Download citation
Download citation
link to html
The title compound (systematic name: 17-furan-3-yl-6,15-dihydr­oxy-4,4,8,10,14-penta­methyl-8,9,10,11,12,14,15,16-octa­hydro-4H-cyclo­penta­[a]phenanthrene-3,7-dione), C26H30O5, is a semi-synthetic derivative of cedrelone, a tetra­nortriterpenoid isolated from Toona ciliata. Both cedrelone and the title compound show similar anti­feedant activity against third instar larvae of Spodoptera litura. The modification of the D ring of the parent compound has altered the conformation of ring C; however, the orientation of the furan ring as well as the conformations of other rings remain the same. The three fused six-membered rings adopt a boat, a half-chair and a chair conformation and the five-membered rings D and E adopt envelope and planar conformations, respectively. A macrocyclic ring motif, R76(40), S(5) and S(7), generated by C—H...O and O—H...O hydrogen bonds, stabilizes the mol­ecules in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042201/rk2029sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042201/rk2029Isup2.hkl
Contains datablock I

CCDC reference: 663681

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.059
  • wR factor = 0.188
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C20
Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 49 Perc. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.00 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O23 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C21 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C22 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C4 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 29.95 From the CIF: _reflns_number_total 3557 Count of symmetry unique reflns 3557 Completeness (_total/calc) 100.00% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C15 = . R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 9 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

An intact limonoid Cedrelone, has been previously isolated from Toona ciliata and its three dimensional structure was reported earlier (Zeumer et al., 2000). It possess half the antifeedant activity of the most potent, Azadirachtin–A from Azadirachta indica. The title compound, a semisynthetic derivative of cedrelone differs chemically from the parent molecule by the modification of ring D. Abstraction of C17 proton has resulted in the shift of C13 methyl group to C14, opening up of epoxide ring between C14—C15, formation of hydroxyl at C15 and the double bond between C13C17. This modification has altered the ring conformations and the orientation of furan ring with respect to ring D is C16—C17—C20—C22 = 164.1 (5)° for (I) and 168.3 (4)° for cedrelone, compared with parent compound (Zeumer et al., 2000);

Ring A [QT = 0.522 (4) Å, φ2 = -68.6 (5)°, q2 = 0.515 (4) Å] is in a boat conformation. The atoms C1 and C10 deviate by 0.165 (4) Å and 0.734 (3) Å from the plane involving the other four atoms of the ring. Ring B [QT = 0.418 (3) Å, φ2 = -138.4 (6)°, q2 = 0.331 (3) Å] adopts a half–chair conformation as in cedrelone (Zeumer et al., 2000). The atoms C8 and C9 deviate from the LSQ–plane of the other four atoms by 0.209 (3) Å and -0.427 (3) Å respectively. Ring C takes up a chair conformation [QT = 0.586 (4) Å, φ2 = -4.85(8.12)°, q2 =0.027 (4) Å] with atoms C8 and C12 deviating from the plane by 0.717 (3) Å and -0.667 (4) Å respectively from the plane of other four atoms of the ring. It adopts a twist conformation in cedrelone. Rings D and E are in an envelope [φ2 = 70.23(1.12)°, q2 = 0.205 (4) Å for ring D] and a planar conformation (Nardelli, 1995) respectively (Cremer & Pople, 1975).

Ring motifs are generated through O—H···O and C—H···O hydrogen bonds in the crystal lattice (Fig 2). Two ring motifs S(5) and S(7) are genereated through hydrogen bonds O6—H6···O7 and O15—H15A···O7 respectively. A macrocyclic ring motif R76[40] (Bernstein et al., 1995) is generated through hydrogen bonds C11—H11A···O3 [2 - x, -1/2 + y, 3/2 - z] and C19—H11B···O7 [3/2 - x, 2 - y, -1/2 + z].

Related literature top

Several cedrelone derivatives have been synthesized through classical chemical modifications and the crystal structures of cedrelone (Zeumer et al., 2000) and a few derivatives have been reported. For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Flack (1983); Narayanan et al. (1980).

Experimental top

To a solution of Cedrelone (40 mg, 0.085 mmol) in acetone (3 ml) 400 mg of the freshly prepared N–bromoacetamide resin was added and placed under the microwave with stirring for 3 min. The reaction was monitored by TLC using Ethylacetate and hexane in the ratio 1:1). The resin was then filtered and was washed three times with 2 ml of acetone. The solvent was removed under reduced pressure. The crude product was chromotographed on silica gel (70–325 mesh) using an eluant ethylacetate and hexane, in the increasing order of polarity. Elution of the column using ethylacetate/hexane = 10/90 yielded compound (I).

Refinement top

In the absence of suitable anomalous scatters, Friedel equivalents could not be used to determine the absolute structure. Refinement of the Flack parameter (Flack, 1983) led to inconclusive values (Flack & Bernardinelli, 2000) for this parameter [1(3)]. Therefore, 3557 Friedel equivalents were merged before the final refinement. The enantiomer employed in the refined model was chosen to agree with the accepted configuration of tetranortriterpenoids (Narayanan et al., 1980).

The C—H and CH2, atoms were constrained to an ideal geometry (CH = 0.98, CH2 = 0.97, OH = 0.82 Å) with Uiso(H) = 1.2Ueq(C), but where allowed to rotate freely about the C—C and C—O bonds, respectively. For CH3 and OH, hydrogen atoms were constrained to ride on their parent atom with Uiso(H) = 1.5Ueq(parent atom).

Structure description top

An intact limonoid Cedrelone, has been previously isolated from Toona ciliata and its three dimensional structure was reported earlier (Zeumer et al., 2000). It possess half the antifeedant activity of the most potent, Azadirachtin–A from Azadirachta indica. The title compound, a semisynthetic derivative of cedrelone differs chemically from the parent molecule by the modification of ring D. Abstraction of C17 proton has resulted in the shift of C13 methyl group to C14, opening up of epoxide ring between C14—C15, formation of hydroxyl at C15 and the double bond between C13C17. This modification has altered the ring conformations and the orientation of furan ring with respect to ring D is C16—C17—C20—C22 = 164.1 (5)° for (I) and 168.3 (4)° for cedrelone, compared with parent compound (Zeumer et al., 2000);

Ring A [QT = 0.522 (4) Å, φ2 = -68.6 (5)°, q2 = 0.515 (4) Å] is in a boat conformation. The atoms C1 and C10 deviate by 0.165 (4) Å and 0.734 (3) Å from the plane involving the other four atoms of the ring. Ring B [QT = 0.418 (3) Å, φ2 = -138.4 (6)°, q2 = 0.331 (3) Å] adopts a half–chair conformation as in cedrelone (Zeumer et al., 2000). The atoms C8 and C9 deviate from the LSQ–plane of the other four atoms by 0.209 (3) Å and -0.427 (3) Å respectively. Ring C takes up a chair conformation [QT = 0.586 (4) Å, φ2 = -4.85(8.12)°, q2 =0.027 (4) Å] with atoms C8 and C12 deviating from the plane by 0.717 (3) Å and -0.667 (4) Å respectively from the plane of other four atoms of the ring. It adopts a twist conformation in cedrelone. Rings D and E are in an envelope [φ2 = 70.23(1.12)°, q2 = 0.205 (4) Å for ring D] and a planar conformation (Nardelli, 1995) respectively (Cremer & Pople, 1975).

Ring motifs are generated through O—H···O and C—H···O hydrogen bonds in the crystal lattice (Fig 2). Two ring motifs S(5) and S(7) are genereated through hydrogen bonds O6—H6···O7 and O15—H15A···O7 respectively. A macrocyclic ring motif R76[40] (Bernstein et al., 1995) is generated through hydrogen bonds C11—H11A···O3 [2 - x, -1/2 + y, 3/2 - z] and C19—H11B···O7 [3/2 - x, 2 - y, -1/2 + z].

Several cedrelone derivatives have been synthesized through classical chemical modifications and the crystal structures of cedrelone (Zeumer et al., 2000) and a few derivatives have been reported. For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Flack (1983); Narayanan et al. (1980).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure and atomic numbering schemeof (I) with 30% probability displacement ellipsoids and atomic numbering scheme. The H atoms are presented as a spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing of (I) view down 'b' axis with the hydrogen bonds. Hydrogen atoms not involved in hydrogen bonds have been omitted for clarity.
17-furan-3-yl-6,15-dihydroxy-4,4,8,10,14-pentamethyl-8,9,10,11,12,14,15,16- octahydro-4H-cyclopenta[a]phenanthrene-3,7-dione top
Crystal data top
C26H30O5F(000) = 904
Mr = 422.50Dx = 1.284 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 11.639 (4) Åθ = 5–11°
b = 13.027 (2) ŵ = 0.09 mm1
c = 14.417 (5) ÅT = 293 K
V = 2185.9 (11) Å3Prism, yellow
Z = 40.23 × 0.21 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
Radiation source: fine–focus sealed tubeθmax = 30.0°, θmin = 2.1°
Graphite monochromatorh = 016
ω scansk = 018
3810 measured reflectionsl = 120
3557 independent reflections3 standard reflections every 120 reflections
1738 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.3096P]
where P = (Fo2 + 2Fc2)/3
3557 reflections(Δ/σ)max = 0.042
287 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C26H30O5V = 2185.9 (11) Å3
Mr = 422.50Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.639 (4) ŵ = 0.09 mm1
b = 13.027 (2) ÅT = 293 K
c = 14.417 (5) Å0.23 × 0.21 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.022
3810 measured reflections3 standard reflections every 120 reflections
3557 independent reflections intensity decay: 2%
1738 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0591 restraint
wR(F2) = 0.188H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3557 reflectionsΔρmin = 0.24 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8295 (5)1.1629 (3)0.8368 (3)0.0636 (11)
H10.75811.14660.81180.076*
C20.8688 (5)1.2571 (3)0.8284 (3)0.0790 (14)
H20.82651.30610.79600.095*
C30.9800 (6)1.2848 (4)0.8704 (4)0.0847 (16)
C41.0118 (4)1.2324 (3)0.9612 (3)0.0623 (11)
C50.9509 (3)1.1291 (3)0.9719 (3)0.0502 (9)
C60.9440 (3)1.0809 (3)1.0537 (3)0.0537 (9)
C70.8920 (3)0.9804 (3)1.0695 (2)0.0497 (9)
C80.8527 (3)0.9158 (3)0.9891 (2)0.0428 (8)
C90.8120 (3)0.9916 (3)0.9116 (2)0.0427 (8)
H90.74441.02620.93750.051*
C100.8975 (3)1.0802 (3)0.8861 (2)0.0486 (9)
C110.7683 (4)0.9354 (3)0.8260 (3)0.0570 (10)
H11A0.83070.89660.79860.068*
H11B0.74200.98510.78060.068*
C120.6694 (4)0.8622 (3)0.8501 (3)0.0641 (11)
H12A0.60310.90100.87100.077*
H12B0.64740.82300.79570.077*
C130.7087 (3)0.7923 (3)0.9242 (3)0.0499 (9)
C140.7492 (3)0.8424 (3)1.0148 (2)0.0464 (8)
C150.7747 (4)0.7430 (3)1.0737 (3)0.0588 (10)
H150.70500.72931.10980.071*
C160.7876 (4)0.6542 (3)1.0074 (3)0.0621 (11)
H16A0.86800.63890.99620.075*
H16B0.74990.59331.03110.075*
C170.7301 (3)0.6918 (3)0.9207 (3)0.0530 (9)
C180.6518 (3)0.9029 (3)1.0623 (3)0.0620 (11)
H18A0.68010.93311.11860.093*
H18B0.58940.85731.07640.093*
H18C0.62530.95611.02150.093*
C190.9946 (4)1.0471 (3)0.8182 (3)0.0697 (13)
H19A0.96121.01560.76430.105*
H19B1.04440.99890.84850.105*
H19C1.03801.10630.79980.105*
C200.7107 (4)0.6200 (3)0.8442 (3)0.0631 (12)
C210.7550 (9)0.5260 (4)0.8367 (5)0.128 (3)
H210.80240.49720.88170.153*
C220.6395 (6)0.6265 (5)0.7665 (4)0.107 (2)
H220.59350.68270.75200.128*
C230.6464 (7)0.5425 (5)0.7167 (4)0.116 (2)
H230.60590.52890.66250.139*
C280.9729 (5)1.3119 (4)1.0330 (4)0.0911 (17)
H28A1.01411.37491.02340.137*
H28B0.98831.28651.09430.137*
H28C0.89201.32411.02630.137*
C291.1425 (5)1.2162 (4)0.9664 (5)0.1022 (19)
H29A1.18071.28120.96030.153*
H29B1.16631.17150.91710.153*
H29C1.16201.18591.02500.153*
C300.9592 (3)0.8524 (3)0.9602 (3)0.0559 (10)
H30A0.93980.80900.90870.084*
H30B0.98380.81081.01150.084*
H30C1.02020.89810.94260.084*
O31.0399 (5)1.3534 (3)0.8388 (3)0.1323 (18)
O60.9912 (3)1.1237 (3)1.1320 (2)0.0848 (10)
H60.98561.08321.17530.127*
O70.8893 (3)0.9497 (2)1.15122 (18)0.0684 (8)
O150.8667 (3)0.7449 (3)1.1382 (2)0.0868 (10)
H15A0.87980.80441.15350.130*
O230.7255 (6)0.4771 (4)0.7596 (4)0.145 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.094 (3)0.050 (2)0.047 (2)0.004 (2)0.000 (2)0.0076 (18)
C20.129 (4)0.051 (2)0.057 (2)0.009 (3)0.008 (3)0.011 (2)
C30.125 (5)0.057 (3)0.072 (3)0.012 (3)0.022 (3)0.001 (2)
C40.069 (3)0.061 (2)0.057 (2)0.012 (2)0.010 (2)0.002 (2)
C50.054 (2)0.052 (2)0.0448 (19)0.0050 (18)0.0080 (17)0.0054 (17)
C60.058 (2)0.062 (2)0.0413 (19)0.0113 (19)0.0026 (18)0.0022 (19)
C70.050 (2)0.059 (2)0.0397 (19)0.0057 (18)0.0008 (17)0.0058 (17)
C80.0473 (18)0.0443 (17)0.0366 (17)0.0033 (16)0.0003 (16)0.0054 (15)
C90.0503 (18)0.0411 (17)0.0367 (17)0.0062 (16)0.0015 (15)0.0005 (15)
C100.064 (2)0.0459 (18)0.0356 (17)0.0067 (18)0.0051 (18)0.0027 (16)
C110.083 (3)0.051 (2)0.0370 (17)0.004 (2)0.012 (2)0.0045 (17)
C120.076 (3)0.054 (2)0.062 (2)0.004 (2)0.031 (2)0.001 (2)
C130.052 (2)0.053 (2)0.045 (2)0.0036 (17)0.0008 (18)0.0010 (17)
C140.0491 (19)0.0495 (19)0.0407 (18)0.0018 (17)0.0015 (17)0.0022 (16)
C150.065 (2)0.056 (2)0.055 (2)0.006 (2)0.003 (2)0.014 (2)
C160.073 (3)0.048 (2)0.065 (3)0.001 (2)0.005 (2)0.013 (2)
C170.053 (2)0.049 (2)0.056 (2)0.0058 (17)0.010 (2)0.0003 (18)
C180.058 (2)0.068 (2)0.060 (2)0.005 (2)0.014 (2)0.007 (2)
C190.098 (3)0.060 (2)0.051 (2)0.006 (2)0.033 (2)0.004 (2)
C200.079 (3)0.045 (2)0.065 (3)0.006 (2)0.020 (2)0.002 (2)
C210.237 (9)0.064 (3)0.083 (4)0.021 (5)0.003 (5)0.014 (3)
C220.152 (6)0.089 (4)0.079 (4)0.009 (4)0.020 (4)0.019 (3)
C230.191 (7)0.092 (4)0.065 (3)0.033 (4)0.014 (4)0.042 (3)
C280.118 (4)0.065 (3)0.090 (4)0.024 (3)0.019 (4)0.024 (3)
C290.080 (4)0.091 (4)0.135 (5)0.029 (3)0.020 (4)0.002 (4)
C300.050 (2)0.055 (2)0.063 (2)0.0057 (19)0.0064 (19)0.008 (2)
O30.187 (5)0.092 (3)0.118 (3)0.064 (3)0.025 (3)0.035 (3)
O60.116 (3)0.088 (2)0.0506 (16)0.032 (2)0.0207 (19)0.0003 (16)
O70.089 (2)0.0785 (19)0.0375 (14)0.0127 (17)0.0066 (14)0.0097 (13)
O150.106 (2)0.076 (2)0.078 (2)0.011 (2)0.036 (2)0.0305 (19)
O230.229 (6)0.085 (3)0.121 (4)0.012 (3)0.024 (4)0.022 (3)
Geometric parameters (Å, º) top
C1—C21.316 (6)C15—O151.419 (5)
C1—C101.514 (5)C15—C161.508 (6)
C1—H10.9300C15—H150.9800
C2—C31.475 (8)C16—C171.500 (6)
C2—H20.9300C16—H16A0.9700
C3—O31.222 (6)C16—H16B0.9700
C3—C41.522 (7)C17—C201.463 (6)
C4—C281.533 (6)C18—H18A0.9600
C4—C51.528 (6)C18—H18B0.9600
C4—C291.537 (7)C18—H18C0.9600
C5—C61.339 (5)C19—H19A0.9600
C5—C101.524 (5)C19—H19B0.9600
C6—O61.374 (5)C19—H19C0.9600
C6—C71.461 (6)C20—C211.334 (8)
C7—O71.245 (4)C20—C221.396 (7)
C7—C81.503 (5)C21—O231.327 (8)
C8—C301.546 (5)C21—H210.9300
C8—C91.565 (5)C22—C231.311 (7)
C8—C141.583 (5)C22—H220.9300
C9—C111.522 (5)C23—O231.399 (9)
C9—C101.567 (5)C23—H230.9300
C9—H90.9800C28—H28A0.9600
C10—C191.557 (5)C28—H28B0.9600
C11—C121.534 (6)C28—H28C0.9600
C11—H11A0.9700C29—H29A0.9600
C11—H11B0.9700C29—H29B0.9600
C12—C131.477 (5)C29—H29C0.9600
C12—H12A0.9700C30—H30A0.9600
C12—H12B0.9700C30—H30B0.9600
C13—C171.333 (5)C30—H30C0.9600
C13—C141.534 (5)O6—H60.8200
C14—C181.542 (5)O15—H15A0.8200
C14—C151.576 (5)
C2—C1—C10121.7 (5)C15—C14—C8118.6 (3)
C2—C1—H1119.1O15—C15—C16110.7 (4)
C10—C1—H1119.1O15—C15—C14118.8 (3)
C1—C2—C3119.7 (5)C16—C15—C14107.9 (3)
C1—C2—H2120.2O15—C15—H15106.2
C3—C2—H2120.2C16—C15—H15106.2
O3—C3—C2121.7 (5)C14—C15—H15106.2
O3—C3—C4120.7 (6)C17—C16—C15103.5 (3)
C2—C3—C4117.2 (4)C17—C16—H16A111.1
C3—C4—C28101.9 (4)C15—C16—H16A111.1
C3—C4—C5111.6 (4)C17—C16—H16B111.1
C28—C4—C5113.0 (3)C15—C16—H16B111.1
C3—C4—C29110.1 (4)H16A—C16—H16B109.0
C28—C4—C29110.6 (4)C13—C17—C20128.8 (4)
C5—C4—C29109.5 (4)C13—C17—C16111.9 (4)
C6—C5—C10119.6 (3)C20—C17—C16119.2 (3)
C6—C5—C4122.0 (4)C14—C18—H18A109.5
C10—C5—C4118.4 (3)C14—C18—H18B109.5
C5—C6—O6120.6 (3)H18A—C18—H18B109.5
C5—C6—C7125.7 (3)C14—C18—H18C109.5
O6—C6—C7113.7 (3)H18A—C18—H18C109.5
O7—C7—C6116.5 (4)H18B—C18—H18C109.5
O7—C7—C8122.9 (4)C10—C19—H19A109.5
C6—C7—C8120.5 (3)C10—C19—H19B109.5
C7—C8—C30105.2 (3)H19A—C19—H19B109.5
C7—C8—C9106.8 (3)C10—C19—H19C109.5
C30—C8—C9112.8 (3)H19A—C19—H19C109.5
C7—C8—C14112.9 (3)H19B—C19—H19C109.5
C30—C8—C14110.6 (3)C21—C20—C22102.7 (5)
C9—C8—C14108.5 (3)C21—C20—C17126.1 (5)
C11—C9—C8112.1 (3)C22—C20—C17131.1 (4)
C11—C9—C10112.1 (3)C20—C21—O23114.1 (7)
C8—C9—C10116.1 (3)C20—C21—H21122.9
C11—C9—H9105.1O23—C21—H21122.9
C8—C9—H9105.1C23—C22—C20110.7 (6)
C10—C9—H9105.1C23—C22—H22124.6
C5—C10—C1107.3 (3)C20—C22—H22124.7
C5—C10—C19109.3 (3)C22—C23—O23107.8 (6)
C1—C10—C19106.3 (3)C22—C23—H23126.1
C5—C10—C9112.2 (3)O23—C23—H23126.1
C1—C10—C9107.6 (3)C4—C28—H28A109.5
C19—C10—C9113.9 (3)C4—C28—H28B109.5
C9—C11—C12111.5 (3)H28A—C28—H28B109.5
C9—C11—H11A109.3C4—C28—H28C109.5
C12—C11—H11A109.3H28A—C28—H28C109.5
C9—C11—H11B109.3H28B—C28—H28C109.5
C12—C11—H11B109.3C4—C29—H29A109.5
H11A—C11—H11B108.0C4—C29—H29B109.5
C13—C12—C11108.3 (3)H29A—C29—H29B109.5
C13—C12—H12A110.0C4—C29—H29C109.5
C11—C12—H12A110.0H29A—C29—H29C109.5
C13—C12—H12B110.0H29B—C29—H29C109.5
C11—C12—H12B110.0C8—C30—H30A109.5
H12A—C12—H12B108.4C8—C30—H30B109.5
C17—C13—C12129.5 (4)H30A—C30—H30B109.5
C17—C13—C14113.1 (4)C8—C30—H30C109.5
C12—C13—C14116.7 (3)H30A—C30—H30C109.5
C13—C14—C18111.7 (3)H30B—C30—H30C109.5
C13—C14—C1599.7 (3)C6—O6—H6109.5
C18—C14—C15108.6 (3)C15—O15—H15A109.5
C13—C14—C8107.0 (3)C21—O23—C23104.4 (5)
C18—C14—C8110.8 (3)
C10—C1—C2—C32.1 (7)C11—C9—C10—C1949.2 (4)
C1—C2—C3—O3152.4 (5)C8—C9—C10—C1981.3 (4)
C1—C2—C3—C434.0 (7)C8—C9—C11—C1257.4 (4)
O3—C3—C4—C2877.8 (6)C10—C9—C11—C12170.0 (3)
C2—C3—C4—C2895.9 (5)C9—C11—C12—C1354.8 (4)
O3—C3—C4—C5161.4 (5)C11—C12—C13—C17110.9 (5)
C2—C3—C4—C524.9 (6)C11—C12—C13—C1458.4 (5)
O3—C3—C4—C2939.6 (7)C17—C13—C14—C18126.8 (4)
C2—C3—C4—C29146.7 (5)C12—C13—C14—C1862.1 (4)
C3—C4—C5—C6164.1 (4)C17—C13—C14—C1512.2 (4)
C28—C4—C5—C650.0 (6)C12—C13—C14—C15176.7 (3)
C29—C4—C5—C673.7 (5)C17—C13—C14—C8111.8 (4)
C3—C4—C5—C1016.3 (5)C12—C13—C14—C859.2 (4)
C28—C4—C5—C10130.4 (4)C7—C8—C14—C13172.8 (3)
C29—C4—C5—C10105.9 (5)C30—C8—C14—C1369.6 (4)
C10—C5—C6—O6179.8 (4)C9—C8—C14—C1354.6 (4)
C4—C5—C6—O60.6 (6)C7—C8—C14—C1850.8 (4)
C10—C5—C6—C72.4 (6)C30—C8—C14—C18168.4 (3)
C4—C5—C6—C7177.2 (4)C9—C8—C14—C1867.3 (4)
C5—C6—C7—O7177.1 (4)C7—C8—C14—C1575.7 (4)
O6—C6—C7—O74.9 (5)C30—C8—C14—C1541.9 (4)
C5—C6—C7—C87.4 (6)C9—C8—C14—C15166.1 (3)
O6—C6—C7—C8170.6 (4)C13—C14—C15—O15146.0 (4)
O7—C7—C8—C3087.2 (4)C18—C14—C15—O1597.0 (4)
C6—C7—C8—C3088.0 (4)C8—C14—C15—O1530.6 (5)
O7—C7—C8—C9152.7 (4)C13—C14—C15—C1619.1 (4)
C6—C7—C8—C932.1 (4)C18—C14—C15—C16136.1 (3)
O7—C7—C8—C1433.5 (5)C8—C14—C15—C1696.3 (4)
C6—C7—C8—C14151.3 (3)O15—C15—C16—C17150.9 (3)
C7—C8—C9—C11179.3 (3)C14—C15—C16—C1719.4 (4)
C30—C8—C9—C1165.6 (4)C12—C13—C17—C206.3 (7)
C14—C8—C9—C1157.3 (4)C14—C13—C17—C20175.9 (4)
C7—C8—C9—C1050.1 (4)C12—C13—C17—C16170.2 (4)
C30—C8—C9—C1065.0 (4)C14—C13—C17—C160.5 (5)
C14—C8—C9—C10172.1 (3)C15—C16—C17—C1312.1 (5)
C6—C5—C10—C1133.3 (4)C15—C16—C17—C20171.1 (3)
C4—C5—C10—C147.0 (5)C13—C17—C20—C21164.9 (6)
C6—C5—C10—C19111.8 (4)C16—C17—C20—C2111.3 (8)
C4—C5—C10—C1967.8 (4)C13—C17—C20—C2219.7 (8)
C6—C5—C10—C915.4 (5)C16—C17—C20—C22164.1 (5)
C4—C5—C10—C9164.9 (3)C22—C20—C21—O234.7 (8)
C2—C1—C10—C541.0 (5)C17—C20—C21—O23178.8 (5)
C2—C1—C10—C1975.9 (5)C21—C20—C22—C232.0 (8)
C2—C1—C10—C9161.8 (4)C17—C20—C22—C23178.2 (5)
C11—C9—C10—C5174.0 (3)C20—C22—C23—O231.1 (8)
C8—C9—C10—C543.4 (4)C20—C21—O23—C235.5 (9)
C11—C9—C10—C168.3 (4)C22—C23—O23—C213.8 (8)
C8—C9—C10—C1161.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O70.822.102.573 (4)117
O15—H15A···O70.821.902.687 (4)162
C11—H11A···O3i0.972.553.431 (6)151
C11—H11B···O7ii0.972.563.458 (5)155
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+3/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H30O5
Mr422.50
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.639 (4), 13.027 (2), 14.417 (5)
V3)2185.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.21 × 0.21
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3810, 3557, 1738
Rint0.022
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.188, 1.02
No. of reflections3557
No. of parameters287
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 1997) and PARST97 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O70.822.102.573 (4)116.7
O15—H15A···O70.821.902.687 (4)161.7
C11—H11A···O3i0.972.553.431 (6)151.0
C11—H11B···O7ii0.972.563.458 (5)154.5
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+3/2, y+2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds