Download citation
Download citation
link to html
Mol­ecules of the title compound, C17H18N2O3, are linked by paired C—H...O hydrogen-bonding inter­actions into R22(8) dimers. The mol­ecule is not planar. The dihedral angle between the two benzene rings is 64.17 (7)°. The mol­ecular conformation is stabilized by intra­molecular O—H...N, N—H...N and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033673/bt2432sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033673/bt2432Isup2.hkl
Contains datablock I

CCDC reference: 657749

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.098
  • Data-to-parameter ratio = 18.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases and their biologically active complexes have been often used as chelating ligands in the coordination chemistry of transition metals as radiopharmaceuticals for cancer targeting, agrochemicals, as model systems for biological macromolecules, as catalysts and as dioxygen carriers (Ünaleroğlu et al., 2001; Li & Chang, 1991; Blower, 1998; Berkessel et al., 1997). The phenyl derivatives of Schiff bases are used as corrosion inhibitors. Schiff bases derived from aldehyde and diamines constitute one of the most relevant synthetic ligand systems with importance in asymmetric catalysis and they appear to be of importance for a broad range of transition-metal catalyzed reactions including lactide polymerization, epoxidation of olefins, hydroxylation and asymmetric ring opening of epoxides (Kovbasyuk et al., 1997; Ho et al., 1996; Topich & Bachert, 1992; Larrow et al., 1994; Jacobsen, 1993; Irie et al., 1990; Srinivasan & Kochi, 1985; Kickelbick et al., 2003). Although a series of Schiff base complexes have been studied crystallographically, there are only a very limited number of reports about the free Schiff bases in the literature (Amirnasr, Schenk, Meghdadi & Morshedi, 2006; Amirnasr, DehnoKhalaji & Falvello, 2006; Amirnasr et al., 2002; Amirnasr et al., 2001; Habibi et al., 2006). Schiff bases have antibacterial, antimalarial, antiviral and antitumor activities (Yıldız et al., 2005; Indreen et al., 2001; Jarrahpour, Motamedifar, Pakshir, Hadi & Zarei,, 2004; Jarrahpour, Motamedifar, Hadi & Zarei, 2004; Holla et al., 2005; Nawrocka et al., 2004; Lozytska et al., 2004).

In Fig. 1, the molecular conformation of the title compound was shown with the intramolecular N—H···O, N—H···N, O—H···N and C—H···O hydrogen-bond distances of 1.725 (19), 2.062 (15), 2.363 (15) and 2.34 Å, respectively. In the molecular structure all the bond distances and angles are normal. The molecular structure is not planar. The C1—C6 and C9—C14 benzene rings makes a dihedral angle of 64.17 (7) ° with each other.

The molecules of are linked by intermolecular C—H···O hydrogen bonding interactions, generating a centrosymmetric R22(8) dimer (Fig. 2).

Related literature top

For related literature, see: Amirnasr, DehnoKhalaji & Falvello (2006); Amirnasr et al. (2001, 2002); Amirnasr, Schenk, Meghdadi & Morshedi (2006); Berkessel et al. (1997); Blower (1998); Habibi et al. (2006); Ho et al. (1996); Holla et al. (2005); Indreen et al. (2001); Irie et al. (1990); Jacobsen (1993); Jarrahpour, Motamedifar, Hadi & Zarei (2004); Jarrahpour, Motamedifar, Pakshir, Hadi & Zarei (2004); Kickelbick et al. (2003); Kovbasyuk et al. (1997); Larrow et al. (1994); Li & Chang (1991); Lozytska et al. (2004); Nawrocka et al. (2004); Srinivasan & Kochi (1985); Topich & Bachert (1992); Ünaleroğlu et al. (2001); Yıldız, Ünver, Dülger, Erdener, Ocak, Erdönmez & Durlu (2005).

Experimental top

Schiff base {2-[(1E)-N-(2-aminophenyl)ethanimidoyl]phenol} (0.23 g, 1.0 mmol) was transformed to N-(2-{[(1E)-1-(2-hydroxyphenyl)- ethylidene]amino}phenyl)-2-methoxyacetamide, (I), by treatment with methoxyacetyl chloride (0.13 g, 1.2 mmol) and triethylamine (0.26 g, 2.6 mmol) in dry methylene chloride (10 ml) with cooling in ice-salt bath. The reaction progress was monitored by TLC and the presence of a new compound was confirmed. The IR spectrum showed the characteristic absorption of the amide carbonyl at 1752, the C=N moiety at 1689 and the amine group at 3386 cm-1. The 1H-NMR spectrum showed the methoxy protons at 3.27, methyl protons at 2.29, amine protons at 3.89, aromatic protons at 6.75–7.61, and hydroxyl proton at 13.97. The 13C-NMR spectrum exhibited the following signals: CH3 at 17.69, OCH3 at 59.44, aromatic carbons at 118.31–133.68, Ph—C—N at 160.0, Ph—C—OH at 165.0, and the C=O at 174.0.The mass spectrum showed peaks at 298 (M+), 299 (M+1), 300 (M+2) and the base peak at 253 (C15H13N2O2).

Refinement top

The H atoms of the hydroxyl and amine groups were found from a difference Fourier map and refined freely. The other H atoms were located geometrically and treated as riding atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) for aromatic and methelene H atoms and 1.5 Ueq(C) for methyl H atoms.

Structure description top

Schiff bases and their biologically active complexes have been often used as chelating ligands in the coordination chemistry of transition metals as radiopharmaceuticals for cancer targeting, agrochemicals, as model systems for biological macromolecules, as catalysts and as dioxygen carriers (Ünaleroğlu et al., 2001; Li & Chang, 1991; Blower, 1998; Berkessel et al., 1997). The phenyl derivatives of Schiff bases are used as corrosion inhibitors. Schiff bases derived from aldehyde and diamines constitute one of the most relevant synthetic ligand systems with importance in asymmetric catalysis and they appear to be of importance for a broad range of transition-metal catalyzed reactions including lactide polymerization, epoxidation of olefins, hydroxylation and asymmetric ring opening of epoxides (Kovbasyuk et al., 1997; Ho et al., 1996; Topich & Bachert, 1992; Larrow et al., 1994; Jacobsen, 1993; Irie et al., 1990; Srinivasan & Kochi, 1985; Kickelbick et al., 2003). Although a series of Schiff base complexes have been studied crystallographically, there are only a very limited number of reports about the free Schiff bases in the literature (Amirnasr, Schenk, Meghdadi & Morshedi, 2006; Amirnasr, DehnoKhalaji & Falvello, 2006; Amirnasr et al., 2002; Amirnasr et al., 2001; Habibi et al., 2006). Schiff bases have antibacterial, antimalarial, antiviral and antitumor activities (Yıldız et al., 2005; Indreen et al., 2001; Jarrahpour, Motamedifar, Pakshir, Hadi & Zarei,, 2004; Jarrahpour, Motamedifar, Hadi & Zarei, 2004; Holla et al., 2005; Nawrocka et al., 2004; Lozytska et al., 2004).

In Fig. 1, the molecular conformation of the title compound was shown with the intramolecular N—H···O, N—H···N, O—H···N and C—H···O hydrogen-bond distances of 1.725 (19), 2.062 (15), 2.363 (15) and 2.34 Å, respectively. In the molecular structure all the bond distances and angles are normal. The molecular structure is not planar. The C1—C6 and C9—C14 benzene rings makes a dihedral angle of 64.17 (7) ° with each other.

The molecules of are linked by intermolecular C—H···O hydrogen bonding interactions, generating a centrosymmetric R22(8) dimer (Fig. 2).

For related literature, see: Amirnasr, DehnoKhalaji & Falvello (2006); Amirnasr et al. (2001, 2002); Amirnasr, Schenk, Meghdadi & Morshedi (2006); Berkessel et al. (1997); Blower (1998); Habibi et al. (2006); Ho et al. (1996); Holla et al. (2005); Indreen et al. (2001); Irie et al. (1990); Jacobsen (1993); Jarrahpour, Motamedifar, Hadi & Zarei (2004); Jarrahpour, Motamedifar, Pakshir, Hadi & Zarei (2004); Kickelbick et al. (2003); Kovbasyuk et al. (1997); Larrow et al. (1994); Li & Chang (1991); Lozytska et al. (2004); Nawrocka et al. (2004); Srinivasan & Kochi (1985); Topich & Bachert (1992); Ünaleroğlu et al. (2001); Yıldız, Ünver, Dülger, Erdener, Ocak, Erdönmez & Durlu (2005).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: SADABS (Sheldrick, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994) or SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonding of the title compound. Dashed lines show hydrogen bonds. For clarity, H atoms not involved hydrogen bonding have been omitted.
N-(2-{[(1E)-1-(2-Hydroxyphenyl)ethylidene]amino}phenyl)-2-methoxyacetamide top
Crystal data top
C17H18N2O3F(000) = 632
Mr = 298.33Dx = 1.292 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 117 reflections
a = 8.4061 (8) Åθ = 6–20°
b = 11.2568 (5) ŵ = 0.09 mm1
c = 16.4145 (16) ÅT = 200 K
β = 98.988 (8)°Prism, colourless
V = 1534.2 (2) Å30.22 × 0.18 × 0.13 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3829 independent reflections
Radiation source: fine-focus sealed tube2752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9 pixels mm-1θmax = 28.5°, θmin = 3.6°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 1515
Tmin = 0.981, Tmax = 0.988l = 2221
35768 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3845P]
where P = (Fo2 + 2Fc2)/3
3829 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H18N2O3V = 1534.2 (2) Å3
Mr = 298.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4061 (8) ŵ = 0.09 mm1
b = 11.2568 (5) ÅT = 200 K
c = 16.4145 (16) Å0.22 × 0.18 × 0.13 mm
β = 98.988 (8)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3829 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2752 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.988Rint = 0.052
35768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.20 e Å3
3829 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38697 (14)0.26077 (9)0.65758 (6)0.0437 (3)
O20.86553 (11)0.07956 (9)0.42532 (6)0.0392 (3)
O30.83793 (11)0.24633 (9)0.60472 (6)0.0367 (3)
N10.36411 (12)0.24204 (9)0.50114 (6)0.0265 (3)
N20.65482 (12)0.14390 (9)0.48630 (6)0.0245 (3)
C10.33574 (15)0.37372 (11)0.64393 (8)0.0279 (3)
C20.31560 (16)0.44167 (12)0.71259 (8)0.0329 (4)
C30.26040 (18)0.55646 (12)0.70294 (9)0.0385 (4)
C40.2252 (2)0.60576 (14)0.62526 (10)0.0528 (6)
C50.2461 (2)0.53965 (13)0.55684 (9)0.0447 (5)
C60.30137 (15)0.42201 (11)0.56370 (7)0.0277 (3)
C70.31783 (15)0.35103 (11)0.48987 (7)0.0271 (3)
C80.2818 (2)0.40854 (13)0.40636 (8)0.0438 (5)
C90.37200 (14)0.16073 (11)0.43574 (7)0.0250 (3)
C100.23477 (15)0.12373 (12)0.38351 (8)0.0324 (4)
C110.24396 (16)0.03598 (13)0.32547 (8)0.0346 (4)
C120.39076 (17)0.01639 (12)0.31929 (8)0.0317 (4)
C130.52882 (15)0.01923 (11)0.37099 (7)0.0268 (3)
C140.52055 (14)0.10719 (10)0.42966 (7)0.0230 (3)
C150.81256 (14)0.12812 (11)0.48183 (8)0.0264 (3)
C160.92509 (15)0.17935 (12)0.55424 (8)0.0323 (4)
C170.9274 (2)0.27786 (17)0.68146 (11)0.0571 (6)
HO10.386 (2)0.2308 (16)0.6071 (12)0.061 (5)*
H20.339600.409100.765200.0390*
HN10.6372 (17)0.1835 (13)0.5286 (9)0.030 (4)*
H30.246700.601200.749000.0460*
H40.187400.683400.619000.0630*
H50.222900.574100.504800.0540*
H8A0.315100.356800.365700.0660*
H8B0.339000.482400.407000.0660*
H8C0.168200.423200.393000.0660*
H100.135800.158300.387600.0390*
H110.151600.012100.290600.0410*
H120.396600.075600.280300.0380*
H130.627300.015800.366400.0320*
H16A0.981600.115400.586200.0390*
H16B1.004400.229600.534200.0390*
H17A0.972600.207700.709200.0860*
H17B0.858000.316400.714500.0860*
H17C1.012600.331000.673000.0860*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0692 (7)0.0355 (5)0.0276 (5)0.0188 (5)0.0114 (5)0.0043 (4)
O20.0296 (5)0.0552 (6)0.0349 (5)0.0067 (4)0.0116 (4)0.0097 (5)
O30.0303 (5)0.0412 (5)0.0378 (5)0.0025 (4)0.0030 (4)0.0139 (4)
N10.0239 (5)0.0313 (6)0.0255 (5)0.0042 (4)0.0076 (4)0.0011 (4)
N20.0235 (5)0.0273 (5)0.0239 (5)0.0010 (4)0.0071 (4)0.0042 (4)
C10.0280 (6)0.0275 (6)0.0292 (6)0.0000 (5)0.0077 (5)0.0014 (5)
C20.0374 (7)0.0363 (7)0.0258 (6)0.0045 (6)0.0076 (5)0.0015 (5)
C30.0500 (8)0.0310 (7)0.0386 (8)0.0077 (6)0.0199 (6)0.0099 (6)
C40.0867 (13)0.0264 (7)0.0508 (9)0.0102 (7)0.0275 (9)0.0020 (7)
C50.0708 (11)0.0308 (7)0.0354 (8)0.0116 (7)0.0176 (7)0.0069 (6)
C60.0283 (6)0.0279 (6)0.0282 (6)0.0009 (5)0.0089 (5)0.0017 (5)
C70.0252 (6)0.0308 (6)0.0265 (6)0.0016 (5)0.0076 (5)0.0025 (5)
C80.0662 (10)0.0382 (8)0.0279 (7)0.0095 (7)0.0105 (7)0.0051 (6)
C90.0274 (6)0.0271 (6)0.0219 (6)0.0012 (5)0.0079 (5)0.0022 (5)
C100.0242 (6)0.0405 (7)0.0329 (7)0.0016 (5)0.0058 (5)0.0022 (6)
C110.0319 (7)0.0410 (7)0.0295 (7)0.0069 (6)0.0008 (5)0.0009 (6)
C120.0412 (7)0.0298 (6)0.0242 (6)0.0034 (6)0.0055 (5)0.0030 (5)
C130.0317 (6)0.0261 (6)0.0241 (6)0.0021 (5)0.0092 (5)0.0008 (5)
C140.0253 (6)0.0238 (6)0.0207 (5)0.0009 (5)0.0065 (4)0.0033 (4)
C150.0247 (6)0.0267 (6)0.0287 (6)0.0029 (5)0.0072 (5)0.0028 (5)
C160.0247 (6)0.0364 (7)0.0363 (7)0.0004 (5)0.0061 (5)0.0041 (6)
C170.0466 (9)0.0687 (12)0.0525 (10)0.0002 (8)0.0036 (8)0.0286 (9)
Geometric parameters (Å, º) top
O1—C11.3499 (16)C11—C121.386 (2)
O2—C151.2192 (16)C12—C131.3857 (19)
O3—C161.4077 (16)C13—C141.3905 (16)
O3—C171.408 (2)C15—C161.5129 (18)
O1—HO10.894 (19)C2—H20.9300
N1—C71.2916 (16)C3—H30.9300
N1—C91.4202 (15)C4—H40.9300
N2—C141.4076 (15)C5—H50.9300
N2—C151.3511 (16)C8—H8A0.9600
N2—HN10.857 (15)C8—H8B0.9600
C1—C61.4122 (17)C8—H8C0.9600
C1—C21.3941 (18)C10—H100.9300
C2—C31.3737 (19)C11—H110.9300
C3—C41.380 (2)C12—H120.9300
C4—C51.381 (2)C13—H130.9300
C5—C61.4021 (19)C16—H16A0.9700
C6—C71.4760 (17)C16—H16B0.9700
C7—C81.5034 (18)C17—H17A0.9600
C9—C141.4041 (17)C17—H17B0.9600
C9—C101.3893 (18)C17—H17C0.9600
C10—C111.3829 (19)
O1···N12.5537 (14)C11···H17Bviii2.7500
O1···C12i3.3138 (18)C11···H16Ai3.0800
O1···C13i3.2801 (16)C12···H17Bviii2.8200
O2···C132.9119 (16)C13···HO1i2.913 (18)
O2···C16ii3.3941 (17)C15···H132.7800
O2···C10iii3.3193 (16)C15···H4vi2.6900
O3···N22.5578 (14)HO1···N11.725 (19)
O1···H3iv2.7200HO1···C72.349 (19)
O1···H13i2.7900HO1···C92.906 (19)
O1···H12i2.8500HO1···C13i2.913 (18)
O2···H132.3400HO1···H13i2.4600
O2···H10iii2.6000H2···O2xi2.6100
O2···H16Aii2.5700HN1···O32.062 (15)
O2···H2v2.6100HN1···N12.363 (15)
O2···H4vi2.7800H3···O1xii2.7200
O3···HN12.062 (15)H3···H13xi2.5000
O3···H5vi2.7000H4···O2vi2.7800
N1···O12.5537 (14)H4···C15vi2.6900
N1···N22.7272 (15)H5···C82.5700
N2···N12.7272 (15)H5···H8B2.2500
N2···O32.5578 (14)H5···H8C2.4900
N1···HN12.363 (15)H5···O3vi2.7000
N1···HO11.725 (19)H8A···C92.5000
C4···C15vi3.463 (2)H8A···C102.7400
C8···C103.245 (2)H8B···C52.7700
C10···C83.245 (2)H8B···H52.2500
C10···O2vii3.3193 (16)H8C···C52.9700
C11···C16i3.5595 (19)H8C···H52.4900
C12···O1i3.3138 (18)H10···O2vii2.6000
C12···C17viii3.555 (2)H10···C73.0100
C13···O22.9119 (16)H10···C83.0700
C13···O1i3.2801 (16)H11···C2viii2.9600
C14···C14i3.3948 (16)H12···O1i2.8500
C15···C4vi3.463 (2)H13···O22.3400
C16···O2ii3.3941 (17)H13···C152.7800
C16···C11i3.5595 (19)H13···O1i2.7900
C17···C12ix3.555 (2)H13···HO1i2.4600
C1···H17Cvii2.8700H13···C3v3.1000
C2···H17Cvii2.8200H13···H3v2.5000
C2···H11ix2.9600H16A···H17A2.2800
C3···H17Ax3.0000H16A···O2ii2.5700
C3···H13xi3.1000H16A···C11i3.0800
C5···H8C2.9700H16B···H17C2.5400
C5···H8B2.7700H17A···H16A2.2800
C7···HO12.349 (19)H17A···C3xiii3.0000
C7···H103.0100H17B···C11ix2.7500
C8···H103.0700H17B···C12ix2.8200
C8···H52.5700H17C···C1iii2.8700
C9···HO12.906 (19)H17C···C2iii2.8200
C9···H8A2.5000H17C···H16B2.5400
C10···H8A2.7400
C16—O3—C17114.03 (11)C1—C2—H2120.00
C1—O1—HO1104.2 (12)C3—C2—H2120.00
C7—N1—C9123.54 (10)C2—C3—H3120.00
C14—N2—C15128.17 (10)C4—C3—H3120.00
C15—N2—HN1114.1 (10)C3—C4—H4120.00
C14—N2—HN1117.7 (10)C5—C4—H4120.00
O1—C1—C6122.06 (11)C4—C5—H5119.00
O1—C1—C2117.29 (12)C6—C5—H5119.00
C2—C1—C6120.64 (12)C7—C8—H8A109.00
C1—C2—C3120.29 (12)C7—C8—H8B110.00
C2—C3—C4120.31 (13)C7—C8—H8C109.00
C3—C4—C5119.91 (14)H8A—C8—H8B109.00
C4—C5—C6121.75 (13)H8A—C8—H8C109.00
C1—C6—C7121.70 (11)H8B—C8—H8C109.00
C1—C6—C5117.09 (11)C9—C10—H10120.00
C5—C6—C7121.18 (11)C11—C10—H10120.00
N1—C7—C6117.48 (10)C10—C11—H11120.00
N1—C7—C8123.57 (11)C12—C11—H11120.00
C6—C7—C8118.96 (11)C11—C12—H12120.00
C10—C9—C14119.30 (11)C13—C12—H12120.00
N1—C9—C14118.52 (10)C12—C13—H13120.00
N1—C9—C10121.83 (11)C14—C13—H13120.00
C9—C10—C11120.59 (12)O3—C16—H16A110.00
C10—C11—C12120.04 (12)O3—C16—H16B110.00
C11—C12—C13120.16 (12)C15—C16—H16A110.00
C12—C13—C14120.17 (12)C15—C16—H16B110.00
C9—C14—C13119.74 (11)H16A—C16—H16B108.00
N2—C14—C9117.21 (10)O3—C17—H17A109.00
N2—C14—C13123.01 (11)O3—C17—H17B109.00
O2—C15—N2125.34 (12)O3—C17—H17C110.00
O2—C15—C16120.72 (11)H17A—C17—H17B110.00
N2—C15—C16113.94 (11)H17A—C17—H17C109.00
O3—C16—C15110.34 (10)H17B—C17—H17C109.00
C17—O3—C16—C15168.27 (12)C4—C5—C6—C7177.87 (14)
C9—N1—C7—C6174.48 (11)C5—C6—C7—N1177.62 (13)
C9—N1—C7—C86.1 (2)C1—C6—C7—C8179.04 (13)
C7—N1—C9—C14121.72 (13)C1—C6—C7—N10.45 (18)
C7—N1—C9—C1065.16 (17)C5—C6—C7—C82.9 (2)
C14—N2—C15—C16179.91 (11)C14—C9—C10—C110.65 (19)
C14—N2—C15—O21.3 (2)N1—C9—C14—C13174.11 (11)
C15—N2—C14—C9163.09 (12)N1—C9—C10—C11173.72 (12)
C15—N2—C14—C1318.93 (19)C10—C9—C14—N2177.24 (11)
C2—C1—C6—C7178.46 (12)C10—C9—C14—C130.81 (18)
C2—C1—C6—C50.31 (19)N1—C9—C14—N23.95 (16)
O1—C1—C6—C70.7 (2)C9—C10—C11—C120.4 (2)
O1—C1—C6—C5178.85 (13)C10—C11—C12—C130.2 (2)
O1—C1—C2—C3178.57 (13)C11—C12—C13—C140.39 (19)
C6—C1—C2—C30.6 (2)C12—C13—C14—N2177.25 (11)
C1—C2—C3—C40.3 (2)C12—C13—C14—C90.69 (18)
C2—C3—C4—C50.3 (2)O2—C15—C16—O3170.90 (12)
C3—C4—C5—C60.6 (3)N2—C15—C16—O37.92 (15)
C4—C5—C6—C10.3 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z1/2; (vi) x+1, y+1, z+1; (vii) x1, y, z; (viii) x1/2, y+1/2, z1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+1/2, z+3/2; (xi) x1/2, y+1/2, z+1/2; (xii) x+1/2, y+1/2, z+3/2; (xiii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N10.894 (19)1.725 (19)2.5537 (14)153.1 (17)
N2—HN1···O30.857 (15)2.062 (15)2.5578 (14)116.2 (12)
N2—HN1···N10.857 (15)2.363 (15)2.7272 (15)106.0 (11)
C13—H13···O20.932.342.9119 (16)119
C16—H16A···O2ii0.972.573.3941 (17)143
Symmetry code: (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC17H18N2O3
Mr298.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)8.4061 (8), 11.2568 (5), 16.4145 (16)
β (°) 98.988 (8)
V3)1534.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.22 × 0.18 × 0.13
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.981, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
35768, 3829, 2752
Rint0.052
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.099, 1.01
No. of reflections3829
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: COLLECT (Nonius, 1999), EVALCCD (Duisenberg et al., 2003), SADABS (Sheldrick, 2002), SIR92 (Altomare et al., 1994) or SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—HO1···N10.894 (19)1.725 (19)2.5537 (14)153.1 (17)
N2—HN1···O30.857 (15)2.062 (15)2.5578 (14)116.2 (12)
N2—HN1···N10.857 (15)2.363 (15)2.7272 (15)106.0 (11)
C13—H13···O20.932.342.9119 (16)119
C16—H16A···O2i0.972.573.3941 (17)143
Symmetry code: (i) x+2, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds