Download citation
Download citation
link to html
In the title compound, C20H14O5, the methyl­enedioxy­phenyl ring system is essentially planar. There are short C—H...π inter­actions. The vinyl group is inclined with respect to the tetrahydrofuran ring by 21.43 (7)°. The dihedral angles made by the atoms defining the planar part of the tetrahydrofuran ring with the phenyl and methyl­ene­dioxy­phenyl rings are 35.24 (12) and 26.39 (9)°, respectively, while that between the two aryl rings is 14.43 (10)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703485X/bq2028sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703485X/bq2028Isup2.hkl
Contains datablock I

CCDC reference: 657813

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.086
  • Data-to-parameter ratio = 8.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.52 From the CIF: _reflns_number_total 1918 Count of symmetry unique reflns 1921 Completeness (_total/calc) 99.84% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Organic photochromic compounds, such as fulgides, are potential candidates for application in erasable optical information media. Attempts have been made to improve their photochromic properties (Asiri, 2003; Uchida et al., 1995). In order to achieve certain desirable properties such as absorption at longer wavelengths and thus higher fatigue resistance to coloration-bleaching cycles, improvements have been made by modifying the fulgide frame (Heller et al., 2000). We report here the crystal structure of the title compound, (I).

Related literature top

For related literature, see: Asiri et al. (2003); Heller et al. (2000); Uchida et al. (1995).

Experimental top

The (2E,3E)-2-(1,3-benzodioxol-5-ylmethylene)-3-(1-phenylethylidene)succinic acid (0.01 mmol) was dissolved in dichloromethane (10 ml), and to this mixture was added acetyl chloride (5 ml) dropwise with stirring at 0 degree C, and the mixture was stirred at room temperature for 5 h. After removal of the excess acetyl chloride and dichloromethane, the residue was purified using flash column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1; v/v) and recrystallized with ethyl acetate to give a solid (yield 76%). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in ethyl acetate at room temperature for 15 d.

Refinement top

H atoms were positioned geometrically (C - H = 0.93 - 0.97 A °) and refined as riding, with Uiso(H) = 1.2Ueq(C). Because of the meaningless of the absolute structure parameter, Friedel-pairs (4) were merged before final refinement.

Structure description top

Organic photochromic compounds, such as fulgides, are potential candidates for application in erasable optical information media. Attempts have been made to improve their photochromic properties (Asiri, 2003; Uchida et al., 1995). In order to achieve certain desirable properties such as absorption at longer wavelengths and thus higher fatigue resistance to coloration-bleaching cycles, improvements have been made by modifying the fulgide frame (Heller et al., 2000). We report here the crystal structure of the title compound, (I).

For related literature, see: Asiri et al. (2003); Heller et al. (2000); Uchida et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The view of the structure along a axis. All H atoms were omited for clarity except for those which were involve with X—H···Cg(Pi-Ring) interactions. Symmetry codes: (i) x,-1 + y,z; (ii) 0.5 - x,-1/2 + y,-1/2 + z; (iii) 1 - x,1 - y,-1/2 + z; (iv) 1 - x,2 - y,-1/2 + z; (v) 1/2 + x,1.5 - y,z.
(3E,4E)-3-(1,3-Benzodioxol-5-ylmethylene)-4-˘1-phenylethylidene)tetrahydrofuran-2,5-dione top
Crystal data top
C20H14O5F(000) = 696
Mr = 334.31Dx = 1.395 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3450 reflections
a = 7.2201 (2) Åθ = 3.0–26.3°
b = 18.0627 (5) ŵ = 0.10 mm1
c = 12.2046 (4) ÅT = 296 K
V = 1591.66 (8) Å3Plate, orange–yellow
Z = 40.38 × 0.19 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1918 independent reflections
Radiation source: fine-focus sealed tube1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
APEX2 (Bruker, 2005)
h = 99
Tmin = 0.963, Tmax = 0.993k = 2323
9796 measured reflectionsl = 155
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.053P)2 + 0.0276P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1918 reflectionsΔρmax = 0.11 e Å3
227 parametersΔρmin = 0.12 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H14O5V = 1591.66 (8) Å3
Mr = 334.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.2201 (2) ŵ = 0.10 mm1
b = 18.0627 (5) ÅT = 296 K
c = 12.2046 (4) Å0.38 × 0.19 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1918 independent reflections
Absorption correction: multi-scan
APEX2 (Bruker, 2005)
1606 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.993Rint = 0.025
9796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.11 e Å3
1918 reflectionsΔρmin = 0.12 e Å3
227 parametersAbsolute structure: Flack (1983)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4507 (4)1.08850 (14)0.6981 (3)0.0766 (8)
H10.48521.13810.69870.092*
C20.3315 (4)1.06286 (14)0.6196 (3)0.0746 (8)
H20.28571.09500.56660.090*
C30.2793 (3)0.98960 (13)0.6188 (2)0.0590 (6)
H30.20080.97230.56410.071*
C40.3435 (3)0.94086 (11)0.69979 (17)0.0459 (4)
C50.4666 (3)0.96742 (11)0.77765 (19)0.0501 (5)
H50.51360.93570.83090.060*
C60.5196 (4)1.04076 (13)0.7763 (3)0.0678 (7)
H60.60251.05820.82870.081*
C70.2848 (3)0.86249 (11)0.69894 (19)0.0451 (4)
C80.2857 (4)0.82596 (15)0.5875 (2)0.0653 (6)
H8A0.37290.78580.58740.098*
H8B0.32070.86160.53290.098*
H8C0.16420.80730.57140.098*
C90.2416 (3)0.82442 (11)0.79118 (19)0.0448 (4)
C100.2277 (3)0.74232 (13)0.7893 (2)0.0579 (6)
C110.2485 (3)0.77359 (13)0.9690 (2)0.0578 (6)
C120.2296 (3)0.84388 (11)0.90818 (18)0.0444 (4)
C130.1956 (3)0.90390 (11)0.97086 (17)0.0473 (5)
H130.20220.89461.04570.057*
C140.1507 (3)0.98016 (11)0.94437 (16)0.0438 (4)
C150.0488 (2)1.00096 (11)0.85107 (17)0.0429 (4)
H150.00070.96580.80370.052*
C160.0257 (2)1.07498 (12)0.83316 (17)0.0445 (4)
C170.1013 (3)1.12780 (11)0.9026 (2)0.0522 (5)
C180.1941 (3)1.10943 (12)0.9952 (2)0.0618 (6)
H180.24111.14531.04230.074*
C190.2157 (3)1.03414 (12)1.01647 (19)0.0544 (5)
H190.27511.01951.08050.065*
C200.0455 (4)1.18660 (13)0.7682 (2)0.0692 (7)
H20A0.01601.20980.70630.083*
H20B0.16641.20920.77670.083*
O10.0653 (2)1.10928 (8)0.74889 (14)0.0585 (4)
O20.0608 (3)1.19719 (8)0.86474 (16)0.0709 (5)
O30.2660 (3)0.76142 (11)1.06471 (17)0.0809 (6)
O40.2406 (3)0.71527 (9)0.89574 (18)0.0691 (5)
O50.2125 (3)0.69889 (10)0.71649 (18)0.0878 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0858 (17)0.0437 (12)0.100 (2)0.0096 (11)0.0383 (18)0.0003 (16)
C20.0857 (17)0.0588 (14)0.0794 (19)0.0115 (13)0.0310 (16)0.0223 (15)
C30.0655 (12)0.0621 (13)0.0495 (12)0.0050 (10)0.0081 (11)0.0086 (12)
C40.0498 (10)0.0477 (10)0.0401 (10)0.0006 (8)0.0098 (9)0.0006 (9)
C50.0456 (10)0.0530 (11)0.0518 (12)0.0043 (8)0.0075 (10)0.0038 (10)
C60.0630 (14)0.0603 (14)0.0801 (19)0.0166 (11)0.0202 (14)0.0152 (14)
C70.0472 (9)0.0465 (10)0.0416 (10)0.0012 (8)0.0001 (9)0.0047 (10)
C80.0885 (16)0.0634 (14)0.0439 (12)0.0034 (12)0.0010 (12)0.0127 (12)
C90.0478 (10)0.0408 (10)0.0458 (11)0.0037 (7)0.0021 (9)0.0055 (10)
C100.0686 (13)0.0465 (12)0.0585 (14)0.0100 (10)0.0083 (12)0.0055 (13)
C110.0696 (13)0.0483 (13)0.0556 (15)0.0053 (10)0.0036 (11)0.0049 (12)
C120.0491 (9)0.0416 (10)0.0427 (11)0.0008 (8)0.0009 (9)0.0026 (10)
C130.0548 (10)0.0505 (11)0.0365 (10)0.0022 (9)0.0004 (9)0.0017 (9)
C140.0483 (10)0.0455 (10)0.0375 (10)0.0044 (8)0.0027 (9)0.0041 (9)
C150.0426 (9)0.0468 (10)0.0394 (10)0.0012 (8)0.0018 (8)0.0067 (9)
C160.0420 (8)0.0501 (11)0.0414 (10)0.0040 (8)0.0024 (9)0.0010 (9)
C170.0579 (11)0.0434 (11)0.0555 (13)0.0052 (9)0.0014 (10)0.0075 (11)
C180.0766 (13)0.0503 (12)0.0586 (15)0.0054 (10)0.0152 (12)0.0211 (12)
C190.0667 (12)0.0574 (13)0.0391 (11)0.0113 (10)0.0107 (10)0.0108 (11)
C200.0816 (16)0.0540 (13)0.0719 (17)0.0067 (11)0.0073 (14)0.0106 (13)
O10.0640 (9)0.0567 (8)0.0549 (9)0.0022 (7)0.0134 (7)0.0073 (7)
O20.0881 (11)0.0445 (8)0.0802 (13)0.0049 (8)0.0127 (10)0.0021 (9)
O30.1243 (16)0.0638 (10)0.0544 (11)0.0120 (10)0.0018 (11)0.0152 (10)
O40.1004 (12)0.0409 (8)0.0660 (12)0.0016 (8)0.0077 (10)0.0034 (8)
O50.1352 (17)0.0545 (10)0.0737 (14)0.0265 (10)0.0139 (12)0.0191 (11)
Geometric parameters (Å, º) top
C1—C21.369 (4)C11—O41.383 (3)
C1—C61.379 (4)C11—C121.477 (3)
C1—H10.9300C12—C131.349 (3)
C2—C31.376 (4)C13—C141.451 (3)
C2—H20.9300C13—H130.9300
C3—C41.403 (3)C14—C191.395 (3)
C3—H30.9300C14—C151.407 (3)
C4—C51.387 (3)C15—C161.365 (3)
C4—C71.478 (3)C15—H150.9300
C5—C61.379 (3)C16—O11.369 (3)
C5—H50.9300C16—C171.388 (3)
C6—H60.9300C19—H190.9300
C7—C91.356 (3)C17—C181.355 (3)
C7—C81.512 (3)C17—O21.368 (3)
C8—H8A0.9600C18—C191.393 (3)
C8—H8B0.9600C18—H180.9300
C8—H8C0.9600C19—H190.9300
C9—C121.473 (3)C20—O21.419 (3)
C9—C101.487 (3)C20—O11.424 (3)
C10—O51.191 (3)C20—H20A0.9700
C10—O41.391 (3)C20—H20B0.9700
C11—O31.195 (3)
C2—C1—C6120.0 (2)O4—C11—C12109.0 (2)
C2—C1—H1120.0C13—C12—C9138.8 (2)
C6—C1—H1120.0C13—C12—C11115.0 (2)
C1—C2—C3120.2 (3)C9—C12—C11106.07 (19)
C1—C2—H2119.9C12—C13—C14132.6 (2)
C3—C2—H2119.9C12—C13—H13113.7
C2—C3—C4120.5 (3)C14—C13—H13113.7
C2—C3—H3119.7C19—C14—C15120.00 (18)
C4—C3—H3119.7C19—C14—C13116.60 (19)
C5—C4—C3118.5 (2)C15—C14—C13123.40 (18)
C5—C4—C7121.34 (19)C16—C15—C14117.07 (18)
C3—C4—C7120.1 (2)C16—C15—H15121.5
C6—C5—C4120.1 (2)C14—C15—H15121.5
C6—C5—H5119.9C15—C16—O1128.48 (19)
C4—C5—H5119.9C15—C16—C17121.83 (19)
C5—C6—C1120.6 (3)O1—C16—C17109.68 (18)
C5—C6—H6119.7C18—C17—O2127.7 (2)
C1—C6—H6119.7C18—C17—C16122.4 (2)
C9—C7—C4123.10 (19)O2—C17—C16109.8 (2)
C9—C7—C8121.79 (18)C17—C18—C19116.7 (2)
C4—C7—C8115.0 (2)C17—C18—H18121.6
C7—C8—H8A109.5C19—C18—H18121.6
C7—C8—H8B109.5C18—C19—C14121.8 (2)
H8A—C8—H8B109.5C18—C19—H19119.1
C7—C8—H8C109.5C14—C19—H19119.1
H8A—C8—H8C109.5O2—C20—O1108.90 (19)
H8B—C8—H8C109.5O2—C20—H20A109.9
C7—C9—C12134.23 (18)O1—C20—H20A109.9
C7—C9—C10120.60 (19)O2—C20—H20B109.9
C12—C9—C10104.40 (18)O1—C20—H20B109.9
O5—C10—O4118.2 (2)H20A—C20—H20B108.3
O5—C10—C9132.4 (2)C16—O1—C20105.74 (18)
O4—C10—C9109.39 (19)C17—O2—C20105.82 (17)
O3—C11—O4119.7 (2)C11—O4—C10109.81 (17)
O3—C11—C12131.2 (3)
C6—C1—C2—C30.4 (4)C9—C12—C13—C141.0 (4)
C1—C2—C3—C41.7 (4)C11—C12—C13—C14173.1 (2)
C2—C3—C4—C52.7 (3)C12—C13—C14—C19147.5 (2)
C2—C3—C4—C7179.3 (2)C12—C13—C14—C1531.9 (3)
C3—C4—C5—C61.8 (3)C19—C14—C15—C163.0 (3)
C7—C4—C5—C6179.78 (19)C13—C14—C15—C16176.44 (18)
C4—C5—C6—C10.2 (3)C14—C15—C16—O1179.41 (18)
C2—C1—C6—C51.3 (4)C14—C15—C16—C170.9 (3)
C5—C4—C7—C942.2 (3)C15—C16—C17—C183.5 (3)
C3—C4—C7—C9139.8 (2)O1—C16—C17—C18177.8 (2)
C5—C4—C7—C8134.7 (2)C15—C16—C17—O2178.71 (18)
C3—C4—C7—C843.2 (3)O1—C16—C17—O20.0 (2)
C4—C7—C9—C123.0 (4)O2—C17—C18—C19179.3 (2)
C8—C7—C9—C12179.7 (2)C16—C17—C18—C191.9 (3)
C4—C7—C9—C10165.19 (19)C17—C18—C19—C142.1 (4)
C8—C7—C9—C1011.5 (3)C15—C14—C19—C184.6 (3)
C7—C9—C10—O516.8 (4)C13—C14—C19—C18174.8 (2)
C12—C9—C10—O5171.9 (3)C15—C16—O1—C20179.0 (2)
C7—C9—C10—O4161.4 (2)C17—C16—O1—C200.4 (2)
C12—C9—C10—O49.9 (2)O2—C20—O1—C160.7 (3)
C7—C9—C12—C1327.4 (4)C18—C17—O2—C20177.2 (2)
C10—C9—C12—C13163.0 (3)C16—C17—O2—C200.4 (2)
C7—C9—C12—C11158.1 (2)O1—C20—O2—C170.7 (3)
C10—C9—C12—C1111.4 (2)O3—C11—O4—C10177.6 (3)
O3—C11—C12—C1312.5 (4)C12—C11—O4—C103.2 (3)
O4—C11—C12—C13166.54 (19)O5—C10—O4—C11177.2 (2)
O3—C11—C12—C9171.5 (3)C9—C10—O4—C114.3 (2)
O4—C11—C12—C99.4 (2)

Experimental details

Crystal data
Chemical formulaC20H14O5
Mr334.31
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)7.2201 (2), 18.0627 (5), 12.2046 (4)
V3)1591.66 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.38 × 0.19 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
APEX2 (Bruker, 2005)
Tmin, Tmax0.963, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9796, 1918, 1606
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.04
No. of reflections1918
No. of parameters227
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12
Absolute structureFlack (1983)

Computer programs: APEX2 (Bruker, 2005), APEX2, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), WinGX (Farrugia, 1999).

X—H···π-ring interactions calculated by PLATON (Spek, 2003). Cg1 is the centroid of the benzene ring C1–C6 and Cg2 is the centroid of the benzene ring C14-C19. top
X—H···CgX—HH···CgX···CgX—H···Cg
C19—H19···Cg1i0.932.833.671 (2)151
C3—H3···Cg2ii0.932.943.837 (2)163
Symmetry code: (i) x,-1+y,z, (ii) 1/2-x,-1/2+y,-1/2+z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds