Download citation
Download citation
link to html
In the title mol­ecule, C19H21NO, the piperidine ring adopts a chair conformation. Two phenyl rings and two methyl groups, attached to the piperidine ring at positions 2, 6, 3 and 5, respectively, occupy equatorial positions. The dihedral angle between the two phenyl rings is 57.1 (1)°. Mol­ecules are linked by N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034010/is2193sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034010/is2193Isup2.hkl
Contains datablock I

CCDC reference: 657770

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.127
  • Data-to-parameter ratio = 18.6

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.854 0.987 Tmin(prime) and Tmax expected: 0.978 0.987 RR(prime) = 0.873 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.87 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT230_ALERT_2_C Hirshfeld Test Diff for C63 - C64 .. 6.55 su
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C5 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C6 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The conformation of the title compound was established by NMR spectroscopy by Hasan et al. (1985). Crystal structures of di-2-furylpiperidin-4-one derivatives have been reported, wherein the piperidine ring adopts a chair (Balamurugan et al., 2006), a twist-boat (Balamurugan et al., 2007) and a chair conformation (Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai, 2007). Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007) have reported the crystal structure of diphenylpiperidin-4-ol derivative, wherein the piperidine ring adopts a chair conformation.

In the title molecule, C19H21NO, the piperidine ring adopts a chair conformation (Fig. 1). Two phenyl rings and two methyl groups attached to the piperidine ring at the positions 2, 6, 3 and 5, respectively, have equatorial orientations. The dihedral angle between the two phenyl rings is 57.1 (1)°. Molecules are linked by an N1—H1···O4 (-1 + x, y, z) hydrogen bond (Fig. 2).

Related literature top

For related literature, see: Noller & Baliah (1948); Hasan et al. (1985); Balamurugan et al. (2006, 2007); Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007); Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai (2007).

Experimental top

The title compound was prepared by the known procedure (Noller & Baliah, 1948) and characterized using NMR techniques (Hasan et al., 1985).

Refinement top

Atom H1 at N1 was located in a difference Fourier map and refined isotropically. Remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

The conformation of the title compound was established by NMR spectroscopy by Hasan et al. (1985). Crystal structures of di-2-furylpiperidin-4-one derivatives have been reported, wherein the piperidine ring adopts a chair (Balamurugan et al., 2006), a twist-boat (Balamurugan et al., 2007) and a chair conformation (Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai, 2007). Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007) have reported the crystal structure of diphenylpiperidin-4-ol derivative, wherein the piperidine ring adopts a chair conformation.

In the title molecule, C19H21NO, the piperidine ring adopts a chair conformation (Fig. 1). Two phenyl rings and two methyl groups attached to the piperidine ring at the positions 2, 6, 3 and 5, respectively, have equatorial orientations. The dihedral angle between the two phenyl rings is 57.1 (1)°. Molecules are linked by an N1—H1···O4 (-1 + x, y, z) hydrogen bond (Fig. 2).

For related literature, see: Noller & Baliah (1948); Hasan et al. (1985); Balamurugan et al. (2006, 2007); Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007); Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai (2007).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT-NT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the b axis, showing the hydrogen bonds (dashed lines).
t-3,t-5-Dimethyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C19H21NOZ = 2
Mr = 279.37F(000) = 300
Triclinic, P1Dx = 1.184 Mg m3
Hall symbol: -P 1Melting point: 405(1) K
a = 7.1392 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5811 (5) ÅCell parameters from 10924 reflections
c = 11.6276 (5) Åθ = 1.9–27.8°
α = 102.320 (2)°µ = 0.07 mm1
β = 107.613 (2)°T = 298 K
γ = 101.735 (2)°Block, yellow
V = 783.31 (6) Å30.30 × 0.22 × 0.18 mm
Data collection top
Bruker SMART APEXII
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube2507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.854, Tmax = 0.987k = 1313
17560 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.1535P]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H21NOγ = 101.735 (2)°
Mr = 279.37V = 783.31 (6) Å3
Triclinic, P1Z = 2
a = 7.1392 (3) ÅMo Kα radiation
b = 10.5811 (5) ŵ = 0.07 mm1
c = 11.6276 (5) ÅT = 298 K
α = 102.320 (2)°0.30 × 0.22 × 0.18 mm
β = 107.613 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2507 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.987Rint = 0.022
17560 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
3606 reflectionsΔρmin = 0.15 e Å3
194 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43830 (15)0.75505 (11)0.24410 (10)0.0382 (3)
H10.331 (3)0.7840 (16)0.2495 (14)0.058 (4)*
C20.49854 (18)0.79381 (13)0.14409 (12)0.0377 (3)
H20.55550.89230.17020.045*
C30.6675 (2)0.72851 (15)0.12688 (13)0.0452 (3)
H30.60950.63030.10320.054*
C40.8407 (2)0.77112 (15)0.25275 (14)0.0478 (3)
O41.01600 (16)0.82417 (15)0.26561 (12)0.0783 (4)
C50.78155 (19)0.74549 (15)0.36128 (13)0.0469 (3)
H50.72750.64750.34220.056*
C60.60440 (18)0.80756 (13)0.36724 (12)0.0390 (3)
H60.65540.90580.38690.047*
C210.31407 (18)0.75191 (13)0.02317 (12)0.0385 (3)
C220.2010 (2)0.61779 (15)0.03430 (14)0.0500 (3)
H220.23670.55250.00310.060*
C230.0361 (2)0.57985 (17)0.14633 (14)0.0590 (4)
H230.03750.48920.18450.071*
C240.0200 (2)0.67568 (18)0.20191 (14)0.0589 (4)
H240.13120.65000.27750.071*
C250.0882 (2)0.80852 (17)0.14564 (14)0.0564 (4)
H250.05010.87360.18260.068*
C260.2547 (2)0.84655 (15)0.03351 (13)0.0464 (3)
H260.32760.93730.00420.056*
C310.7402 (3)0.7603 (2)0.02373 (16)0.0680 (5)
H31A0.62550.73140.05460.102*
H31B0.83960.71380.01480.102*
H31C0.80160.85590.04560.102*
C510.9625 (2)0.7943 (2)0.48516 (16)0.0728 (5)
H51A0.91690.77530.55100.109*
H51B1.02190.88990.50540.109*
H51C1.06340.74870.47760.109*
C610.53009 (19)0.77581 (14)0.46923 (12)0.0425 (3)
C620.5871 (2)0.87132 (18)0.58451 (14)0.0602 (4)
H620.66570.95870.59850.072*
C630.5270 (3)0.8370 (2)0.67992 (15)0.0767 (6)
H630.56810.90140.75780.092*
C640.4088 (3)0.7101 (3)0.66034 (17)0.0745 (6)
H640.36810.68820.72410.089*
C650.3509 (3)0.6158 (2)0.54676 (17)0.0659 (5)
H650.27000.52920.53300.079*
C660.4113 (2)0.64769 (16)0.45176 (14)0.0511 (4)
H660.37130.58190.37490.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0375 (5)0.1211 (11)0.0795 (9)0.0161 (6)0.0247 (5)0.0370 (8)
N10.0302 (5)0.0506 (7)0.0349 (6)0.0144 (5)0.0118 (4)0.0120 (5)
C20.0337 (6)0.0413 (7)0.0395 (7)0.0125 (5)0.0138 (5)0.0123 (5)
C30.0411 (7)0.0547 (8)0.0489 (8)0.0204 (6)0.0228 (6)0.0173 (7)
C40.0362 (6)0.0569 (8)0.0603 (9)0.0223 (6)0.0215 (6)0.0226 (7)
C50.0372 (7)0.0601 (9)0.0509 (8)0.0228 (6)0.0156 (6)0.0232 (7)
C60.0324 (6)0.0427 (7)0.0390 (7)0.0129 (5)0.0089 (5)0.0102 (6)
C210.0359 (6)0.0476 (8)0.0349 (7)0.0128 (5)0.0163 (5)0.0124 (6)
C220.0496 (8)0.0481 (8)0.0492 (8)0.0123 (6)0.0152 (6)0.0134 (7)
C230.0536 (8)0.0592 (9)0.0485 (9)0.0039 (7)0.0130 (7)0.0040 (7)
C240.0473 (8)0.0830 (12)0.0363 (8)0.0090 (8)0.0094 (6)0.0150 (8)
C250.0546 (8)0.0723 (11)0.0461 (8)0.0194 (8)0.0144 (7)0.0290 (8)
C260.0451 (7)0.0510 (8)0.0436 (8)0.0123 (6)0.0153 (6)0.0176 (6)
C310.0589 (9)0.1070 (14)0.0626 (10)0.0384 (9)0.0378 (8)0.0371 (10)
C510.0436 (8)0.1164 (15)0.0646 (11)0.0352 (9)0.0114 (7)0.0395 (10)
C610.0376 (6)0.0565 (9)0.0338 (7)0.0231 (6)0.0090 (5)0.0108 (6)
C620.0613 (9)0.0684 (10)0.0442 (9)0.0308 (8)0.0101 (7)0.0045 (8)
C630.0870 (13)0.1156 (17)0.0349 (9)0.0604 (13)0.0194 (8)0.0113 (10)
C640.0760 (12)0.1259 (18)0.0549 (11)0.0593 (12)0.0361 (9)0.0466 (12)
C650.0635 (10)0.0901 (13)0.0654 (11)0.0327 (9)0.0328 (8)0.0417 (10)
C660.0486 (8)0.0627 (9)0.0454 (8)0.0186 (7)0.0189 (6)0.0175 (7)
Geometric parameters (Å, º) top
O4—C41.212 (2)C64—C651.360 (3)
N1—C21.4628 (17)C65—C661.381 (3)
N1—C61.4595 (17)C2—H20.9800
N1—H10.90 (2)C3—H30.9800
C2—C31.549 (2)C5—H50.9800
C2—C211.5112 (18)C6—H60.9800
C3—C311.516 (2)C22—H220.9300
C3—C41.507 (2)C23—H230.9300
C4—C51.505 (2)C24—H240.9300
C5—C511.515 (2)C25—H250.9300
C5—C61.552 (2)C26—H260.9300
C6—C611.5096 (19)C31—H31A0.9600
C21—C221.384 (2)C31—H31B0.9600
C21—C261.379 (2)C31—H31C0.9600
C22—C231.379 (2)C51—H51A0.9600
C23—C241.376 (3)C51—H51B0.9600
C24—C251.364 (3)C51—H51C0.9600
C25—C261.385 (2)C62—H620.9300
C61—C661.382 (2)C63—H630.9300
C61—C621.381 (2)C64—H640.9300
C62—C631.394 (3)C65—H650.9300
C63—C641.364 (4)C66—H660.9300
O4···H1i2.43 (2)H5···H65iv2.6000
O4···H31B2.6800H6···H22.3600
O4···H31C2.6800H6···H622.3800
O4···H51B2.7100H6···H51Bii2.5700
O4···H51C2.7000H22···N12.8700
O4···H62ii2.6600H22···C32.9700
N1···H222.8700H22···H32.4400
N1···H662.6800H23···H66v2.5500
C24···C31iii3.599 (3)H24···H66v2.4800
C31···C24i3.599 (3)H26···H22.3300
C51···C623.398 (3)H26···H26vii2.5900
C62···C513.398 (3)H31A···C212.6700
C65···C66iv3.547 (3)H31A···H64viii2.5500
C66···C65iv3.547 (3)H31B···O42.6800
C3···H222.9700H31B···C23i2.9600
C21···H31A2.6700H31B···C24i2.9600
C22···H32.8300H31C···O42.6800
C23···H31Biii2.9600H51A···C612.6400
C24···H66v3.1000H51A···C622.8400
C24···H31Biii2.9600H51B···O42.7100
C61···H51A2.6400H51B···H6ii2.5700
C62···H51A2.8400H51B···H51Bii2.4400
C64···H51Ciii2.8900H51C···O42.7000
C65···H51Ciii2.7400H51C···C64i2.8900
C66···H52.9100H51C···C65i2.7400
C66···H51Ciii2.9700H51C···C66i2.9700
C66···H12.985 (16)H62···H62.3800
H1···O4iii2.43 (2)H62···O4ii2.6600
H1···C662.985 (16)H63···H2vi2.5900
H2···H62.3600H64···H31Aix2.5500
H2···H262.3300H65···H5iv2.6000
H2···H63vi2.5900H66···N12.6800
H3···C222.8300H66···C24v3.1000
H3···H222.4400H66···H23v2.5500
H5···C662.9100H66···H24v2.4800
C2—N1—C6112.91 (11)C31—C3—H3108.00
C2—N1—H1110.0 (10)C4—C5—H5107.00
C6—N1—H1109.1 (10)C6—C5—H5107.00
C3—C2—C21111.82 (11)C51—C5—H5107.00
N1—C2—C21110.33 (11)N1—C6—H6109.00
N1—C2—C3108.65 (11)C5—C6—H6109.00
C2—C3—C31113.35 (14)C61—C6—H6109.00
C4—C3—C31112.24 (14)C21—C22—H22120.00
C2—C3—C4108.12 (12)C23—C22—H22120.00
C3—C4—C5115.81 (13)C22—C23—H23120.00
O4—C4—C3121.85 (14)C24—C23—H23120.00
O4—C4—C5122.34 (14)C23—C24—H24120.00
C6—C5—C51113.06 (12)C25—C24—H24120.00
C4—C5—C6108.70 (12)C24—C25—H25120.00
C4—C5—C51112.75 (13)C26—C25—H25120.00
N1—C6—C5108.99 (11)C21—C26—H26119.00
N1—C6—C61111.00 (11)C25—C26—H26119.00
C5—C6—C61110.51 (11)C3—C31—H31A109.00
C2—C21—C22121.10 (13)C3—C31—H31B109.00
C22—C21—C26118.14 (13)C3—C31—H31C109.00
C2—C21—C26120.76 (13)H31A—C31—H31B109.00
C21—C22—C23120.80 (15)H31A—C31—H31C109.00
C22—C23—C24120.21 (16)H31B—C31—H31C109.00
C23—C24—C25119.72 (14)C5—C51—H51A109.00
C24—C25—C26120.07 (16)C5—C51—H51B109.00
C21—C26—C25121.05 (15)C5—C51—H51C109.00
C6—C61—C62121.21 (14)H51A—C51—H51B109.00
C62—C61—C66118.15 (14)H51A—C51—H51C109.00
C6—C61—C66120.56 (12)H51B—C51—H51C109.00
C61—C62—C63120.10 (17)C61—C62—H62120.00
C62—C63—C64120.74 (16)C63—C62—H62120.00
C63—C64—C65119.5 (2)C62—C63—H63120.00
C64—C65—C66120.5 (2)C64—C63—H63120.00
C61—C66—C65121.02 (15)C63—C64—H64120.00
N1—C2—H2109.00C65—C64—H64120.00
C3—C2—H2109.00C64—C65—H65120.00
C21—C2—H2109.00C66—C65—H65120.00
C2—C3—H3108.00C61—C66—H66120.00
C4—C3—H3108.00C65—C66—H66119.00
C6—N1—C2—C364.29 (14)C51—C5—C6—N1179.84 (13)
C6—N1—C2—C21172.79 (11)C51—C5—C6—C6157.92 (17)
C2—N1—C6—C563.18 (14)N1—C6—C61—C62136.85 (15)
C2—N1—C6—C61174.88 (11)N1—C6—C61—C6646.50 (18)
N1—C2—C3—C455.70 (15)C5—C6—C61—C62102.10 (17)
N1—C2—C3—C31179.19 (13)C5—C6—C61—C6674.55 (17)
C21—C2—C3—C4177.71 (12)C2—C21—C22—C23178.30 (13)
C21—C2—C3—C3157.18 (17)C26—C21—C22—C231.2 (2)
N1—C2—C21—C2259.92 (17)C2—C21—C26—C25178.73 (13)
N1—C2—C21—C26120.57 (14)C22—C21—C26—C250.8 (2)
C3—C2—C21—C2261.12 (17)C21—C22—C23—C240.8 (2)
C3—C2—C21—C26118.38 (15)C22—C23—C24—C250.0 (2)
C2—C3—C4—O4125.93 (17)C23—C24—C25—C260.5 (2)
C2—C3—C4—C553.21 (17)C24—C25—C26—C210.0 (2)
C31—C3—C4—O40.2 (2)C6—C61—C62—C63175.98 (17)
C31—C3—C4—C5178.97 (14)C66—C61—C62—C630.8 (3)
O4—C4—C5—C6126.84 (17)C6—C61—C66—C65176.81 (16)
O4—C4—C5—C510.7 (2)C62—C61—C66—C650.1 (3)
C3—C4—C5—C652.29 (17)C61—C62—C63—C641.1 (3)
C3—C4—C5—C51178.47 (14)C62—C63—C64—C650.7 (3)
C4—C5—C6—N153.83 (15)C63—C64—C65—C660.2 (3)
C4—C5—C6—C61176.07 (12)C64—C65—C66—C610.5 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x+1, y+2, z+1; (vii) x+1, y+2, z; (viii) x, y, z1; (ix) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4iii0.90 (2)2.43 (2)3.3109 (17)170.2 (15)
Symmetry code: (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H21NO
Mr279.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.1392 (3), 10.5811 (5), 11.6276 (5)
α, β, γ (°)102.320 (2), 107.613 (2), 101.735 (2)
V3)783.31 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.854, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17560, 3606, 2507
Rint0.022
(sin θ/λ)max1)0.655
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.127, 1.05
No. of reflections3606
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: APEX2 (Bruker, 2004), APEX2, SAINT-NT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.90 (2)2.43 (2)3.3109 (17)170.2 (15)
Symmetry code: (i) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds