Download citation
Download citation
link to html
In the centrosymmetric dicationic cyclic title compound [Au2(C25H22P2)2](NO3)2·2CD3OD, an aurophilic inter­action with a distance of 3.0245 (3) Å is found between the linear-dicoordinated AuI centres. The perdeuteromethanol solvent mol­ecules are linked to the nitrate anions via hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030887/hg2244sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030887/hg2244Isup2.hkl
Contains datablock I

CCDC reference: 657576

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.022
  • wR factor = 0.052
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 3.52 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 P2 -AU1 -P1 -C21 136.70 0.70 3.665 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 P2 -AU1 -P1 -C11 12.60 0.70 3.665 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 7 P2 -AU1 -P1 -C1 -103.60 0.70 3.665 1.555 1.555 1.555 PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Au1 (9) 1.25
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Binuclear gold complexes with bridging bidentate ligands and various counter-ions have been the subject of several studies due to their rich luminescence and bonding properties (King et al., 1989) and have been structurally characterized (Jaw et al., 1989; Khan et al., 1989; Porter et al., 1989; Liou et al., 1994; Wang & Liu, 1994; Bauer & Schmidbaur, 1997). The bridging methylene carbon can be exploited as a coordination and reactive centre. Neutral homo- or heterometallic tetranuclear derivatives have been reported (Uson et al., 1986). It is assumed that Au···Au distances are determined by electronic effects of the substituents L and X at gold but it has become more obvious that steric effects play a decisive role. The weak forces associated with Au···Au contacts can be overruled by steric repulsion and other factors like packing forces (Angermaier & Schmidbaur, 1995). Here we report another crystal and molecular structure containing this dication. Each nitrate counter anion engages in a hydrogen bond to one perdeuteromethanol lattice solvent.

The asymmetric unit of (A) consists of one half of the dication, [(µ-dppm)2Au2]2+, containing one nitrate anion and one deuterated methanol molecule. The rest of the molecule is related by a centre of symmetry between the gold atoms of each dimer. The Au···Au separation is 3.0245 (3) Å. This agrees with a weak Au···Au interaction (Schmidbaur et al., 2005). In this instance the steric constraints of the dppm ligand assist the aurophillic interaction in the Au2P4C2 ring which has a chair conformation (Perreault et al., 1992; Bauer & Schmidbaur, 1997). The Au centres adopt a normal linear two-coordinate geometry of 177.76 (3) Å, slightly distorted from ideality by the aurophilic bonding. Channels of anions are observed running parallel to the a axis. Two oxygen atoms of the nitrate are aligned towards the gold atom in the cation with distances of 3.470 (2) Å for O2–Au1i [symmetry code: (i) = -x + 1, -y + 1,-z] and 3.357 (2) Å for O1—Au1.

Related literature top

For related literature, see: Angermaier & Schmidbaur (1995); Bauer & Schmidbaur (1997); Cooper et al. (1984); Jaw et al. (1989); Khan et al. (1989); King et al. (1989); Liou et al. (1994); Malatesa et al. (1966); Perreault et al. (1992); Porter et al. (1989); Schmidbaur et al. (2005); Uson et al. (1986); Wang & Liu (1994).

Experimental top

The title compound was prepared using (µ-dppm)2AuCl2 (Cooper et al., 1984) and literature methods (Malatesa et al., 1966). Colourless crystals that were suitable for X-Ray diffraction were obtained at 251 K in deuterated methanol.

Refinement top

Hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms with distances for aromatic C—H = 0.95 Å, methyl C—D = 0.98 Å and methanol O—D = 0.84 Å. Uiso values were set at 1.2 times Ueq(C,O) for all H/D atoms except for methyl D at 1.5 Ueq(C). A residual electron density peak of 1.64 e Å-3 was located 1.188 Å next to O2.

Structure description top

Binuclear gold complexes with bridging bidentate ligands and various counter-ions have been the subject of several studies due to their rich luminescence and bonding properties (King et al., 1989) and have been structurally characterized (Jaw et al., 1989; Khan et al., 1989; Porter et al., 1989; Liou et al., 1994; Wang & Liu, 1994; Bauer & Schmidbaur, 1997). The bridging methylene carbon can be exploited as a coordination and reactive centre. Neutral homo- or heterometallic tetranuclear derivatives have been reported (Uson et al., 1986). It is assumed that Au···Au distances are determined by electronic effects of the substituents L and X at gold but it has become more obvious that steric effects play a decisive role. The weak forces associated with Au···Au contacts can be overruled by steric repulsion and other factors like packing forces (Angermaier & Schmidbaur, 1995). Here we report another crystal and molecular structure containing this dication. Each nitrate counter anion engages in a hydrogen bond to one perdeuteromethanol lattice solvent.

The asymmetric unit of (A) consists of one half of the dication, [(µ-dppm)2Au2]2+, containing one nitrate anion and one deuterated methanol molecule. The rest of the molecule is related by a centre of symmetry between the gold atoms of each dimer. The Au···Au separation is 3.0245 (3) Å. This agrees with a weak Au···Au interaction (Schmidbaur et al., 2005). In this instance the steric constraints of the dppm ligand assist the aurophillic interaction in the Au2P4C2 ring which has a chair conformation (Perreault et al., 1992; Bauer & Schmidbaur, 1997). The Au centres adopt a normal linear two-coordinate geometry of 177.76 (3) Å, slightly distorted from ideality by the aurophilic bonding. Channels of anions are observed running parallel to the a axis. Two oxygen atoms of the nitrate are aligned towards the gold atom in the cation with distances of 3.470 (2) Å for O2–Au1i [symmetry code: (i) = -x + 1, -y + 1,-z] and 3.357 (2) Å for O1—Au1.

For related literature, see: Angermaier & Schmidbaur (1995); Bauer & Schmidbaur (1997); Cooper et al. (1984); Jaw et al. (1989); Khan et al. (1989); King et al. (1989); Liou et al. (1994); Malatesa et al. (1966); Perreault et al. (1992); Porter et al. (1989); Schmidbaur et al. (2005); Uson et al. (1986); Wang & Liu (1994).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

Figures top
[Figure 1] Fig. 1. The molecular structure of (A), showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
Bis[µ-bis(diphenylphosphino)methane-κ2P:P']digold(I)(Au—Au) dinitrate perdeuteromethanol solvate top
Crystal data top
[Au2(C25H22P2)2](NO3)2·2CD4OF(000) = 1320
Mr = 1358.71Dx = 1.834 Mg m3
Monoclinic, P21/nMelting point: 414.8 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.6214 (8) ÅCell parameters from 6683 reflections
b = 13.6313 (9) Åθ = 2.4–26.4°
c = 16.4319 (12) ŵ = 6.14 mm1
β = 109.048 (1)°T = 100 K
V = 2460.5 (3) Å3Prism, colourless
Z = 20.27 × 0.19 × 0.13 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5019 independent reflections
Radiation source: fine-focus sealed tube4626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1414
Tmin = 0.256, Tmax = 0.450k = 1712
14182 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.7357P]
where P = (Fo2 + 2Fc2)/3
5019 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 1.64 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Au2(C25H22P2)2](NO3)2·2CD4OV = 2460.5 (3) Å3
Mr = 1358.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.6214 (8) ŵ = 6.14 mm1
b = 13.6313 (9) ÅT = 100 K
c = 16.4319 (12) Å0.27 × 0.19 × 0.13 mm
β = 109.048 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
5019 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4626 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 0.450Rint = 0.025
14182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.06Δρmax = 1.64 e Å3
5019 reflectionsΔρmin = 0.47 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au10.408600 (9)0.485644 (8)0.046685 (7)0.01107 (5)
P10.26529 (6)0.57042 (6)0.06166 (5)0.01064 (16)
P20.45307 (7)0.60437 (6)0.15453 (5)0.01081 (16)
O10.6025 (2)0.78397 (16)0.18981 (15)0.0216 (5)
O20.6738 (2)0.66210 (17)0.13524 (14)0.0230 (5)
O30.5548 (2)0.63412 (17)0.21084 (15)0.0248 (5)
O40.3636 (2)0.7250 (2)0.26312 (16)0.0338 (6)
D40.42740.69780.26100.051*
N10.6106 (2)0.6935 (2)0.17854 (17)0.0182 (6)
C10.2969 (3)0.5708 (2)0.16312 (19)0.0122 (6)
H1A0.24040.61730.20290.015*
H1B0.27960.50460.18910.015*
C40.3516 (4)0.7089 (3)0.3450 (3)0.0389 (10)
D4A0.42090.73840.38940.058*
D4B0.34960.63830.35540.058*
D4C0.27590.73900.34680.058*
C110.1141 (3)0.5171 (2)0.0928 (2)0.0132 (6)
C120.0970 (3)0.4237 (3)0.0638 (2)0.0220 (7)
H120.16360.38960.02470.026*
C130.0175 (3)0.3809 (2)0.0922 (2)0.0264 (8)
H130.02910.31730.07270.032*
C140.1141 (3)0.4298 (3)0.1485 (2)0.0224 (7)
H140.19220.39990.16780.027*
C150.0980 (3)0.5223 (3)0.1770 (2)0.0226 (8)
H150.16540.55620.21550.027*
C160.0151 (3)0.5660 (2)0.1499 (2)0.0187 (7)
H160.02570.62960.17010.022*
C210.2552 (2)0.6982 (2)0.03458 (19)0.0115 (6)
C220.3051 (3)0.7273 (2)0.0513 (2)0.0150 (6)
H220.34080.67980.09450.018*
C230.3027 (3)0.8244 (2)0.0735 (2)0.0171 (7)
H230.33660.84380.13200.021*
C240.2508 (3)0.8942 (2)0.0104 (2)0.0170 (7)
H240.24980.96130.02590.020*
C250.2008 (3)0.8660 (2)0.0748 (2)0.0154 (6)
H250.16480.91370.11770.019*
C260.2031 (3)0.7684 (2)0.0975 (2)0.0154 (6)
H260.16920.74930.15610.018*
C310.4599 (3)0.5910 (2)0.2622 (2)0.0132 (6)
C320.3662 (3)0.6220 (2)0.3352 (2)0.0150 (6)
H320.29030.64220.33060.018*
C330.3844 (3)0.6232 (2)0.4144 (2)0.0160 (7)
H330.32110.64540.46380.019*
C340.4930 (3)0.5925 (2)0.4223 (2)0.0199 (7)
H340.50520.59460.47670.024*
C350.5846 (3)0.5587 (3)0.3505 (2)0.0214 (7)
H350.65900.53630.35620.026*
C360.5691 (3)0.5571 (2)0.2710 (2)0.0187 (7)
H360.63220.53310.22230.022*
C410.4729 (3)0.7353 (2)0.1336 (2)0.0128 (6)
C420.5348 (3)0.7659 (2)0.0495 (2)0.0163 (7)
H420.56520.71870.00520.020*
C430.5520 (3)0.8650 (3)0.0308 (2)0.0216 (7)
H430.59310.88560.02660.026*
C440.5096 (3)0.9340 (2)0.0954 (2)0.0208 (7)
H440.52221.00190.08270.025*
C450.4485 (3)0.9034 (2)0.1791 (2)0.0207 (7)
H450.41910.95080.22340.025*
C460.4301 (3)0.8047 (2)0.1984 (2)0.0176 (7)
H460.38840.78440.25580.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au10.00955 (7)0.01244 (7)0.01065 (7)0.00124 (4)0.00248 (5)0.00256 (4)
P10.0095 (3)0.0108 (4)0.0113 (4)0.0002 (3)0.0029 (3)0.0006 (3)
P20.0099 (4)0.0119 (4)0.0102 (4)0.0001 (3)0.0027 (3)0.0013 (3)
O10.0273 (13)0.0147 (12)0.0199 (13)0.0031 (10)0.0036 (10)0.0014 (9)
O20.0262 (12)0.0255 (13)0.0175 (13)0.0054 (10)0.0075 (10)0.0000 (10)
O30.0308 (13)0.0208 (13)0.0224 (14)0.0106 (10)0.0083 (11)0.0022 (10)
O40.0357 (15)0.0440 (17)0.0221 (14)0.0021 (13)0.0098 (12)0.0010 (12)
N10.0187 (14)0.0206 (15)0.0105 (14)0.0001 (12)0.0018 (11)0.0004 (11)
C10.0114 (14)0.0128 (15)0.0114 (15)0.0015 (12)0.0025 (12)0.0015 (12)
C40.055 (3)0.037 (2)0.032 (2)0.012 (2)0.022 (2)0.0014 (18)
C110.0118 (15)0.0148 (16)0.0138 (16)0.0007 (12)0.0052 (13)0.0006 (12)
C120.0181 (16)0.0187 (18)0.029 (2)0.0009 (13)0.0073 (15)0.0064 (14)
C130.0214 (17)0.0187 (18)0.040 (2)0.0025 (14)0.0110 (16)0.0043 (15)
C140.0141 (16)0.0269 (19)0.026 (2)0.0064 (14)0.0065 (14)0.0047 (15)
C150.0140 (16)0.033 (2)0.0194 (19)0.0003 (14)0.0033 (14)0.0046 (14)
C160.0156 (15)0.0171 (17)0.0229 (18)0.0003 (13)0.0056 (14)0.0034 (13)
C210.0098 (14)0.0117 (15)0.0143 (16)0.0001 (11)0.0057 (12)0.0002 (12)
C220.0134 (15)0.0178 (17)0.0131 (16)0.0005 (12)0.0035 (13)0.0026 (12)
C230.0187 (16)0.0208 (17)0.0121 (16)0.0006 (13)0.0054 (13)0.0043 (13)
C240.0171 (16)0.0135 (16)0.0227 (18)0.0001 (12)0.0098 (14)0.0024 (13)
C250.0170 (15)0.0129 (16)0.0178 (17)0.0049 (12)0.0076 (13)0.0049 (12)
C260.0157 (15)0.0173 (16)0.0124 (16)0.0005 (13)0.0036 (13)0.0007 (12)
C310.0138 (14)0.0118 (15)0.0155 (16)0.0019 (12)0.0068 (13)0.0010 (12)
C320.0123 (15)0.0135 (16)0.0173 (17)0.0010 (12)0.0023 (13)0.0023 (12)
C330.0201 (16)0.0145 (16)0.0111 (16)0.0012 (13)0.0022 (13)0.0001 (12)
C340.0246 (17)0.0228 (18)0.0144 (17)0.0033 (14)0.0091 (14)0.0004 (13)
C350.0161 (16)0.029 (2)0.0218 (18)0.0018 (14)0.0101 (14)0.0017 (15)
C360.0155 (15)0.0219 (18)0.0195 (18)0.0026 (13)0.0069 (13)0.0032 (14)
C410.0111 (14)0.0130 (15)0.0153 (16)0.0007 (12)0.0058 (13)0.0008 (12)
C420.0143 (15)0.0191 (17)0.0140 (17)0.0040 (13)0.0028 (13)0.0023 (13)
C430.0162 (16)0.0253 (19)0.0199 (18)0.0008 (14)0.0013 (14)0.0087 (14)
C440.0197 (16)0.0141 (17)0.029 (2)0.0004 (13)0.0080 (15)0.0046 (14)
C450.0248 (17)0.0139 (17)0.0243 (19)0.0015 (14)0.0092 (15)0.0055 (13)
C460.0184 (16)0.0195 (17)0.0134 (17)0.0012 (13)0.0033 (13)0.0007 (13)
Geometric parameters (Å, º) top
Au1—P12.3116 (8)C21—C261.393 (4)
Au1—P2i2.3175 (8)C21—C221.397 (4)
Au1—Au1i3.0245 (3)C22—C231.375 (4)
Au1—O33.357 (2)C22—H220.9500
P1—C211.811 (3)C23—C241.391 (4)
P1—C111.814 (3)C23—H230.9500
P1—C11.821 (3)C24—C251.384 (4)
P2—C311.805 (3)C24—H240.9500
P2—C411.818 (3)C25—C261.384 (4)
P2—C11.832 (3)C25—H250.9500
P2—Au1i2.3175 (8)C26—H260.9500
O1—N11.256 (3)C31—C321.397 (4)
O2—N11.253 (3)C31—C361.402 (4)
O2—Au1i3.470 (2)C32—C331.385 (4)
O3—N11.257 (3)C32—H320.9500
O4—C41.414 (4)C33—C341.376 (4)
O4—D40.8400C33—H330.9500
C1—H1A0.9900C34—C351.384 (5)
C1—H1B0.9900C34—H340.9500
C4—D4A0.9800C35—C361.376 (4)
C4—D4B0.9800C35—H350.9500
C4—D4C0.9800C36—H360.9500
C11—C161.394 (4)C41—C461.389 (4)
C11—C121.396 (4)C41—C421.397 (4)
C12—C131.387 (4)C42—C431.385 (4)
C12—H120.9500C42—H420.9500
C13—C141.372 (5)C43—C441.384 (5)
C13—H130.9500C43—H430.9500
C14—C151.378 (5)C44—C451.389 (5)
C14—H140.9500C44—H440.9500
C15—C161.379 (4)C45—C461.383 (4)
C15—H150.9500C45—H450.9500
C16—H160.9500C46—H460.9500
P1—Au1—P2i177.76 (3)C26—C21—C22119.4 (3)
P1—Au1—Au1i89.62 (2)C26—C21—P1121.7 (2)
P2i—Au1—Au1i91.70 (2)C22—C21—P1118.8 (2)
P1—Au1—O3111.47 (4)C23—C22—C21120.2 (3)
P2i—Au1—O370.24 (4)C23—C22—H22119.9
Au1i—Au1—O394.27 (4)C21—C22—H22119.9
C21—P1—C11108.68 (13)C22—C23—C24120.1 (3)
C21—P1—C1105.71 (14)C22—C23—H23119.9
C11—P1—C1102.07 (14)C24—C23—H23119.9
C21—P1—Au1112.32 (10)C25—C24—C23120.1 (3)
C11—P1—Au1113.89 (10)C25—C24—H24120.0
C1—P1—Au1113.37 (10)C23—C24—H24120.0
C31—P2—C41103.94 (14)C24—C25—C26120.1 (3)
C31—P2—C1104.97 (14)C24—C25—H25120.0
C41—P2—C1108.72 (13)C26—C25—H25120.0
C31—P2—Au1i117.03 (10)C25—C26—C21120.1 (3)
C41—P2—Au1i111.21 (10)C25—C26—H26120.0
C1—P2—Au1i110.44 (10)C21—C26—H26120.0
N1—O2—Au1i129.75 (18)C32—C31—C36119.3 (3)
N1—O3—Au1104.14 (18)C32—C31—P2122.7 (2)
C4—O4—D4109.5C36—C31—P2117.7 (2)
O2—N1—O1120.3 (3)C33—C32—C31119.7 (3)
O2—N1—O3119.9 (3)C33—C32—H32120.2
O1—N1—O3119.7 (3)C31—C32—H32120.2
P1—C1—P2114.91 (16)C34—C33—C32120.8 (3)
P1—C1—H1A108.5C34—C33—H33119.6
P2—C1—H1A108.5C32—C33—H33119.6
P1—C1—H1B108.5C33—C34—C35119.6 (3)
P2—C1—H1B108.5C33—C34—H34120.2
H1A—C1—H1B107.5C35—C34—H34120.2
O4—C4—D4A109.5C36—C35—C34120.8 (3)
O4—C4—D4B109.5C36—C35—H35119.6
D4A—C4—D4B109.5C34—C35—H35119.6
O4—C4—D4C109.5C35—C36—C31119.8 (3)
D4A—C4—D4C109.5C35—C36—H36120.1
D4B—C4—D4C109.5C31—C36—H36120.1
C16—C11—C12119.2 (3)C46—C41—C42119.7 (3)
C16—C11—P1120.6 (2)C46—C41—P2122.1 (2)
C12—C11—P1120.1 (2)C42—C41—P2118.2 (2)
C13—C12—C11119.8 (3)C43—C42—C41120.1 (3)
C13—C12—H12120.1C43—C42—H42119.9
C11—C12—H12120.1C41—C42—H42119.9
C14—C13—C12120.4 (3)C44—C43—C42120.2 (3)
C14—C13—H13119.8C44—C43—H43119.9
C12—C13—H13119.8C42—C43—H43119.9
C13—C14—C15120.1 (3)C43—C44—C45119.6 (3)
C13—C14—H14119.9C43—C44—H44120.2
C15—C14—H14119.9C45—C44—H44120.2
C14—C15—C16120.4 (3)C46—C45—C44120.7 (3)
C14—C15—H15119.8C46—C45—H45119.7
C16—C15—H15119.8C44—C45—H45119.7
C15—C16—C11120.1 (3)C45—C46—C41119.8 (3)
C15—C16—H16120.0C45—C46—H46120.1
C11—C16—H16120.0C41—C46—H46120.1
P2i—Au1—P1—C21136.7 (7)C11—P1—C21—C22110.4 (2)
Au1i—Au1—P1—C2197.16 (10)C1—P1—C21—C22140.7 (2)
O3—Au1—P1—C212.72 (11)Au1—P1—C21—C2216.6 (3)
P2i—Au1—P1—C1112.6 (7)C26—C21—C22—C230.1 (4)
Au1i—Au1—P1—C11138.74 (11)P1—C21—C22—C23177.7 (2)
O3—Au1—P1—C11126.82 (12)C21—C22—C23—C240.2 (5)
P2i—Au1—P1—C1103.6 (7)C22—C23—C24—C250.4 (5)
Au1i—Au1—P1—C122.60 (11)C23—C24—C25—C260.5 (5)
O3—Au1—P1—C1117.04 (11)C24—C25—C26—C210.4 (5)
P1—Au1—O3—N164.04 (18)C22—C21—C26—C250.2 (4)
P2i—Au1—O3—N1117.50 (18)P1—C21—C26—C25177.7 (2)
Au1i—Au1—O3—N127.23 (18)C41—P2—C31—C3272.2 (3)
Au1i—O2—N1—O1123.0 (2)C1—P2—C31—C3241.9 (3)
Au1i—O2—N1—O356.9 (3)Au1i—P2—C31—C32164.8 (2)
Au1—O3—N1—O249.4 (3)C41—P2—C31—C36101.2 (3)
Au1—O3—N1—O1130.5 (2)C1—P2—C31—C36144.6 (2)
C21—P1—C1—P274.66 (18)Au1i—P2—C31—C3621.8 (3)
C11—P1—C1—P2171.74 (16)C36—C31—C32—C333.0 (4)
Au1—P1—C1—P248.81 (18)P2—C31—C32—C33170.4 (2)
C31—P2—C1—P1176.49 (16)C31—C32—C33—C341.1 (5)
C41—P2—C1—P172.8 (2)C32—C33—C34—C351.0 (5)
Au1i—P2—C1—P149.50 (18)C33—C34—C35—C361.3 (5)
C21—P1—C11—C1646.3 (3)C34—C35—C36—C310.6 (5)
C1—P1—C11—C1665.1 (3)C32—C31—C36—C352.7 (5)
Au1—P1—C11—C16172.3 (2)P2—C31—C36—C35171.0 (3)
C21—P1—C11—C12137.5 (3)C31—P2—C41—C4632.8 (3)
C1—P1—C11—C12111.1 (3)C1—P2—C41—C4678.7 (3)
Au1—P1—C11—C1211.5 (3)Au1i—P2—C41—C46159.5 (2)
C16—C11—C12—C130.3 (5)C31—P2—C41—C42146.4 (2)
P1—C11—C12—C13175.9 (3)C1—P2—C41—C42102.2 (3)
C11—C12—C13—C140.2 (5)Au1i—P2—C41—C4219.6 (3)
C12—C13—C14—C150.2 (6)C46—C41—C42—C430.8 (5)
C13—C14—C15—C160.6 (6)P2—C41—C42—C43180.0 (2)
C14—C15—C16—C110.5 (5)C41—C42—C43—C441.0 (5)
C12—C11—C16—C150.1 (5)C42—C43—C44—C450.7 (5)
P1—C11—C16—C15176.3 (3)C43—C44—C45—C460.3 (5)
C11—P1—C21—C2672.1 (3)C44—C45—C46—C410.1 (5)
C1—P1—C21—C2636.9 (3)C42—C41—C46—C450.4 (5)
Au1—P1—C21—C26161.0 (2)P2—C41—C46—C45179.5 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—D4···O30.842.102.908 (4)161

Experimental details

Crystal data
Chemical formula[Au2(C25H22P2)2](NO3)2·2CD4O
Mr1358.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.6214 (8), 13.6313 (9), 16.4319 (12)
β (°) 109.048 (1)
V3)2460.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.14
Crystal size (mm)0.27 × 0.19 × 0.13
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.256, 0.450
No. of measured, independent and
observed [I > 2σ(I)] reflections
14182, 5019, 4626
Rint0.025
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 1.06
No. of reflections5019
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.64, 0.47

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), X-SEED.

Selected geometric parameters (Å, º) top
Au1—P12.3116 (8)P1—C11.821 (3)
Au1—P2i2.3175 (8)P2—C311.805 (3)
Au1—Au1i3.0245 (3)P2—C411.818 (3)
P1—C211.811 (3)P2—C11.832 (3)
P1—C111.814 (3)
P1—Au1—P2i177.76 (3)P2i—Au1—Au1i91.70 (2)
P1—Au1—Au1i89.62 (2)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—D4···O30.842.102.908 (4)160.5
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds