Download citation
Download citation
link to html
The asymmetric unit of the title compound, C10H9Br2NO, consists of two mol­ecules. In both mol­ecules, the benzene and cyclo­propyl rings are nearly perpendicular, with dihedral angles of 85.8 (4) and 75.5 (4)°. In the crystal structure, there are no obviously short intermolecular contacts. Each molecule has an intramolecular O—H...N hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807038494/om2147sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807038494/om2147Isup2.hkl
Contains datablock I

CCDC reference: 660232

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.045
  • wR factor = 0.105
  • Data-to-parameter ratio = 18.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.96
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.72 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.717 Tmax scaled 0.231 Tmin scaled 0.113
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff base compounds have been of great interest for a long time. These compounds play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). Recently, we have reported a few Schiff base compounds (Yang, 2006a,b,c,d,e, 2007; Yang & Guo, 2006). As a further investigation of this work, the crystal structure of the title compound is reported here.

The asymmetric unit of the title compound consists of two molecules (Fig. 1). In both molecules, the benzene ring and the cyclopropyl ring are nearly perpendicular, with the dihedral angles of 85.8 (4) and 75.5 (4)°, respectively. All the bond lengths in the molecules are within normal ranges (Allen et al., 1987), and comparable to those of the similar compounds (Zhao, 2005, You & Chi, 2006). The C7N1 and C17N2 bond lengths of 1.272 (5) and 1.276 (5) Å conform to the values for double bonds. In the crystal structure, there are no obviously short contacts among the molecules.

Related literature top

For related structures see Yang (2006a,b,c,d,e, 2007); Yang & Guo (2006); Zhao (2005); You & Chi (2006). For related literature, see: Allen et al. (1987); Bernardo et al. (1996); Musie et al. (2001); Paul et al. (2002).

Experimental top

3,5-Dibromosalicylaldehyde (0.1 mmol, 18.0 mg) and cyclopropylamine (0.1 mmol, 5.7 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature to give a clear yellow solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of about one week at room temperature.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distances of 0.82 Å, C—H distances of 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

Schiff base compounds have been of great interest for a long time. These compounds play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). Recently, we have reported a few Schiff base compounds (Yang, 2006a,b,c,d,e, 2007; Yang & Guo, 2006). As a further investigation of this work, the crystal structure of the title compound is reported here.

The asymmetric unit of the title compound consists of two molecules (Fig. 1). In both molecules, the benzene ring and the cyclopropyl ring are nearly perpendicular, with the dihedral angles of 85.8 (4) and 75.5 (4)°, respectively. All the bond lengths in the molecules are within normal ranges (Allen et al., 1987), and comparable to those of the similar compounds (Zhao, 2005, You & Chi, 2006). The C7N1 and C17N2 bond lengths of 1.272 (5) and 1.276 (5) Å conform to the values for double bonds. In the crystal structure, there are no obviously short contacts among the molecules.

For related structures see Yang (2006a,b,c,d,e, 2007); Yang & Guo (2006); Zhao (2005); You & Chi (2006). For related literature, see: Allen et al. (1987); Bernardo et al. (1996); Musie et al. (2001); Paul et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
2,4-Dibromo-6-(cyclopropyliminomethyl)phenol top
Crystal data top
C10H9Br2NOZ = 4
Mr = 319.00F(000) = 616
Triclinic, P1Dx = 1.926 Mg m3
a = 9.1840 (18) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.495 (2) ÅCell parameters from 2313 reflections
c = 12.265 (3) Åθ = 2.4–25.1°
α = 70.85 (3)°µ = 7.33 mm1
β = 68.62 (3)°T = 298 K
γ = 69.69 (3)°Block, yellow
V = 1100.2 (4) Å30.40 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
4830 independent reflections
Radiation source: fine-focus sealed tube2945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.157, Tmax = 0.322k = 1414
9324 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
4830 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
C10H9Br2NOγ = 69.69 (3)°
Mr = 319.00V = 1100.2 (4) Å3
Triclinic, P1Z = 4
a = 9.1840 (18) ÅMo Kα radiation
b = 11.495 (2) ŵ = 7.33 mm1
c = 12.265 (3) ÅT = 298 K
α = 70.85 (3)°0.40 × 0.20 × 0.20 mm
β = 68.62 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2945 reflections with I > 2σ(I)
Tmin = 0.157, Tmax = 0.322Rint = 0.039
9324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 0.95Δρmax = 0.64 e Å3
4830 reflectionsΔρmin = 0.69 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11261 (8)0.17137 (5)0.31199 (6)0.0654 (2)
Br20.54050 (7)0.29887 (5)0.31061 (5)0.05466 (18)
Br30.48615 (7)0.32486 (6)0.37844 (5)0.0631 (2)
Br40.67363 (7)0.01999 (5)0.04642 (5)0.05876 (19)
O10.1149 (4)0.0760 (3)0.3466 (3)0.0472 (8)
H10.11280.14460.35180.071*
O20.3037 (4)0.5125 (3)0.2034 (3)0.0462 (8)
H20.23580.55310.16690.069*
N10.0071 (5)0.2383 (3)0.3665 (3)0.0427 (10)
N20.1932 (4)0.5883 (3)0.0169 (3)0.0384 (9)
C10.1612 (6)0.0265 (4)0.3465 (4)0.0363 (11)
C20.0329 (6)0.0049 (4)0.3375 (4)0.0361 (11)
C30.0627 (6)0.1257 (4)0.3186 (4)0.0400 (11)
C40.2121 (6)0.2115 (4)0.3086 (4)0.0418 (12)
H40.22930.29090.29500.050*
C50.3354 (6)0.1783 (4)0.3188 (4)0.0407 (11)
C60.3111 (6)0.0607 (4)0.3378 (4)0.0405 (11)
H60.39580.03970.34490.049*
C70.1393 (6)0.1521 (4)0.3654 (4)0.0411 (11)
H70.22410.16900.37670.049*
C80.0023 (6)0.3593 (4)0.3822 (5)0.0461 (13)
H80.08940.36540.40110.055*
C90.0850 (7)0.4753 (5)0.3070 (5)0.0587 (15)
H9A0.04300.54970.27940.070*
H9B0.12740.46350.25070.070*
C100.1668 (7)0.4377 (5)0.4370 (5)0.0597 (15)
H10A0.25860.40260.46000.072*
H10B0.17410.48900.48870.072*
C110.3820 (5)0.3853 (4)0.0594 (4)0.0347 (10)
C120.3856 (5)0.4019 (4)0.1673 (4)0.0340 (10)
C130.4791 (5)0.3044 (4)0.2334 (4)0.0372 (11)
C140.5632 (5)0.1906 (4)0.1997 (4)0.0384 (11)
H140.62350.12510.24670.046*
C150.5562 (5)0.1755 (4)0.0950 (4)0.0380 (11)
C160.4685 (5)0.2713 (4)0.0247 (4)0.0401 (12)
H160.46690.25990.04650.048*
C170.2896 (5)0.4881 (4)0.0175 (4)0.0391 (11)
H170.30180.47980.09350.047*
C180.1096 (6)0.6847 (4)0.0628 (4)0.0445 (12)
H180.14890.67900.14710.053*
C190.0688 (6)0.7366 (5)0.0140 (5)0.0579 (15)
H19A0.13570.75970.06730.069*
H19B0.11920.70190.06980.069*
C200.0415 (6)0.8155 (4)0.0400 (5)0.0476 (13)
H20A0.05860.82940.02770.057*
H20B0.04220.88720.10930.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0728 (4)0.0560 (4)0.0896 (5)0.0173 (3)0.0424 (4)0.0221 (3)
Br20.0543 (4)0.0474 (3)0.0566 (4)0.0070 (2)0.0191 (3)0.0225 (3)
Br30.0665 (4)0.0767 (4)0.0512 (4)0.0029 (3)0.0293 (3)0.0300 (3)
Br40.0586 (4)0.0438 (3)0.0791 (4)0.0062 (2)0.0294 (3)0.0304 (3)
O10.050 (2)0.0368 (19)0.057 (2)0.0050 (16)0.0227 (18)0.0119 (17)
O20.048 (2)0.043 (2)0.051 (2)0.0001 (15)0.0168 (17)0.0238 (17)
N10.049 (3)0.030 (2)0.047 (3)0.0089 (19)0.013 (2)0.0089 (18)
N20.035 (2)0.036 (2)0.043 (2)0.0059 (18)0.0137 (19)0.0076 (18)
C10.044 (3)0.029 (2)0.036 (3)0.010 (2)0.010 (2)0.007 (2)
C20.043 (3)0.029 (2)0.029 (3)0.003 (2)0.010 (2)0.0046 (19)
C30.058 (3)0.036 (3)0.035 (3)0.016 (2)0.023 (2)0.004 (2)
C40.055 (3)0.031 (3)0.040 (3)0.001 (2)0.021 (2)0.012 (2)
C50.045 (3)0.033 (3)0.040 (3)0.000 (2)0.014 (2)0.011 (2)
C60.039 (3)0.045 (3)0.038 (3)0.013 (2)0.008 (2)0.010 (2)
C70.041 (3)0.033 (3)0.044 (3)0.008 (2)0.008 (2)0.009 (2)
C80.047 (3)0.027 (2)0.066 (3)0.005 (2)0.019 (3)0.015 (2)
C90.077 (4)0.037 (3)0.062 (4)0.021 (3)0.019 (3)0.005 (3)
C100.062 (4)0.040 (3)0.066 (4)0.003 (3)0.008 (3)0.019 (3)
C110.028 (3)0.039 (3)0.038 (3)0.007 (2)0.008 (2)0.014 (2)
C120.029 (3)0.036 (3)0.040 (3)0.008 (2)0.008 (2)0.014 (2)
C130.034 (3)0.048 (3)0.034 (3)0.014 (2)0.008 (2)0.013 (2)
C140.028 (3)0.041 (3)0.044 (3)0.009 (2)0.012 (2)0.005 (2)
C150.031 (3)0.036 (3)0.047 (3)0.007 (2)0.007 (2)0.015 (2)
C160.037 (3)0.041 (3)0.047 (3)0.004 (2)0.015 (2)0.019 (2)
C170.040 (3)0.041 (3)0.040 (3)0.009 (2)0.017 (2)0.010 (2)
C180.045 (3)0.039 (3)0.043 (3)0.001 (2)0.019 (2)0.008 (2)
C190.038 (3)0.060 (4)0.072 (4)0.007 (3)0.025 (3)0.006 (3)
C200.045 (3)0.040 (3)0.051 (3)0.005 (2)0.015 (3)0.006 (2)
Geometric parameters (Å, º) top
Br1—C31.894 (5)C8—H80.9800
Br2—C51.903 (4)C9—C101.481 (7)
Br3—C131.895 (4)C9—H9A0.9700
Br4—C151.899 (4)C9—H9B0.9700
O1—C21.342 (5)C10—H10A0.9700
O1—H10.8200C10—H10B0.9700
O2—C121.356 (5)C11—C161.389 (6)
O2—H20.8200C11—C121.410 (6)
N1—C71.272 (5)C11—C171.471 (6)
N1—C81.436 (5)C12—C131.377 (6)
N2—C171.276 (5)C13—C141.379 (6)
N2—C181.421 (5)C14—C151.376 (6)
C1—C61.384 (6)C14—H140.9300
C1—C21.396 (6)C15—C161.368 (6)
C1—C71.470 (6)C16—H160.9300
C2—C31.398 (6)C17—H170.9300
C3—C41.375 (6)C18—C201.492 (6)
C4—C51.371 (6)C18—C191.496 (7)
C4—H40.9300C18—H180.9800
C5—C61.374 (6)C19—C201.470 (7)
C6—H60.9300C19—H19A0.9700
C7—H70.9300C19—H19B0.9700
C8—C91.485 (6)C20—H20A0.9700
C8—C101.503 (6)C20—H20B0.9700
C2—O1—H1109.5C8—C10—H10B117.8
C12—O2—H2109.5H10A—C10—H10B114.9
C7—N1—C8117.8 (4)C16—C11—C12119.6 (4)
C17—N2—C18118.9 (4)C16—C11—C17119.6 (4)
C6—C1—C2120.1 (4)C12—C11—C17120.7 (4)
C6—C1—C7119.2 (4)O2—C12—C13120.5 (4)
C2—C1—C7120.7 (4)O2—C12—C11121.2 (4)
O1—C2—C1122.3 (4)C13—C12—C11118.3 (4)
O1—C2—C3120.1 (4)C12—C13—C14122.0 (4)
C1—C2—C3117.6 (4)C12—C13—Br3119.0 (3)
C4—C3—C2122.1 (4)C14—C13—Br3118.9 (3)
C4—C3—Br1120.0 (3)C15—C14—C13118.8 (4)
C2—C3—Br1117.9 (4)C15—C14—H14120.6
C5—C4—C3118.9 (4)C13—C14—H14120.6
C5—C4—H4120.6C16—C15—C14121.2 (4)
C3—C4—H4120.6C16—C15—Br4119.6 (3)
C4—C5—C6120.8 (4)C14—C15—Br4119.2 (3)
C4—C5—Br2119.1 (3)C15—C16—C11120.1 (4)
C6—C5—Br2120.0 (4)C15—C16—H16120.0
C5—C6—C1120.4 (4)C11—C16—H16120.0
C5—C6—H6119.8N2—C17—C11122.0 (4)
C1—C6—H6119.8N2—C17—H17119.0
N1—C7—C1121.5 (5)C11—C17—H17119.0
N1—C7—H7119.2N2—C18—C20118.0 (4)
C1—C7—H7119.2N2—C18—C19117.6 (4)
N1—C8—C9117.2 (4)C20—C18—C1959.0 (3)
N1—C8—C10117.4 (4)N2—C18—H18116.6
C9—C8—C1059.4 (3)C20—C18—H18116.6
N1—C8—H8116.8C19—C18—H18116.6
C9—C8—H8116.8C20—C19—C1860.4 (3)
C10—C8—H8116.8C20—C19—H19A117.7
C10—C9—C860.9 (3)C18—C19—H19A117.7
C10—C9—H9A117.7C20—C19—H19B117.7
C8—C9—H9A117.7C18—C19—H19B117.7
C10—C9—H9B117.7H19A—C19—H19B114.9
C8—C9—H9B117.7C19—C20—C1860.7 (3)
H9A—C9—H9B114.8C19—C20—H20A117.7
C9—C10—C859.7 (3)C18—C20—H20A117.7
C9—C10—H10A117.8C19—C20—H20B117.7
C8—C10—H10A117.8C18—C20—H20B117.7
C9—C10—H10B117.8H20A—C20—H20B114.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.902.607 (5)143
O1—H1···N10.821.872.597 (5)147

Experimental details

Crystal data
Chemical formulaC10H9Br2NO
Mr319.00
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.1840 (18), 11.495 (2), 12.265 (3)
α, β, γ (°)70.85 (3), 68.62 (3), 69.69 (3)
V3)1100.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.33
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.157, 0.322
No. of measured, independent and
observed [I > 2σ(I)] reflections
9324, 4830, 2945
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 0.95
No. of reflections4830
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.69

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.902.607 (5)143
O1—H1···N10.821.872.597 (5)147
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds