Download citation
Download citation
link to html
In the title compound, C23H22ClNO8, the core structure, which consists of fused cyclo­hexa­diene and pyrrole rings, is bent with a dihedral angle of 64.11 (5)° between the ring planes owing to a lack of π conjugation within the heterobicycle. Mol­ecules are linked by an extensive network of inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042894/sj2346sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042894/sj2346Isup2.hkl
Contains datablock I

CCDC reference: 663728

Key indicators

  • Single-crystal X-ray study
  • T = 446 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.036
  • wR factor = 0.102
  • Data-to-parameter ratio = 17.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT717_ALERT_1_C D...A Unknown or Inconsistent Label .......... \PC20
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The reaction of N-(4-chlorobenzyl)-1H-pyrrole with dimethyl acetylenedicarboxylate (DMAD) leads to the formation of the title compound, (I), (Fig. 1), via initial Diels-Alder addition to form a 7-azanorbornadiene intermediate and subsequent Michael-type addition of the second molecule of DMAD (Acheson & Vernon, 1962; Jones & Bean, 1977; Lee et al., 1978).

The title compound, (I), crystallizes as a racemic mixture in the centrosymmetric space group P21/c and the C7-S and C8-R isomer is shown in Fig. 1. Owing to a lack of π-conjugation within the hetero-bicycle of (I), the core structure is bent. The dihedral angle between the cyclohexadiene and pyrrole rings is 64.11 (5)° compared to the indole compound which was planar (Roychowdhury & Basak, 1975). The torsion angles C4–C7–C8–C1 and C5–C7–C8–N1 are 31.1 (2) Å and 26.2 (1) Å, respectively, indicating a syn-configuration at chiral centers of the moiety hetero-bicycle, similar to that of the related compound reported by Preut et al. (1991). In pyrrole unit, the N1–C6 distance (1.351 (2) Å) is similar with that of C6–C5 (1.356 (2) Å) and the sum of the bond angle around N1 is 359.4°. These facts indicate that a lone pair of nitrogen atom (N1) is delocalized. The dihedral angle between the plane of the benzene ring and the plane of the ester group attached on C7 is 7.37 (9)°, indicating an almost face-to-face orientation.

The crystal packing of (I) is stabilized by weak intermolecular C–H···O hydrogen bonds, Table 1. The dihedral angle between the pyrrole and benzene rings is 81.19 (6)° and there is no evidence of ππ intermolecular interactions between benzene rings in the crystal packing.

Related literature top

For details of the preparations of (I) and related compounds, see: Acheson & Vernon (1962); Jones & Bean (1977); Lee et al. (1978). For related structures, see: Roychowdhury & Basak (1975); Preut et al. (1991).

Experimental top

Compound (I) was prepared by literature methods (Lee et al., 1978). Crystals of (I) were obtained by slow evaporation of a methanol solution in a refrigerator.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Structure description top

The reaction of N-(4-chlorobenzyl)-1H-pyrrole with dimethyl acetylenedicarboxylate (DMAD) leads to the formation of the title compound, (I), (Fig. 1), via initial Diels-Alder addition to form a 7-azanorbornadiene intermediate and subsequent Michael-type addition of the second molecule of DMAD (Acheson & Vernon, 1962; Jones & Bean, 1977; Lee et al., 1978).

The title compound, (I), crystallizes as a racemic mixture in the centrosymmetric space group P21/c and the C7-S and C8-R isomer is shown in Fig. 1. Owing to a lack of π-conjugation within the hetero-bicycle of (I), the core structure is bent. The dihedral angle between the cyclohexadiene and pyrrole rings is 64.11 (5)° compared to the indole compound which was planar (Roychowdhury & Basak, 1975). The torsion angles C4–C7–C8–C1 and C5–C7–C8–N1 are 31.1 (2) Å and 26.2 (1) Å, respectively, indicating a syn-configuration at chiral centers of the moiety hetero-bicycle, similar to that of the related compound reported by Preut et al. (1991). In pyrrole unit, the N1–C6 distance (1.351 (2) Å) is similar with that of C6–C5 (1.356 (2) Å) and the sum of the bond angle around N1 is 359.4°. These facts indicate that a lone pair of nitrogen atom (N1) is delocalized. The dihedral angle between the plane of the benzene ring and the plane of the ester group attached on C7 is 7.37 (9)°, indicating an almost face-to-face orientation.

The crystal packing of (I) is stabilized by weak intermolecular C–H···O hydrogen bonds, Table 1. The dihedral angle between the pyrrole and benzene rings is 81.19 (6)° and there is no evidence of ππ intermolecular interactions between benzene rings in the crystal packing.

For details of the preparations of (I) and related compounds, see: Acheson & Vernon (1962); Jones & Bean (1977); Lee et al. (1978). For related structures, see: Roychowdhury & Basak (1975); Preut et al. (1991).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. All H atoms except hydrogen atom at the chiral center are omitted for clarity.
[Figure 2] Fig. 2. The crystal packing in the title compound, viewed down the a axis. Dashed lines indicate C–H···O hydrogen bonds.
Tetramethyl-1-(4-chlorobenzyl)-3a,7a-dihydro-1H-indole-2,3,3a,4- tetracarboxylate top
Crystal data top
C23H22ClNO8F(000) = 992
Mr = 475.87Dx = 1.402 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6747 reflections
a = 12.8844 (8) Åθ = 2.4–28.2°
b = 12.3350 (7) ŵ = 0.22 mm1
c = 15.3485 (9) ÅT = 446 K
β = 112.471 (1)°Block, yellow
V = 2254.1 (2) Å30.50 × 0.35 × 0.35 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3989 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
φ and ω scansh = 1616
13936 measured reflectionsk = 1514
5132 independent reflectionsl = 1911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.7066P]
where P = (Fo2 + 2Fc2)/3
5132 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C23H22ClNO8V = 2254.1 (2) Å3
Mr = 475.87Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.8844 (8) ŵ = 0.22 mm1
b = 12.3350 (7) ÅT = 446 K
c = 15.3485 (9) Å0.50 × 0.35 × 0.35 mm
β = 112.471 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3989 reflections with I > 2σ(I)
13936 measured reflectionsRint = 0.030
5132 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
5132 reflectionsΔρmin = 0.34 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.81143 (4)0.32249 (4)0.20324 (3)0.04669 (13)
O10.45128 (10)0.85362 (10)0.04992 (8)0.0398 (3)
O20.33449 (9)0.91151 (9)0.19189 (8)0.0325 (3)
O30.69018 (9)0.76987 (9)0.03583 (7)0.0326 (3)
O40.55635 (9)0.64221 (9)0.01694 (7)0.0311 (2)
O50.77351 (9)0.98920 (9)0.13061 (8)0.0353 (3)
O60.59618 (9)0.98517 (8)0.13705 (8)0.0305 (2)
O70.89923 (10)0.81442 (11)0.20986 (8)0.0422 (3)
O80.95022 (9)0.81130 (10)0.05262 (8)0.0352 (3)
N10.74121 (10)0.65145 (10)0.15598 (9)0.0271 (3)
C10.55594 (13)0.62580 (13)0.28022 (11)0.0290 (3)
H10.58410.57990.31400.035*
C20.46045 (13)0.67819 (13)0.32558 (10)0.0297 (3)
H20.42290.66800.39010.036*
C30.41351 (12)0.75158 (12)0.27551 (10)0.0252 (3)
H30.34110.77800.30660.030*
C40.47138 (11)0.78200 (11)0.18640 (10)0.0216 (3)
C50.68261 (11)0.82092 (12)0.14121 (10)0.0235 (3)
C60.76738 (12)0.75793 (12)0.14440 (9)0.0247 (3)
C70.59195 (11)0.74492 (11)0.13385 (9)0.0209 (3)
C80.61985 (11)0.63855 (12)0.17588 (10)0.0242 (3)
H80.60780.57530.14230.029*
C90.42044 (12)0.85190 (12)0.13475 (10)0.0253 (3)
C100.27820 (17)0.97607 (16)0.14419 (15)0.0472 (5)
H10A0.21801.01610.18990.071*
H10B0.33081.02560.10170.071*
H10C0.24850.92930.10940.071*
C110.61854 (12)0.72414 (12)0.02791 (10)0.0239 (3)
C120.57395 (16)0.61703 (15)0.07972 (11)0.0397 (4)
H12A0.52600.55800.08100.060*
H12B0.55650.67950.10890.060*
H12C0.65100.59690.11350.060*
C130.69099 (12)0.93752 (12)0.13481 (10)0.0243 (3)
C140.59806 (16)1.10186 (13)0.13296 (13)0.0374 (4)
H14A0.52691.12790.13520.056*
H14B0.61221.13030.18560.056*
H14C0.65641.12510.07530.056*
C150.87881 (12)0.79818 (13)0.14117 (10)0.0275 (3)
C161.05624 (14)0.86206 (17)0.04081 (14)0.0451 (4)
H16A1.10190.86810.02520.068*
H16B1.04250.93300.06870.068*
H16C1.09460.81870.07110.068*
C170.81662 (13)0.55840 (13)0.13847 (11)0.0309 (3)
H17A0.89150.58320.12930.037*
H17B0.79090.51060.19280.037*
C180.82047 (12)0.49683 (12)0.05216 (10)0.0273 (3)
C190.75483 (14)0.40459 (13)0.06175 (12)0.0367 (4)
H190.71340.37770.12170.044*
C200.75027 (15)0.35201 (14)0.01665 (12)0.0385 (4)
H200.70470.29150.00970.046*
C210.81471 (13)0.39120 (13)0.10511 (11)0.0307 (3)
C220.88103 (13)0.48238 (13)0.11721 (11)0.0298 (3)
H220.92390.50760.17740.036*
C230.88276 (12)0.53567 (13)0.03828 (11)0.0286 (3)
H230.92590.59800.04570.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0551 (3)0.0451 (3)0.0408 (2)0.0104 (2)0.0193 (2)0.00712 (19)
O10.0433 (7)0.0506 (7)0.0282 (6)0.0109 (6)0.0167 (5)0.0020 (5)
O20.0314 (6)0.0317 (6)0.0380 (6)0.0096 (5)0.0173 (5)0.0041 (5)
O30.0308 (6)0.0401 (6)0.0207 (5)0.0090 (5)0.0029 (4)0.0025 (4)
O40.0368 (6)0.0330 (6)0.0227 (5)0.0092 (5)0.0105 (5)0.0017 (4)
O50.0313 (6)0.0327 (6)0.0439 (7)0.0088 (5)0.0166 (5)0.0001 (5)
O60.0300 (5)0.0242 (5)0.0386 (6)0.0011 (4)0.0147 (5)0.0027 (4)
O70.0346 (6)0.0659 (9)0.0307 (6)0.0049 (6)0.0176 (5)0.0026 (6)
O80.0209 (5)0.0550 (7)0.0267 (6)0.0030 (5)0.0059 (4)0.0013 (5)
N10.0206 (6)0.0286 (7)0.0306 (7)0.0043 (5)0.0079 (5)0.0017 (5)
C10.0287 (8)0.0320 (8)0.0265 (8)0.0002 (6)0.0107 (6)0.0079 (6)
C20.0291 (8)0.0369 (8)0.0195 (7)0.0016 (6)0.0053 (6)0.0054 (6)
C30.0199 (6)0.0299 (8)0.0233 (7)0.0017 (6)0.0052 (5)0.0020 (6)
C40.0194 (6)0.0227 (7)0.0221 (7)0.0011 (5)0.0072 (5)0.0020 (5)
C50.0202 (7)0.0286 (7)0.0204 (7)0.0015 (6)0.0065 (5)0.0021 (5)
C60.0217 (7)0.0332 (8)0.0175 (6)0.0002 (6)0.0056 (5)0.0030 (6)
C70.0191 (6)0.0228 (7)0.0195 (6)0.0010 (5)0.0058 (5)0.0003 (5)
C80.0213 (7)0.0253 (7)0.0245 (7)0.0008 (5)0.0071 (6)0.0000 (6)
C90.0230 (7)0.0260 (7)0.0285 (8)0.0021 (6)0.0117 (6)0.0003 (6)
C100.0501 (11)0.0436 (10)0.0625 (12)0.0198 (9)0.0379 (10)0.0090 (9)
C110.0216 (7)0.0255 (7)0.0232 (7)0.0013 (6)0.0070 (6)0.0011 (5)
C120.0509 (10)0.0430 (10)0.0263 (8)0.0086 (8)0.0159 (8)0.0056 (7)
C130.0258 (7)0.0288 (7)0.0180 (6)0.0035 (6)0.0080 (5)0.0002 (5)
C140.0479 (10)0.0251 (8)0.0403 (9)0.0016 (7)0.0180 (8)0.0034 (7)
C150.0219 (7)0.0350 (8)0.0256 (7)0.0023 (6)0.0089 (6)0.0020 (6)
C160.0218 (8)0.0564 (12)0.0529 (11)0.0061 (8)0.0095 (8)0.0097 (9)
C170.0293 (8)0.0363 (8)0.0270 (8)0.0114 (7)0.0107 (6)0.0015 (6)
C180.0256 (7)0.0278 (8)0.0265 (7)0.0097 (6)0.0078 (6)0.0001 (6)
C190.0400 (9)0.0294 (8)0.0291 (8)0.0020 (7)0.0002 (7)0.0047 (7)
C200.0395 (9)0.0263 (8)0.0392 (9)0.0054 (7)0.0031 (7)0.0002 (7)
C210.0319 (8)0.0282 (8)0.0313 (8)0.0028 (6)0.0113 (7)0.0026 (6)
C220.0300 (8)0.0307 (8)0.0257 (8)0.0011 (6)0.0074 (6)0.0043 (6)
C230.0256 (7)0.0279 (8)0.0302 (8)0.0005 (6)0.0085 (6)0.0017 (6)
Geometric parameters (Å, º) top
Cl1—C211.7428 (16)C7—C111.5495 (19)
O1—C91.2074 (18)C7—C81.5634 (19)
O2—C91.3393 (18)C8—H80.9800
O2—C101.4499 (19)C10—H10A0.9600
O3—C111.1988 (17)C10—H10B0.9600
O4—C111.3397 (18)C10—H10C0.9600
O4—C121.4464 (18)C12—H12A0.9600
O5—C131.2201 (17)C12—H12B0.9600
O6—C131.3441 (18)C12—H12C0.9600
O6—C141.4405 (19)C14—H14A0.9600
O7—C151.1971 (18)C14—H14B0.9600
O8—C151.3281 (18)C14—H14C0.9600
O8—C161.450 (2)C16—H16A0.9600
N1—C61.351 (2)C16—H16B0.9600
N1—C171.4608 (19)C16—H16C0.9600
N1—C81.4827 (18)C17—C181.511 (2)
C1—C21.327 (2)C17—H17A0.9700
C1—C81.503 (2)C17—H17B0.9700
C1—H10.9300C18—C191.392 (2)
C2—C31.460 (2)C18—C231.396 (2)
C2—H20.9300C19—C201.388 (2)
C3—C41.337 (2)C19—H190.9300
C3—H30.9300C20—C211.380 (2)
C4—C91.483 (2)C20—H200.9300
C4—C71.5216 (18)C21—C221.381 (2)
C5—C61.356 (2)C22—C231.386 (2)
C5—C131.443 (2)C22—H220.9300
C5—C71.5352 (19)C23—H230.9300
C6—C151.502 (2)
C9—O2—C10114.76 (13)O4—C12—H12A109.5
C11—O4—C12115.10 (12)O4—C12—H12B109.5
C13—O6—C14115.84 (12)H12A—C12—H12B109.5
C15—O8—C16115.57 (13)O4—C12—H12C109.5
C6—N1—C17128.67 (13)H12A—C12—H12C109.5
C6—N1—C8108.78 (11)H12B—C12—H12C109.5
C17—N1—C8121.90 (12)O5—C13—O6122.55 (14)
C2—C1—C8121.90 (13)O5—C13—C5124.43 (14)
C2—C1—H1119.0O6—C13—C5112.99 (12)
C8—C1—H1119.0O6—C14—H14A109.5
C1—C2—C3120.89 (13)O6—C14—H14B109.5
C1—C2—H2119.6H14A—C14—H14B109.5
C3—C2—H2119.6O6—C14—H14C109.5
C4—C3—C2122.09 (13)H14A—C14—H14C109.5
C4—C3—H3119.0H14B—C14—H14C109.5
C2—C3—H3119.0O7—C15—O8125.55 (14)
C3—C4—C9121.48 (13)O7—C15—C6123.73 (14)
C3—C4—C7121.00 (12)O8—C15—C6110.71 (12)
C9—C4—C7117.52 (12)O8—C16—H16A109.5
C6—C5—C13122.22 (13)O8—C16—H16B109.5
C6—C5—C7107.38 (12)H16A—C16—H16B109.5
C13—C5—C7130.01 (12)O8—C16—H16C109.5
N1—C6—C5113.44 (13)H16A—C16—H16C109.5
N1—C6—C15120.87 (13)H16B—C16—H16C109.5
C5—C6—C15125.60 (14)N1—C17—C18110.66 (12)
C4—C7—C5115.39 (11)N1—C17—H17A109.5
C4—C7—C11112.18 (11)C18—C17—H17A109.5
C5—C7—C11107.99 (11)N1—C17—H17B109.5
C4—C7—C8112.51 (11)C18—C17—H17B109.5
C5—C7—C8100.41 (11)H17A—C17—H17B108.1
C11—C7—C8107.50 (11)C19—C18—C23118.75 (14)
N1—C8—C1109.62 (12)C19—C18—C17120.20 (14)
N1—C8—C7102.46 (11)C23—C18—C17120.86 (14)
C1—C8—C7114.12 (12)C20—C19—C18121.05 (15)
N1—C8—H8110.1C20—C19—H19119.5
C1—C8—H8110.1C18—C19—H19119.5
C7—C8—H8110.1C21—C20—C19118.71 (16)
O1—C9—O2123.05 (14)C21—C20—H20120.6
O1—C9—C4123.78 (14)C19—C20—H20120.6
O2—C9—C4113.15 (12)C20—C21—C22121.74 (15)
O2—C10—H10A109.5C20—C21—Cl1118.40 (13)
O2—C10—H10B109.5C22—C21—Cl1119.85 (12)
H10A—C10—H10B109.5C21—C22—C23118.97 (14)
O2—C10—H10C109.5C21—C22—H22120.5
H10A—C10—H10C109.5C23—C22—H22120.5
H10B—C10—H10C109.5C22—C23—C18120.74 (15)
O3—C11—O4124.28 (13)C22—C23—H23119.6
O3—C11—C7124.82 (13)C18—C23—H23119.6
O4—C11—C7110.71 (11)
C8—C1—C2—C30.4 (2)C3—C4—C9—O1155.02 (15)
C1—C2—C3—C410.3 (2)C7—C4—C9—O124.3 (2)
C2—C3—C4—C9176.68 (13)C3—C4—C9—O223.48 (19)
C2—C3—C4—C72.6 (2)C7—C4—C9—O2157.18 (12)
C17—N1—C6—C5162.44 (14)C12—O4—C11—O35.4 (2)
C8—N1—C6—C58.31 (16)C12—O4—C11—C7179.31 (12)
C17—N1—C6—C1520.7 (2)C4—C7—C11—O3120.62 (15)
C8—N1—C6—C15168.60 (12)C5—C7—C11—O37.64 (19)
C13—C5—C6—N1176.27 (13)C8—C7—C11—O3115.19 (16)
C7—C5—C6—N110.27 (16)C4—C7—C11—O464.08 (15)
C13—C5—C6—C150.5 (2)C5—C7—C11—O4167.66 (11)
C7—C5—C6—C15172.99 (13)C8—C7—C11—O460.11 (14)
C3—C4—C7—C591.32 (16)C14—O6—C13—O50.8 (2)
C9—C4—C7—C589.34 (15)C14—O6—C13—C5178.73 (12)
C3—C4—C7—C11144.44 (13)C6—C5—C13—O50.9 (2)
C9—C4—C7—C1134.90 (17)C7—C5—C13—O5170.93 (14)
C3—C4—C7—C823.09 (18)C6—C5—C13—O6177.00 (12)
C9—C4—C7—C8156.26 (12)C7—C5—C13—O611.2 (2)
C6—C5—C7—C4144.05 (12)C16—O8—C15—O77.9 (2)
C13—C5—C7—C443.2 (2)C16—O8—C15—C6172.97 (14)
C6—C5—C7—C1189.54 (13)N1—C6—C15—O781.1 (2)
C13—C5—C7—C1183.23 (17)C5—C6—C15—O795.4 (2)
C6—C5—C7—C822.86 (14)N1—C6—C15—O898.03 (16)
C13—C5—C7—C8164.37 (14)C5—C6—C15—O885.46 (17)
C6—N1—C8—C199.12 (14)C6—N1—C17—C18108.34 (17)
C17—N1—C8—C189.38 (16)C8—N1—C17—C1861.33 (18)
C6—N1—C8—C722.42 (14)N1—C17—C18—C1997.88 (17)
C17—N1—C8—C7149.08 (13)N1—C17—C18—C2377.16 (17)
C2—C1—C8—N1135.62 (15)C23—C18—C19—C200.4 (2)
C2—C1—C8—C721.4 (2)C17—C18—C19—C20174.75 (15)
C4—C7—C8—N1149.46 (11)C18—C19—C20—C211.7 (3)
C5—C7—C8—N126.23 (13)C19—C20—C21—C221.6 (3)
C11—C7—C8—N186.55 (12)C19—C20—C21—Cl1178.26 (13)
C4—C7—C8—C131.05 (16)C20—C21—C22—C230.0 (2)
C5—C7—C8—C192.18 (13)Cl1—C21—C22—C23179.79 (12)
C11—C7—C8—C1155.04 (12)C21—C22—C23—C181.4 (2)
C10—O2—C9—O12.0 (2)C19—C18—C23—C221.2 (2)
C10—O2—C9—C4176.49 (13)C17—C18—C23—C22176.28 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.932.563.441 (2)159
C3—H3···O3ii0.932.533.220 (2)132
C16—H16A···O5iii0.962.513.269 (2)136
C17—H17B···O5i0.972.533.390 (2)148
C19—H19···O7i0.932.563.485 (2)177
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC23H22ClNO8
Mr475.87
Crystal system, space groupMonoclinic, P21/n
Temperature (K)446
a, b, c (Å)12.8844 (8), 12.3350 (7), 15.3485 (9)
β (°) 112.471 (1)
V3)2254.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.50 × 0.35 × 0.35
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13936, 5132, 3989
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.06
No. of reflections5132
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.34

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.932.563.441 (2)159
C3—H3···O3ii0.932.533.220 (2)132
C16—H16A···O5iii0.962.513.269 (2)136
C17—H17B···O5i0.972.533.390 (2)148
C19—H19···O7i0.932.563.485 (2)177
Symmetry codes: (i) x+3/2, y1/2, z1/2; (ii) x1/2, y+3/2, z1/2; (iii) x+2, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds