Download citation
Download citation
link to html
In the title compound, C21H16ClN3O4, the vanillin group makes dihedral angles of 83.04 (6) and 53.42 (6)° with the mean planes of the terminal chloro­benzene and pyridine rings, respectively. The packing is stabilized by inter­molecular N—H...O hydrogen bonds and weak C—H...O inter­actions that link adjacent mol­ecules into chains.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043395/hb2532sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043395/hb2532Isup2.hkl
Contains datablock I

CCDC reference: 663730

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.043
  • wR factor = 0.111
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.48
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The synthesis and structure of Schiff bases have attracted much attention in biology and chemistry (Kahwa et al., 1986). One aim is to develop protein and enzyme mimics (Santos et al., 2001). As part of an investigation of the coordination properties of Schiff bases functioning as ligands, we report the synthesis and structure of the title compound, (I).

In (I) (Fig. 1), the vanillin group (C8—C13/C15/O2/O3) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0283 Å. This plane makes dihedral angles of 53.42 (6)° and 83.04 (6)° with the pyridine ring (C17—C21/N3) and the terminal benzene ring (C1—C6), respectively. The dihedral angle between the pyridine ring and the benzene ring is 43.89 (10)°. Otherwise, all bond lengths and angles are within their normal ranges (Allen et al., 1987).

The crystal packing is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds that link adjacent molecules into one-dimensional extended (Table 1, Fig. 2).

Related literature top

For general background, see: Kahwa et al. (1986); Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-formyl-2-methoxyphenyl 4-chlorobenzoate (2.91 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of isonicotinohydrazide (1.37 g, 10 mmol) and the mixture stirred at 350 K for 5 h under nitrogen, giving a white precipitate. The product was isolated, recrystallized from ethanol and then dried in a vacuum to give the pure compound in 75% yield. Colourless blocks of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H and N—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H; 0.86 Å and Uiso(H) = 1.2Ueq(N) for imino N—H.

Structure description top

The synthesis and structure of Schiff bases have attracted much attention in biology and chemistry (Kahwa et al., 1986). One aim is to develop protein and enzyme mimics (Santos et al., 2001). As part of an investigation of the coordination properties of Schiff bases functioning as ligands, we report the synthesis and structure of the title compound, (I).

In (I) (Fig. 1), the vanillin group (C8—C13/C15/O2/O3) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.0283 Å. This plane makes dihedral angles of 53.42 (6)° and 83.04 (6)° with the pyridine ring (C17—C21/N3) and the terminal benzene ring (C1—C6), respectively. The dihedral angle between the pyridine ring and the benzene ring is 43.89 (10)°. Otherwise, all bond lengths and angles are within their normal ranges (Allen et al., 1987).

The crystal packing is stabilized by intermolecular N—H···O and C—H···O hydrogen bonds that link adjacent molecules into one-dimensional extended (Table 1, Fig. 2).

For general background, see: Kahwa et al. (1986); Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Partial packing diagram for (I), with H bonds drawn as dashed lines.
(E)—N'-[4-(4-Chlorobenzoyloxy)-3-methoxybenzylidene]isonicotinohydrazide top
Crystal data top
C21H16ClN3O4F(000) = 848
Mr = 409.82Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2900 reflections
a = 21.746 (6) Åθ = 3.2–26.2°
b = 12.011 (3) ŵ = 0.23 mm1
c = 7.700 (2) ÅT = 294 K
β = 99.472 (5)°Block, colourless
V = 1983.8 (9) Å30.16 × 0.16 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4047 independent reflections
Radiation source: fine-focus sealed tube2457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 26.4°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2725
Tmin = 0.938, Tmax = 0.969k = 1414
10889 measured reflectionsl = 97
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.6687P]
where P = (Fo2 + 2Fc2)/3
4047 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C21H16ClN3O4V = 1983.8 (9) Å3
Mr = 409.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.746 (6) ŵ = 0.23 mm1
b = 12.011 (3) ÅT = 294 K
c = 7.700 (2) Å0.16 × 0.16 × 0.14 mm
β = 99.472 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4047 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2457 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.969Rint = 0.039
10889 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
4047 reflectionsΔρmin = 0.23 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37851 (3)0.67006 (8)0.39409 (12)0.0980 (3)
O10.68083 (8)0.62360 (17)0.3371 (3)0.0733 (6)
O20.64129 (6)0.47384 (13)0.1858 (2)0.0493 (4)
O30.68737 (7)0.56737 (15)0.0796 (2)0.0604 (5)
O41.00413 (7)0.13543 (13)0.31364 (19)0.0476 (4)
N10.90937 (7)0.26639 (15)0.1402 (2)0.0401 (4)
N20.96127 (7)0.23334 (15)0.0708 (2)0.0410 (4)
H20.96600.25590.03220.049*
N31.14908 (10)0.0721 (2)0.1253 (4)0.0751 (7)
C10.56095 (11)0.6848 (2)0.3981 (3)0.0527 (6)
H10.59370.73190.44200.063*
C20.50132 (12)0.7084 (2)0.4265 (3)0.0589 (7)
H2A0.49380.77070.49140.071*
C30.45322 (11)0.6391 (2)0.3581 (3)0.0552 (7)
C40.46278 (10)0.5459 (2)0.2630 (3)0.0557 (7)
H40.42960.50020.21670.067*
C50.52281 (10)0.5215 (2)0.2373 (3)0.0481 (6)
H50.53020.45800.17480.058*
C60.57183 (9)0.59036 (19)0.3037 (3)0.0405 (5)
C70.63702 (10)0.5675 (2)0.2801 (3)0.0442 (6)
C80.70153 (9)0.44466 (19)0.1576 (3)0.0440 (6)
C90.73453 (10)0.3666 (2)0.2639 (3)0.0578 (7)
H90.71810.33640.35770.069*
C100.79233 (10)0.3328 (2)0.2315 (3)0.0567 (7)
H100.81490.27980.30360.068*
C110.81639 (9)0.37765 (19)0.0923 (3)0.0396 (5)
C120.78249 (9)0.45669 (18)0.0154 (3)0.0407 (5)
H120.79870.48660.10970.049*
C130.72453 (9)0.49122 (19)0.0170 (3)0.0413 (5)
C140.70980 (14)0.6149 (3)0.2264 (4)0.0845 (10)
H14A0.74770.65480.18630.127*
H14B0.67910.66510.28650.127*
H14C0.71770.55680.30550.127*
C150.87629 (9)0.33998 (18)0.0491 (3)0.0390 (5)
H150.89050.37080.04770.047*
C161.00436 (9)0.16643 (18)0.1624 (3)0.0387 (5)
C171.05475 (9)0.13263 (18)0.0612 (3)0.0407 (5)
C181.11589 (10)0.1288 (2)0.1437 (4)0.0613 (7)
H181.12660.14560.26270.074*
C191.16111 (12)0.0994 (3)0.0448 (5)0.0795 (9)
H191.20240.09850.10060.095*
C201.08999 (12)0.0745 (2)0.2004 (4)0.0613 (7)
H201.08040.05550.31890.074*
C211.04152 (10)0.10353 (19)0.1141 (3)0.0472 (6)
H211.00060.10340.17330.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0569 (4)0.1276 (7)0.1220 (7)0.0410 (5)0.0513 (5)0.0189 (6)
O10.0400 (9)0.0843 (14)0.0974 (15)0.0070 (9)0.0166 (10)0.0315 (12)
O20.0293 (7)0.0608 (11)0.0622 (10)0.0054 (7)0.0206 (7)0.0098 (9)
O30.0457 (9)0.0760 (12)0.0637 (11)0.0246 (9)0.0210 (8)0.0184 (9)
O40.0464 (9)0.0593 (10)0.0398 (9)0.0102 (8)0.0145 (7)0.0067 (8)
N10.0286 (9)0.0563 (12)0.0387 (10)0.0085 (8)0.0152 (8)0.0018 (9)
N20.0327 (9)0.0600 (12)0.0347 (10)0.0126 (8)0.0181 (8)0.0042 (9)
N30.0526 (14)0.0872 (18)0.095 (2)0.0181 (12)0.0398 (14)0.0006 (15)
C10.0491 (13)0.0569 (16)0.0538 (15)0.0057 (12)0.0134 (12)0.0055 (12)
C20.0636 (16)0.0619 (17)0.0565 (16)0.0238 (14)0.0255 (14)0.0012 (13)
C30.0401 (13)0.0753 (18)0.0558 (16)0.0239 (13)0.0250 (12)0.0166 (14)
C40.0349 (12)0.0714 (18)0.0634 (17)0.0033 (12)0.0155 (11)0.0032 (14)
C50.0397 (12)0.0547 (15)0.0530 (14)0.0055 (11)0.0166 (11)0.0040 (12)
C60.0340 (11)0.0504 (14)0.0397 (12)0.0087 (10)0.0137 (9)0.0036 (11)
C70.0363 (12)0.0549 (15)0.0433 (13)0.0027 (11)0.0122 (10)0.0000 (12)
C80.0263 (10)0.0564 (15)0.0533 (14)0.0044 (10)0.0180 (10)0.0032 (12)
C90.0440 (13)0.0779 (18)0.0588 (16)0.0128 (13)0.0297 (12)0.0178 (14)
C100.0409 (12)0.0773 (18)0.0569 (15)0.0208 (12)0.0233 (11)0.0211 (14)
C110.0277 (10)0.0522 (14)0.0410 (12)0.0061 (10)0.0118 (9)0.0009 (11)
C120.0328 (11)0.0508 (14)0.0425 (13)0.0022 (10)0.0174 (10)0.0017 (11)
C130.0316 (11)0.0481 (14)0.0455 (13)0.0074 (10)0.0098 (10)0.0008 (11)
C140.079 (2)0.098 (2)0.084 (2)0.0399 (18)0.0359 (17)0.0445 (19)
C150.0307 (10)0.0513 (14)0.0378 (12)0.0022 (10)0.0141 (9)0.0001 (11)
C160.0313 (10)0.0463 (13)0.0407 (13)0.0033 (10)0.0127 (9)0.0002 (11)
C170.0334 (11)0.0440 (13)0.0479 (14)0.0080 (9)0.0156 (10)0.0060 (11)
C180.0390 (13)0.0826 (19)0.0621 (17)0.0163 (13)0.0079 (12)0.0034 (15)
C190.0325 (13)0.102 (2)0.106 (3)0.0201 (14)0.0184 (15)0.004 (2)
C200.0636 (17)0.0648 (18)0.0632 (17)0.0102 (14)0.0331 (14)0.0056 (14)
C210.0420 (12)0.0512 (14)0.0523 (15)0.0075 (11)0.0195 (11)0.0009 (12)
Geometric parameters (Å, º) top
Cl1—C31.733 (2)C8—C91.368 (3)
O1—C71.190 (3)C8—C131.383 (3)
O2—C71.351 (3)C9—C101.382 (3)
O2—C81.407 (2)C9—H90.9300
O3—C131.358 (3)C10—C111.377 (3)
O3—C141.422 (3)C10—H100.9300
O4—C161.223 (2)C11—C121.390 (3)
N1—C151.275 (3)C11—C151.468 (3)
N1—N21.384 (2)C12—C131.388 (3)
N2—C161.343 (3)C12—H120.9300
N2—H20.8600C14—H14A0.9600
N3—C201.320 (3)C14—H14B0.9600
N3—C191.334 (4)C14—H14C0.9600
C1—C21.379 (3)C15—H150.9300
C1—C61.388 (3)C16—C171.501 (3)
C1—H10.9300C17—C181.377 (3)
C2—C31.372 (4)C17—C211.378 (3)
C2—H2A0.9300C18—C191.385 (3)
C3—C41.371 (3)C18—H180.9300
C4—C51.383 (3)C19—H190.9300
C4—H40.9300C20—C211.380 (3)
C5—C61.379 (3)C20—H200.9300
C5—H50.9300C21—H210.9300
C6—C71.484 (3)
C7—O2—C8116.01 (17)C10—C11—C12119.98 (18)
C13—O3—C14117.02 (17)C10—C11—C15121.4 (2)
C15—N1—N2114.13 (16)C12—C11—C15118.58 (18)
C16—N2—N1120.79 (17)C13—C12—C11120.33 (19)
C16—N2—H2119.6C13—C12—H12119.8
N1—N2—H2119.6C11—C12—H12119.8
C20—N3—C19116.4 (2)O3—C13—C8116.20 (17)
C2—C1—C6119.8 (2)O3—C13—C12125.38 (19)
C2—C1—H1120.1C8—C13—C12118.4 (2)
C6—C1—H1120.1O3—C14—H14A109.5
C3—C2—C1119.5 (2)O3—C14—H14B109.5
C3—C2—H2A120.3H14A—C14—H14B109.5
C1—C2—H2A120.3O3—C14—H14C109.5
C4—C3—C2121.8 (2)H14A—C14—H14C109.5
C4—C3—Cl1119.3 (2)H14B—C14—H14C109.5
C2—C3—Cl1118.9 (2)N1—C15—C11122.04 (18)
C3—C4—C5118.6 (2)N1—C15—H15119.0
C3—C4—H4120.7C11—C15—H15119.0
C5—C4—H4120.7O4—C16—N2124.75 (17)
C6—C5—C4120.6 (2)O4—C16—C17121.97 (19)
C6—C5—H5119.7N2—C16—C17113.27 (18)
C4—C5—H5119.7C18—C17—C21118.3 (2)
C5—C6—C1119.73 (19)C18—C17—C16120.1 (2)
C5—C6—C7122.7 (2)C21—C17—C16121.62 (19)
C1—C6—C7117.6 (2)C17—C18—C19118.3 (3)
O1—C7—O2123.2 (2)C17—C18—H18120.8
O1—C7—C6125.0 (2)C19—C18—H18120.8
O2—C7—C6111.79 (19)N3—C19—C18124.1 (3)
C9—C8—C13121.59 (18)N3—C19—H19118.0
C9—C8—O2119.25 (19)C18—C19—H19118.0
C13—C8—O2119.07 (19)N3—C20—C21124.1 (3)
C8—C9—C10119.8 (2)N3—C20—H20118.0
C8—C9—H9120.1C21—C20—H20118.0
C10—C9—H9120.1C17—C21—C20118.9 (2)
C11—C10—C9119.9 (2)C17—C21—H21120.6
C11—C10—H10120.1C20—C21—H21120.6
C9—C10—H10120.1
C15—N1—N2—C16172.0 (2)C14—O3—C13—C8179.0 (2)
C6—C1—C2—C31.2 (4)C14—O3—C13—C120.4 (4)
C1—C2—C3—C40.5 (4)C9—C8—C13—O3179.6 (2)
C1—C2—C3—Cl1179.74 (19)O2—C8—C13—O33.2 (3)
C2—C3—C4—C50.5 (4)C9—C8—C13—C120.2 (3)
Cl1—C3—C4—C5179.16 (18)O2—C8—C13—C12176.2 (2)
C3—C4—C5—C61.0 (4)C11—C12—C13—O3179.8 (2)
C4—C5—C6—C10.4 (3)C11—C12—C13—C80.4 (3)
C4—C5—C6—C7179.8 (2)N2—N1—C15—C11174.10 (19)
C2—C1—C6—C50.7 (3)C10—C11—C15—N11.7 (3)
C2—C1—C6—C7178.7 (2)C12—C11—C15—N1178.8 (2)
C8—O2—C7—O10.2 (3)N1—N2—C16—O44.8 (3)
C8—O2—C7—C6179.50 (18)N1—N2—C16—C17175.74 (18)
C5—C6—C7—O1178.8 (2)O4—C16—C17—C1840.3 (3)
C1—C6—C7—O10.5 (4)N2—C16—C17—C18139.2 (2)
C5—C6—C7—O20.8 (3)O4—C16—C17—C21138.9 (2)
C1—C6—C7—O2179.79 (19)N2—C16—C17—C2141.6 (3)
C7—O2—C8—C998.1 (3)C21—C17—C18—C192.0 (4)
C7—O2—C8—C1385.4 (3)C16—C17—C18—C19178.8 (2)
C13—C8—C9—C100.0 (4)C20—N3—C19—C180.2 (5)
O2—C8—C9—C10176.5 (2)C17—C18—C19—N31.4 (5)
C8—C9—C10—C110.1 (4)C19—N3—C20—C210.3 (4)
C9—C10—C11—C120.1 (4)C18—C17—C21—C201.5 (3)
C9—C10—C11—C15177.1 (2)C16—C17—C21—C20179.2 (2)
C10—C11—C12—C130.3 (3)N3—C20—C21—C170.4 (4)
C15—C11—C12—C13177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.032.807 (2)150
C19—H19···O1ii0.932.523.420 (3)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H16ClN3O4
Mr409.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)21.746 (6), 12.011 (3), 7.700 (2)
β (°) 99.472 (5)
V3)1983.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.16 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
10889, 4047, 2457
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.02
No. of reflections4047
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.862.032.807 (2)150
C19—H19···O1ii0.932.523.420 (3)162
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds