2)
F3'—P1—F351.7 (7)N2—C1—C5118.8 (2)
F1'—P1—F284.7 (6)C8—C1—C5118.6 (2)
F4'—P1—F2125.7 (8)N2—C2—C4123.3 (3)
F6—P1—F291.3 (2)N2—C2—C9116.2 (2)
F3'—P1—F2142.3 (7)C4—C2—C9120.5 (2)
F3—P1—F290.74 (19)N1—C3—N3109.0 (2)
F1'—P1—F5'91.8 (5)N1—C3—H3125.5
F4'—P1—F5'90.9 (6)N3—C3—H3125.5
F6—P1—F5'87.3 (7)C6—C4—C2118.9 (3)
F3'—P1—F5'173.7 (7)C6—C4—H4120.5
F3—P1—F5'125.7 (8)C2—C4—H4120.5
F1'—P1—F491.4 (6)O1—C5—C11125.0 (3)
F4'—P1—F453.1 (8)O1—C5—C1114.9 (2)
F6—P1—F492.7 (3)C11—C5—C1120.1 (3)
F3—P1—F490.3 (2)C4—C6—C8120.0 (3)
F2—P1—F4175.85 (18)C4—C6—H6120.0
F5'—P1—F4144.0 (8)C8—C6—H6120.0
F1'—P1—F592.1 (6)C13—C7—C8119.5 (3)
F6—P1—F592.2 (2)C13—C7—H7120.2
F3'—P1—F5128.4 (7)C8—C7—H7120.2
F3—P1—F5177.34 (19)C6—C8—C7123.0 (3)
F2—P1—F589.34 (17)C6—C8—C1117.0 (3)
F5'—P1—F554.7 (8)C7—C8—C1119.9 (3)
F4—P1—F589.4 (2)N1—C9—C2112.1 (2)
F4'—P1—F189.2 (7)N1—C9—H9A109.2
F6—P1—F1179.5 (3)C2—C9—H9A109.2
F3'—P1—F193.3 (6)N1—C9—H9B109.2
F3—P1—F189.4 (2)C2—C9—H9B109.2
F2—P1—F188.2 (2)H9A—C9—H9B107.9
F5'—P1—F192.4 (7)C12—C10—N1106.7 (2)
F4—P1—F187.8 (2)C12—C10—H10126.6
F5—P1—F188.0 (2)N1—C10—H10126.6
F1'—P1—F2'91.4 (5)C5—C11—C13120.2 (3)
F4'—P1—F2'173.8 (6)C5—C11—H11119.9
F6—P1—F2'82.7 (6)C13—C11—H11119.9
F3'—P1—F2'88.6 (5)C10—C12—N3107.6 (2)
F2—P1—F2'53.8 (7)C10—C12—H12126.2
F5'—P1—F2'87.9 (5)N3—C12—H12126.2
F4—P1—F2'127.9 (7)C7—C13—C11121.7 (3)
F5—P1—F2'142.5 (7)C7—C13—H13119.2
F1—P1—F2'96.9 (6)C11—C13—H13119.2
F1'—P1—F6'176.4 (6)N3—C14—H14A109.5
F4'—P1—F6'88.6 (5)N3—C14—H14B109.5
F3'—P1—F6'87.8 (5)H14A—C14—H14B109.5
F3—P1—F6'93.0 (5)N3—C14—H14C109.5
F2—P1—F6'92.2 (6)H14A—C14—H14C109.5
F5'—P1—F6'86.6 (5)H14B—C14—H14C109.5
F4—P1—F6'91.8 (6)O1—C15—H15A109.5
F5—P1—F6'89.6 (5)O1—C15—H15B109.5
F1—P1—F6'177.5 (6)H15A—C15—H15B109.5
F2'—P1—F6'85.3 (5)O1—C15—H15C109.5
C3—N1—C10108.4 (2)H15A—C15—H15C109.5
C3—N1—C9126.7 (2)H15B—C15—H15C109.5
C2—N2—C1—C80.2 (3)C13—C7—C8—C6179.8 (3)
C2—N2—C1—C5179.5 (2)C13—C7—C8—C10.1 (4)
C1—N2—C2—C40.9 (4)N2—C1—C8—C60.7 (4)
C1—N2—C2—C9179.0 (2)C5—C1—C8—C6179.6 (2)
C10—N1—C3—N30.8 (3)N2—C1—C8—C7179.4 (2)
C9—N1—C3—N3175.3 (2)C5—C1—C8—C70.2 (4)
C12—N3—C3—N10.6 (3)C3—N1—C9—C216.9 (4)
C14—N3—C3—N1177.7 (2)C10—N1—C9—C2169.4 (2)
N2—C2—C4—C60.7 (4)N2—C2—C9—N193.1 (3)
C9—C2—C4—C6179.3 (2)C4—C2—C9—N187.0 (3)
C15—O1—C5—C111.4 (4)C3—N1—C10—C120.7 (3)
C15—O1—C5—C1178.8 (3)C9—N1—C10—C12175.4 (2)
N2—C1—C5—O10.8 (3)O1—C5—C11—C13179.5 (2)
C8—C1—C5—O1179.4 (2)C1—C5—C11—C130.2 (4)
N2—C1—C5—C11179.4 (2)N1—C10—C12—N30.4 (3)
C8—C1—C5—C110.3 (4)C3—N3—C12—C100.1 (3)
C2—C4—C6—C80.3 (4)C14—N3—C12—C10177.2 (3)
C4—C6—C8—C7179.2 (3)C8—C7—C13—C110.1 (4)
C4—C6—C8—C10.9 (4)C5—C11—C13—C70.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.932.463.204 (5)137
C9—H9A···F2ii0.972.493.244 (4)135
C3—H3···O1iii0.932.273.122 (3)152
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z1; (iii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N3O+·F6P
Mr400.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)12.2183 (11), 21.3444 (19), 14.4056 (13)
β (°) 112.059 (1)
V3)3481.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.947, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
12564, 3087, 2808
Rint0.108
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.170, 1.05
No. of reflections3087
No. of parameters293
No. of restraints108
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.67

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···F1i0.932.463.204 (5)137
C9—H9A···F2ii0.972.493.244 (4)135
C3—H3···O1iii0.932.273.122 (3)152
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y+1/2, z1; (iii) x+1, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds