Download citation
Download citation
link to html
In the crystal structure of the title compound, poly[di-μ2-aqua-di-μ5-oxalato-μ4-oxalato-disodiumdimanganese(II)], [Na2Mn2(C2O4)3(H2O)2]n, one of the oxalate ions lies on an inversion centre. The Mn atom is six-coordinate and Na is seven-coordinate; two of the oxalate ions bridge in a μ5 mode and the third in a μ4 mode. The Mn atoms are bridged into a ladder motif; neighbouring ladders are bridged by the water mol­ecules and Na atoms into a three-dimensional network structure. Water–oxalate hydrogen bonds exist in the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045564/ng2327sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045564/ng2327Isup2.hkl
Contains datablock I

CCDC reference: 663631

Key indicators

  • Single-crystal X-ray study
  • T = 130 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.024
  • wR factor = 0.054
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C1 - C2 ... 1.56 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C3 - C3_e ... 1.55 Ang. PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.48 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.11 PLAT804_ALERT_5_G ARU-Pack Problem in PLATON Analysis ............ 4 Times PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Carboxylate ligands have been extensively studied because of their versatile coordinating modes in the coordination chemistry (Moulton & Zaworotko, 2001; Yaghi et al., 1996). Oxalate (ox) ligand is an important carboxylate ligand as it has a multiple coordinating modes, which together with the varied coordination geometry of metal ions has led to the generation of products containing one-dimensional chains, two-dimensional layers and three-dimensional frameworks (Castillo et al., 2005; Naumov et al., 1995; Bataille & Louër, 1999). The hydrothermal reaction of MnCl2 with Na2(ox) and oxalic acid yields the title complex, (I). We present its structure here.

The asymmetric unit of (I) consists of one manganese(II) ion, one sodium(I) ion, one and half ox dianions, and one coordinated water molecule. As depicted in Fig. 1, the Mn atom is six-coordinated by four oxygen atoms from three dianionic ox ligands in a distorted square planar geometry, and two oxygen atoms from water molecule and ox ligand in the apical positions. The bond dimensions involving Mn are normal (Table 1), and are comparable to the values in related manganese (II) complexes (Wu et al., 2005). The Na atom is seven-coordinated by seven O atom from four dianionic ox ligands, and one water molecule with the Na—O bond lengths varying from 2.302 (2)–2.712 (2) Å, which are comparable to the values in the [Na2Co2(ox)3(H2O)2] n compound (Price et al., 2000).

It is interesting that the coordinated water molecule displays a µ2 coordinating mode bridgeing the Mn1 and Na1 atoms, which further bridge by a µ2carboxlate O atom to form a 4-membered NaMnO2 ring with a Na···Mn separation of 3.55 Å (Fig. 1). Two types of ox ligands are observed in this structure. One is located on an inversion centre with a coplanar conformation and bridgs two Mn atoms and two Na atoms, in which each O atom is exhibits a µ2 coordinating fashion. The other displays a nonplanar conformation with the two carboxylate groups twisted with a dihedral angle of 19.8 (5) °. It bridgs two Mn atoms and three Na atoms using its two mondentate O atoms, one µ2-O atom and one µ3-O atom. The Mn ions are linked by the ox lignads to form a one-dimensional ladder structure propagating along a axis, as shown in Fig.2. The ladder is repeated by translation about every 5.9 Å along the a direction, comparable to the length of the a axis. The ladders are further connected by the Na ions and water molecules through the Na—O bonds to produce a three-dimensional structure, as shown in Fig. 3. The O—H···O hydrogen bonds between the water molecules and oxalate O atoms are observed in the three-dimensional structure with a O···O distances of 2.688 (2) and 2.824 (2) Å, respectively (Table 2).

Related literature top

For related literature on metal oxalates, see: Bataille & Louër (1999); Castillo et al. (2001); Moulton & Zaworotko (2001); Naumov et al. (1995); Price et al. (2000); Wu et al. (2005); Yaghi et al. (1996).

Experimental top

The title compound was synthesized by a hydrothermal method under autogenous pressure. A mixture of MnCl2·4H2O (0.269 g,1 mmol), Na2C2O4 (0.268 g, 2 mmol), H2C2O4 (0.180 g, 2 mmol), and 15 ml distilled water was stirred under ambient conditions. The final mixture was sealed in a 25 ml Teflon-lined steel autoclave and heated at 423 K for 3 days, and then cooled to room temperature. Colorless prism crystals of (I) were obtained, and these were recovered by filtration, washed with distilled water and dried in air (yield 32%). Analysis calculated for C6H4O14Mn2Na2: C 15.81, H 0.88%; found: C 15.92, H 0.90%.

Refinement top

The H atoms bonded to O atoms were visible in difference maps and refined with a DFIX restraint (SHELXTL; Sheldrick, 1997b) of O—H = 0.90 Å and with Uiso(H) = 1.5Ueq(O).

Structure description top

Carboxylate ligands have been extensively studied because of their versatile coordinating modes in the coordination chemistry (Moulton & Zaworotko, 2001; Yaghi et al., 1996). Oxalate (ox) ligand is an important carboxylate ligand as it has a multiple coordinating modes, which together with the varied coordination geometry of metal ions has led to the generation of products containing one-dimensional chains, two-dimensional layers and three-dimensional frameworks (Castillo et al., 2005; Naumov et al., 1995; Bataille & Louër, 1999). The hydrothermal reaction of MnCl2 with Na2(ox) and oxalic acid yields the title complex, (I). We present its structure here.

The asymmetric unit of (I) consists of one manganese(II) ion, one sodium(I) ion, one and half ox dianions, and one coordinated water molecule. As depicted in Fig. 1, the Mn atom is six-coordinated by four oxygen atoms from three dianionic ox ligands in a distorted square planar geometry, and two oxygen atoms from water molecule and ox ligand in the apical positions. The bond dimensions involving Mn are normal (Table 1), and are comparable to the values in related manganese (II) complexes (Wu et al., 2005). The Na atom is seven-coordinated by seven O atom from four dianionic ox ligands, and one water molecule with the Na—O bond lengths varying from 2.302 (2)–2.712 (2) Å, which are comparable to the values in the [Na2Co2(ox)3(H2O)2] n compound (Price et al., 2000).

It is interesting that the coordinated water molecule displays a µ2 coordinating mode bridgeing the Mn1 and Na1 atoms, which further bridge by a µ2carboxlate O atom to form a 4-membered NaMnO2 ring with a Na···Mn separation of 3.55 Å (Fig. 1). Two types of ox ligands are observed in this structure. One is located on an inversion centre with a coplanar conformation and bridgs two Mn atoms and two Na atoms, in which each O atom is exhibits a µ2 coordinating fashion. The other displays a nonplanar conformation with the two carboxylate groups twisted with a dihedral angle of 19.8 (5) °. It bridgs two Mn atoms and three Na atoms using its two mondentate O atoms, one µ2-O atom and one µ3-O atom. The Mn ions are linked by the ox lignads to form a one-dimensional ladder structure propagating along a axis, as shown in Fig.2. The ladder is repeated by translation about every 5.9 Å along the a direction, comparable to the length of the a axis. The ladders are further connected by the Na ions and water molecules through the Na—O bonds to produce a three-dimensional structure, as shown in Fig. 3. The O—H···O hydrogen bonds between the water molecules and oxalate O atoms are observed in the three-dimensional structure with a O···O distances of 2.688 (2) and 2.824 (2) Å, respectively (Table 2).

For related literature on metal oxalates, see: Bataille & Louër (1999); Castillo et al. (2001); Moulton & Zaworotko (2001); Naumov et al. (1995); Price et al. (2000); Wu et al. (2005); Yaghi et al. (1996).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2000); cell refinement: CrystalClear (Rigaku/MSC, 2000); data reduction: CrystalClear (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound. Thermal ellipsoids are drawn at the 60% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x + 1, y, z; (ii) -x + 2, -y + 1, -z + 2; (iii) x, -y + 1/2, z - 1/2; (iv) x + 1, -y + 1/2, z - 1/2; (v) -x + 2, -y + 1, -z + 1.]
[Figure 2] Fig. 2. A view of the one-dimensional Mn2(ox)3 ladder-like structure.
[Figure 3] Fig. 3. A perspective view of the three-dimensional structure of (I) (viewed down the a axis).
poly[di-µ2-aqua-di-µ5-oxalato-µ4-oxalato-disodiumdimanganese(II)], top
Crystal data top
[Na2Mn2(C2O4)3(H2O)2]F(000) = 448
Mr = 455.95Dx = 2.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2218 reflections
a = 5.937 (2) Åθ = 2.6–27.5°
b = 15.785 (6) ŵ = 2.06 mm1
c = 7.167 (3) ÅT = 130 K
β = 100.416 (4)°Prism, white
V = 660.6 (4) Å30.20 × 0.18 × 0.10 mm
Z = 2
Data collection top
Rigaku Mercury70
diffractometer
1514 independent reflections
Radiation source: fine-focus sealed tube1415 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2000)
h = 77
Tmin = 0.684, Tmax = 0.821k = 2017
5047 measured reflectionsl = 97
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0234P)2 + 0.5936P]
where P = (Fo2 + 2Fc2)/3
1514 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.48 e Å3
2 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Na2Mn2(C2O4)3(H2O)2]V = 660.6 (4) Å3
Mr = 455.95Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.937 (2) ŵ = 2.06 mm1
b = 15.785 (6) ÅT = 130 K
c = 7.167 (3) Å0.20 × 0.18 × 0.10 mm
β = 100.416 (4)°
Data collection top
Rigaku Mercury70
diffractometer
1514 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2000)
1415 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.821Rint = 0.022
5047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0242 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
1514 reflectionsΔρmin = 0.33 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.96700 (12)0.32021 (4)0.29951 (10)0.01170 (16)
Mn10.77063 (4)0.396970 (16)0.70734 (4)0.00868 (9)
O10.6514 (2)0.27044 (7)0.73592 (18)0.0122 (3)
O20.3505 (2)0.19589 (8)0.7916 (2)0.0153 (3)
O30.3964 (2)0.41196 (8)0.71439 (18)0.0121 (3)
O40.0795 (2)0.33091 (8)0.66136 (18)0.0126 (3)
O50.8909 (2)0.52445 (8)0.76226 (18)0.0128 (3)
O61.0935 (2)0.60435 (8)0.98897 (19)0.0140 (3)
O70.6836 (2)0.41824 (8)0.40310 (18)0.0111 (3)
H7A0.556 (3)0.3905 (12)0.357 (3)0.017*
H7B0.676 (4)0.4710 (8)0.359 (3)0.017*
C10.4430 (3)0.26164 (11)0.7476 (2)0.0101 (3)
C20.2918 (3)0.34261 (11)0.7036 (2)0.0095 (3)
C30.9948 (3)0.53706 (11)0.9280 (3)0.0106 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0084 (3)0.0128 (3)0.0139 (3)0.0002 (3)0.0021 (3)0.0015 (3)
Mn10.00639 (14)0.00773 (14)0.01170 (14)0.00048 (9)0.00103 (10)0.00016 (10)
O10.0066 (6)0.0100 (6)0.0203 (6)0.0002 (5)0.0029 (5)0.0017 (5)
O20.0094 (6)0.0102 (6)0.0262 (7)0.0014 (5)0.0029 (5)0.0042 (5)
O30.0088 (6)0.0099 (6)0.0177 (7)0.0003 (5)0.0024 (5)0.0010 (5)
O40.0060 (6)0.0142 (6)0.0172 (6)0.0008 (5)0.0014 (5)0.0007 (5)
O50.0151 (7)0.0101 (6)0.0124 (6)0.0015 (5)0.0000 (5)0.0013 (5)
O60.0187 (7)0.0098 (6)0.0128 (6)0.0045 (5)0.0008 (5)0.0009 (5)
O70.0092 (6)0.0096 (6)0.0138 (6)0.0012 (5)0.0001 (5)0.0009 (5)
C10.0091 (8)0.0091 (8)0.0119 (8)0.0004 (6)0.0010 (7)0.0007 (6)
C20.0082 (8)0.0121 (8)0.0087 (8)0.0010 (6)0.0026 (6)0.0002 (6)
C30.0094 (8)0.0095 (8)0.0132 (8)0.0000 (6)0.0030 (7)0.0010 (7)
Geometric parameters (Å, º) top
Na1—O2i2.3021 (17)O2—Na1vii2.3021 (17)
Na1—O1ii2.3359 (15)O3—C21.254 (2)
Na1—O6iii2.3565 (16)O4—C21.256 (2)
Na1—O72.4958 (16)O4—Mn1viii2.1856 (14)
Na1—O4iv2.5638 (17)O4—Na1viii2.5638 (17)
Na1—O5iii2.6561 (16)O4—Na1vii2.7121 (16)
Na1—O4i2.7121 (16)O5—C31.251 (2)
Na1—C3iii2.814 (2)O5—Na1iii2.6561 (16)
Mn1—O12.1411 (14)O6—C31.253 (2)
Mn1—O52.1477 (14)O6—Mn1v2.1803 (15)
Mn1—O72.1740 (15)O6—Na1iii2.3565 (16)
Mn1—O6v2.1803 (15)O7—H7B0.889 (10)
Mn1—O4iv2.1856 (14)O7—H7A0.887 (10)
Mn1—O32.2444 (15)C1—C21.561 (2)
O1—C11.263 (2)C3—C3v1.554 (3)
O1—Na1vi2.3359 (15)C3—Na1iii2.814 (2)
O2—C11.241 (2)
O2i—Na1—O1ii133.60 (6)C1—O1—Mn1116.98 (11)
O2i—Na1—O6iii91.64 (5)C1—O1—Na1vi132.89 (11)
O1ii—Na1—O6iii98.56 (5)Mn1—O1—Na1vi108.83 (6)
O2i—Na1—O7143.02 (5)C1—O2—Na1vii125.70 (12)
O1ii—Na1—O782.97 (5)C2—O3—Mn1112.82 (11)
O6iii—Na1—O786.77 (5)C2—O4—Mn1viii136.59 (12)
O2i—Na1—O4iv87.38 (5)C2—O4—Na1viii108.68 (11)
O1ii—Na1—O4iv106.90 (5)Mn1viii—O4—Na1viii96.42 (5)
O6iii—Na1—O4iv145.55 (5)C2—O4—Na1vii110.12 (11)
O7—Na1—O4iv74.01 (5)Mn1viii—O4—Na1vii95.50 (5)
O2i—Na1—O5iii75.66 (5)Na1viii—O4—Na1vii105.96 (5)
O1ii—Na1—O5iii143.19 (5)C3—O5—Mn1114.42 (11)
O6iii—Na1—O5iii52.40 (4)C3—O5—Na1iii83.95 (10)
O7—Na1—O5iii74.26 (5)Mn1—O5—Na1iii159.97 (6)
O4iv—Na1—O5iii94.32 (4)C3—O6—Mn1v113.92 (11)
O2i—Na1—O4i65.42 (4)C3—O6—Na1iii97.75 (11)
O1ii—Na1—O4i68.39 (5)Mn1v—O6—Na1iii148.30 (6)
O6iii—Na1—O4i97.62 (5)Mn1—O7—Na198.73 (5)
O7—Na1—O4i151.36 (5)Mn1—O7—H7B119.2 (15)
O4iv—Na1—O4i113.01 (4)Na1—O7—H7B118.0 (15)
O5iii—Na1—O4i130.13 (5)Mn1—O7—H7A109.3 (15)
O1—Mn1—O5163.98 (5)Na1—O7—H7A99.2 (15)
O1—Mn1—O7102.55 (5)H7B—O7—H7A110 (2)
O5—Mn1—O792.86 (5)O2—C1—O1126.34 (16)
O1—Mn1—O6v87.97 (5)O2—C1—C2118.12 (16)
O5—Mn1—O6v77.01 (5)O1—C1—C2115.54 (15)
O7—Mn1—O6v168.70 (5)O3—C2—O4127.40 (16)
O1—Mn1—O4iv82.54 (5)O3—C2—C1116.24 (15)
O5—Mn1—O4iv102.38 (5)O4—C2—C1116.36 (15)
O7—Mn1—O4iv88.64 (5)O5—C3—O6125.80 (16)
O6v—Mn1—O4iv88.67 (5)O5—C3—C3v117.67 (19)
O1—Mn1—O375.55 (5)O6—C3—C3v116.52 (19)
O5—Mn1—O3101.24 (5)O5—C3—Na1iii69.81 (10)
O7—Mn1—O387.11 (5)O6—C3—Na1iii56.07 (9)
O6v—Mn1—O399.66 (5)C3v—C3—Na1iii171.83 (16)
O4iv—Mn1—O3156.18 (5)
O2i—Na1—Mn1—O1109.75 (6)O6v—Mn1—O1—C198.97 (13)
O1ii—Na1—Mn1—O134.66 (4)O4iv—Mn1—O1—C1172.11 (13)
O6iii—Na1—Mn1—O1134.71 (6)O3—Mn1—O1—C11.55 (12)
O7—Na1—Mn1—O1113.12 (6)Na1—Mn1—O1—C1126.08 (12)
O4iv—Na1—Mn1—O183.84 (6)Na1vi—Mn1—O1—C1168.66 (16)
O5iii—Na1—Mn1—O1177.87 (5)O5—Mn1—O1—Na1vi89.89 (18)
O4i—Na1—Mn1—O122.03 (6)O7—Mn1—O1—Na1vi106.15 (6)
C3iii—Na1—Mn1—O1157.62 (5)O6v—Mn1—O1—Na1vi69.69 (6)
Mn1ii—Na1—Mn1—O16.34 (4)O4iv—Mn1—O1—Na1vi19.23 (6)
Na1ii—Na1—Mn1—O138.17 (7)O3—Mn1—O1—Na1vi170.21 (7)
Na1vi—Na1—Mn1—O135.49 (4)Na1—Mn1—O1—Na1vi65.25 (5)
O2i—Na1—Mn1—O563.21 (6)O1—Mn1—O3—C29.55 (11)
O1ii—Na1—Mn1—O5152.38 (5)O5—Mn1—O3—C2173.45 (12)
O6iii—Na1—Mn1—O552.33 (6)O7—Mn1—O3—C294.20 (12)
O7—Na1—Mn1—O573.92 (6)O6v—Mn1—O3—C294.91 (12)
O4iv—Na1—Mn1—O589.12 (6)O4iv—Mn1—O3—C214.2 (2)
O5iii—Na1—Mn1—O59.17 (7)Na1—Mn1—O3—C265.79 (12)
O4i—Na1—Mn1—O5150.93 (6)Na1vi—Mn1—O3—C215.96 (12)
C3iii—Na1—Mn1—O529.42 (6)O1—Mn1—O5—C326.3 (3)
Mn1ii—Na1—Mn1—O5179.31 (4)O7—Mn1—O5—C3169.35 (12)
Na1ii—Na1—Mn1—O5148.87 (7)O6v—Mn1—O5—C35.57 (12)
Na1vi—Na1—Mn1—O5137.47 (4)O4iv—Mn1—O5—C380.12 (13)
O2i—Na1—Mn1—O7137.13 (7)O3—Mn1—O5—C3103.03 (13)
O1ii—Na1—Mn1—O778.46 (6)Na1—Mn1—O5—C3127.40 (12)
O6iii—Na1—Mn1—O721.58 (6)Na1vi—Mn1—O5—C343.73 (15)
O4iv—Na1—Mn1—O7163.03 (7)O1—Mn1—O5—Na1iii178.56 (14)
O5iii—Na1—Mn1—O764.74 (6)O7—Mn1—O5—Na1iii14.22 (19)
O4i—Na1—Mn1—O7135.15 (8)O6v—Mn1—O5—Na1iii160.70 (19)
C3iii—Na1—Mn1—O744.50 (6)O4iv—Mn1—O5—Na1iii75.01 (19)
Mn1ii—Na1—Mn1—O7106.78 (6)O3—Mn1—O5—Na1iii101.84 (18)
Na1ii—Na1—Mn1—O774.95 (8)Na1—Mn1—O5—Na1iii27.73 (19)
Na1vi—Na1—Mn1—O7148.61 (5)Na1vi—Mn1—O5—Na1iii111.40 (17)
O2i—Na1—Mn1—O6v26.93 (7)O1—Mn1—O7—Na169.96 (6)
O1ii—Na1—Mn1—O6v117.49 (6)O5—Mn1—O7—Na1114.42 (6)
O6iii—Na1—Mn1—O6v142.47 (8)O6v—Mn1—O7—Na188.3 (3)
O7—Na1—Mn1—O6v164.05 (7)O4iv—Mn1—O7—Na112.09 (5)
O4iv—Na1—Mn1—O6v1.02 (7)O3—Mn1—O7—Na1144.46 (5)
O5iii—Na1—Mn1—O6v99.31 (6)Na1vi—Mn1—O7—Na131.69 (5)
O4i—Na1—Mn1—O6v60.79 (7)O2i—Na1—O7—Mn173.35 (10)
C3iii—Na1—Mn1—O6v119.56 (6)O1ii—Na1—O7—Mn199.18 (5)
Mn1ii—Na1—Mn1—O6v89.17 (6)O6iii—Na1—O7—Mn1161.78 (5)
Na1ii—Na1—Mn1—O6v121.00 (7)O4iv—Na1—O7—Mn110.70 (4)
Na1vi—Na1—Mn1—O6v47.34 (5)O5iii—Na1—O7—Mn1110.03 (5)
O2i—Na1—Mn1—O4iv25.91 (6)O4i—Na1—O7—Mn198.19 (10)
O1ii—Na1—Mn1—O4iv118.50 (6)C3iii—Na1—O7—Mn1136.63 (6)
O6iii—Na1—Mn1—O4iv141.45 (7)Mn1ii—Na1—O7—Mn188.85 (5)
O7—Na1—Mn1—O4iv163.03 (7)Na1ii—Na1—O7—Mn1150.99 (4)
O5iii—Na1—Mn1—O4iv98.29 (6)Na1vi—Na1—O7—Mn125.32 (4)
O4i—Na1—Mn1—O4iv61.81 (6)Na1vii—O2—C1—O1177.19 (13)
C3iii—Na1—Mn1—O4iv118.54 (6)Na1vii—O2—C1—C23.4 (2)
Mn1ii—Na1—Mn1—O4iv90.19 (5)Mn1—O1—C1—O2168.96 (14)
Na1ii—Na1—Mn1—O4iv122.01 (9)Na1vi—O1—C1—O23.7 (3)
Na1vi—Na1—Mn1—O4iv48.36 (5)Mn1—O1—C1—C210.45 (19)
O2i—Na1—Mn1—O3179.73 (6)Na1vi—O1—C1—C2175.74 (11)
O1ii—Na1—Mn1—O335.32 (5)Mn1—O3—C2—O4162.51 (15)
O6iii—Na1—Mn1—O364.72 (6)Mn1—O3—C2—C117.43 (18)
O7—Na1—Mn1—O343.14 (6)Mn1viii—O4—C2—O334.9 (3)
O4iv—Na1—Mn1—O3153.83 (6)Na1viii—O4—C2—O387.01 (19)
O5iii—Na1—Mn1—O3107.88 (5)Na1vii—O4—C2—O3157.33 (15)
O4i—Na1—Mn1—O392.01 (6)Mn1viii—O4—C2—C1145.13 (13)
C3iii—Na1—Mn1—O387.64 (6)Na1viii—O4—C2—C192.93 (14)
Mn1ii—Na1—Mn1—O363.64 (4)Na1vii—O4—C2—C122.73 (17)
Na1ii—Na1—Mn1—O331.81 (8)O2—C1—C2—O3159.90 (16)
Na1vi—Na1—Mn1—O3105.47 (4)O1—C1—C2—O319.6 (2)
O2i—Na1—Mn1—Na1vi74.26 (5)O2—C1—C2—O420.2 (2)
O1ii—Na1—Mn1—Na1vi70.15 (4)O1—C1—C2—O4160.39 (15)
O6iii—Na1—Mn1—Na1vi170.19 (4)Mn1—O5—C3—O6174.76 (15)
O7—Na1—Mn1—Na1vi148.61 (5)Na1iii—O5—C3—O63.09 (18)
O4iv—Na1—Mn1—Na1vi48.36 (5)Mn1—O5—C3—C3v4.7 (2)
O5iii—Na1—Mn1—Na1vi146.65 (3)Na1iii—O5—C3—C3v176.4 (2)
O4i—Na1—Mn1—Na1vi13.46 (6)Mn1—O5—C3—Na1iii171.67 (9)
C3iii—Na1—Mn1—Na1vi166.89 (4)Mn1v—O6—C3—O5175.21 (15)
Mn1ii—Na1—Mn1—Na1vi41.83 (3)Na1iii—O6—C3—O53.5 (2)
Na1ii—Na1—Mn1—Na1vi73.66 (7)Mn1v—O6—C3—C3v5.3 (2)
O5—Mn1—O1—C178.8 (2)Na1iii—O6—C3—C3v176.00 (18)
O7—Mn1—O1—C185.19 (13)Mn1v—O6—C3—Na1iii178.71 (12)
Symmetry codes: (i) x+1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+2, y+1, z+1; (iv) x+1, y, z; (v) x+2, y+1, z+2; (vi) x, y+1/2, z+1/2; (vii) x1, y+1/2, z+1/2; (viii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2ii0.89 (1)1.83 (1)2.6877 (19)161 (2)
O7—H7B···O3ix0.89 (1)1.95 (1)2.8237 (19)168 (2)
Symmetry codes: (ii) x, y+1/2, z1/2; (ix) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Na2Mn2(C2O4)3(H2O)2]
Mr455.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)5.937 (2), 15.785 (6), 7.167 (3)
β (°) 100.416 (4)
V3)660.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerRigaku Mercury70
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2000)
Tmin, Tmax0.684, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
5047, 1514, 1415
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.03
No. of reflections1514
No. of parameters115
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O2i0.887 (10)1.833 (11)2.6877 (19)161 (2)
O7—H7B···O3ii0.889 (10)1.947 (11)2.8237 (19)168 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds