Download citation
Download citation
link to html
The crystal structure of the title compound, C6H7N2O+·H2PO4, indicates that the anion is connected to the cation via an inter­molecular N—H...O hydrogen bond. There are other inter­molecular N—H...O and O—H...O hydrogen bonds as well as weak C—H...O hydrogen bonds in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042869/wn2188sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042869/wn2188Isup2.hkl
Contains datablock I

CCDC reference: 663742

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.024
  • wR factor = 0.086
  • Data-to-parameter ratio = 11.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT706_ALERT_1_A H...A Calc 6.09(4), Rep 1.74(2), Dev.. 108.75 Sigma H1 -O5 1.555 2.454 PLAT706_ALERT_1_A H...A Calc 8.09(4), Rep 1.97(2), Dev.. 153.00 Sigma H2A -O6 1.555 4.454 PLAT706_ALERT_1_A H...A Calc 6.88(4), Rep 1.830(10), Dev.. 126.25 Sigma H3B -O5 1.555 2.555 PLAT706_ALERT_1_A H...A Calc 6.89(4), Rep 2.330(10), Dev.. 114.00 Sigma H4A -O6 1.555 1.455 PLAT707_ALERT_1_A D...A Calc 6.626(4), Rep 2.643(6), Dev.. 995.75 Sigma N1 -O5 1.555 2.454 PLAT707_ALERT_1_A D...A Calc 8.744(5), Rep 2.928(8), Dev.. 1163.20 Sigma N2 -O6 1.555 4.454 PLAT707_ALERT_1_A D...A Calc 6.384(4), Rep 2.628(7), Dev.. 939.00 Sigma O3 -O5 1.555 2.555 PLAT707_ALERT_1_A D...A Calc 3.230(4), Rep 2.229(7), Dev.. 250.25 Sigma C3 -O2 1.555 4.455 PLAT707_ALERT_1_A D...A Calc 7.304(5), Rep 2.158(6), Dev.. 1029.20 Sigma C4 -O6 1.555 1.455 PLAT708_ALERT_1_A D-H..A Calc 122(3), Rep 169(2), Dev.. 15.67 Sigma N1 -H1 -O5 1.555 1.555 2.454 PLAT708_ALERT_1_A D-H..A Calc 130(3), Rep 177(2), Dev.. 15.67 Sigma N2 -H2A -O6 1.555 1.555 4.454 PLAT708_ALERT_1_A D-H..A Calc 50(3), Rep 171(2), Dev.. 40.33 Sigma O3 -H3B -O5 1.555 1.555 2.555 PLAT708_ALERT_1_A D-H..A Calc 115(3), Rep 159(2), Dev.. 14.67 Sigma C4 -H4A -O6 1.555 1.555 1.455
Alert level B PLAT736_ALERT_1_B H...A Calc 1.79(5), Rep 1.790(10) ...... 5.00 su-Ra H4B -O6 1.555 1.455
Alert level C PLAT048_ALERT_1_C MoietyFormula Not Given ........................ ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for P1 PLAT707_ALERT_1_C D...A Calc 2.930(4), Rep 2.936(7), Dev.. 1.50 Sigma N2 -O2 1.555 1.455 PLAT736_ALERT_1_C H...A Calc 2.09(5), Rep 2.09(2) ...... 2.50 su-Ra H2B -O2 1.555 1.455 PLAT736_ALERT_1_C H...A Calc 6.88(4), Rep 1.830(10) ...... 4.00 su-Ra H3B -O5 1.555 2.555 PLAT736_ALERT_1_C H...A Calc 2.33(3), Rep 2.330(10) ...... 3.00 su-Ra H3A -O2 1.555 4.455 PLAT736_ALERT_1_C H...A Calc 6.89(4), Rep 2.330(10) ...... 4.00 su-Ra H4A -O6 1.555 1.455 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C6 H7 N2 O PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 H2 O4 P
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.90 From the CIF: _reflns_number_total 1858 Count of symmetry unique reflns 1095 Completeness (_total/calc) 169.68% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 763 Fraction of Friedel pairs measured 0.697 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
13 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 22 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Research on phosphate compounds has attracted attention due to their applications as O-donor ligands in coordination chemistry (Szemes et al., 1996; Kortz et al., 2000; Pope et al., 2005; Chippindale, 2006; Oh et al., 2006). The crystal structures of two phosphate compounds (Chieh & Palenik, 1971; Okabe et al., 1993) a dichlorophosphate (Gholivand & Pourayoubi, 2004) and a dioxophosphate (Gholivand et al., 2005) have been reported. Recently, considerable attention has been paid to the subtle manipulation of hydrogen bonding in solid state structures (Steiner, 2002).

We have synthesized the title compound and report here its crystal structure. An ORTEP view of the molecular structure is presented in Fig. 1. The cation and anion are connected to each other via the intermolecular hydrogen bond N1—H1···O5.

In the anion, the bond lengths are P1—O3 1.571 (2), P1—O4 1.550 (2), P1—O5 1.508 (2) and P1—O6 1.498 (2) Å. These are in excellent agreement with the values found in the Cambridge Structural Database (Version of November, 2006; 313 hits; Allen, 2002): P—OH 1.550, PO 1.504 and P—O- 1.504 Å. The coordination geometry around the phosphorus atom is slightly distorted tetrahedral. The sum of the angles around the atoms N1 and N2 are 359.5° and 358°, respectively. These results show that the nitrogen atoms deviate slightly from planarity (i.e. from 360.0°).

The packing diagram of the title compound (Fig. 2) shows the four cations and anions in the unit cell. Each H2PO4- anion is connected to other anions by intermolecular O3—H3B···O5 and O4—H4B···O6 hydrogen bonds, whereas the 4-pyridinium carboxylic acid amide cation is linked to another cation by the intermolecular N2—H2B···O2 hydrogen bond. All these hydrogen bonds, together with weak intermolecular C3—H3A···O2 and C4—-H4A···O6 hydrogen bonds produce a three dimensional polymeric chain in the crystal structure (Table 1).

Related literature top

For related literature, see: Allen (2002); Chieh & Palenik (1971); Chippindale (2006); Gholivand & Pourayoubi (2004); Gholivand et al. (2005); Kortz (2000); Oh et al. (2006); Okabe et al. (1993); Pope et al. (2005); Steiner (2002); Szemes et al. (1996).

Experimental top

To a stirred suspension of phosphorus pentachloride (2.08 g, 10 mmol) in dry CCl4 (35 ml), 4-pyridinecarboxylic acid amide (1.22 g, 10 mmol) was added at 298 K. The mixture was then heated at the reflux temperature (353–355 K) for 24 h. The mixture was cooled to room temperature and the reaction flask was placed in an ice bath. Formic acid (0.46 g, 10 mmol) was added dropwise to the mixture to release CO and HCl and finally to oxidize the phosphoramidate. After stirring for 24 h, a white precipitate was obtained, which was filtered and washed with H2O (40 ml) and dried in air. The white precipitate (0.406 g, 2 mmol) was added to Hg2Cl2 (0.472 g,1 mmol) in hot ethanol (20 ml) to synthesize the Hg complex; however, catalytic hydrolysis of the phosphoramidate occurred. The product of this reaction was filtered and washed with ethanol (10 ml) and then recrystallized from distilled water at 298 K (yield 65%; m.p. 429–431 K).

Refinement top

All H atoms were located in a difference synthesis and refined isotropically [C—H = 0.88 (4) - 0.95 (4) Å, N—H = 0.87 (5) - 0.96 (4) Å, and O—H = 0.76 (5) - 0.81 (4) Å].

Structure description top

Research on phosphate compounds has attracted attention due to their applications as O-donor ligands in coordination chemistry (Szemes et al., 1996; Kortz et al., 2000; Pope et al., 2005; Chippindale, 2006; Oh et al., 2006). The crystal structures of two phosphate compounds (Chieh & Palenik, 1971; Okabe et al., 1993) a dichlorophosphate (Gholivand & Pourayoubi, 2004) and a dioxophosphate (Gholivand et al., 2005) have been reported. Recently, considerable attention has been paid to the subtle manipulation of hydrogen bonding in solid state structures (Steiner, 2002).

We have synthesized the title compound and report here its crystal structure. An ORTEP view of the molecular structure is presented in Fig. 1. The cation and anion are connected to each other via the intermolecular hydrogen bond N1—H1···O5.

In the anion, the bond lengths are P1—O3 1.571 (2), P1—O4 1.550 (2), P1—O5 1.508 (2) and P1—O6 1.498 (2) Å. These are in excellent agreement with the values found in the Cambridge Structural Database (Version of November, 2006; 313 hits; Allen, 2002): P—OH 1.550, PO 1.504 and P—O- 1.504 Å. The coordination geometry around the phosphorus atom is slightly distorted tetrahedral. The sum of the angles around the atoms N1 and N2 are 359.5° and 358°, respectively. These results show that the nitrogen atoms deviate slightly from planarity (i.e. from 360.0°).

The packing diagram of the title compound (Fig. 2) shows the four cations and anions in the unit cell. Each H2PO4- anion is connected to other anions by intermolecular O3—H3B···O5 and O4—H4B···O6 hydrogen bonds, whereas the 4-pyridinium carboxylic acid amide cation is linked to another cation by the intermolecular N2—H2B···O2 hydrogen bond. All these hydrogen bonds, together with weak intermolecular C3—H3A···O2 and C4—-H4A···O6 hydrogen bonds produce a three dimensional polymeric chain in the crystal structure (Table 1).

For related literature, see: Allen (2002); Chieh & Palenik (1971); Chippindale (2006); Gholivand & Pourayoubi (2004); Gholivand et al. (2005); Kortz (2000); Oh et al. (2006); Okabe et al. (1993); Pope et al. (2005); Steiner (2002); Szemes et al. (1996).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP view of the structure of the title compound, indicating the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the crystal structure, in which the hydrogen bonds are shown as dashed lines.
4-carbamoylpyridinium dihydrogen phosphate top
Crystal data top
C6H7N2O+·H2PO4F(000) = 456
Mr = 220.12Dx = 1.601 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 4.7748 (7) ÅCell parameters from 2500 reflections
b = 23.629 (7) Åθ = 1.8–27.9°
c = 8.340 (3) ŵ = 0.30 mm1
β = 103.94 (3)°T = 293 K
V = 913.2 (5) Å3Block, colourless
Z = 40.35 × 0.25 × 0.06 mm
Data collection top
STOE IPDS II
diffractometer
1820 reflections with I > 2σ(I)
rotation method scansRint = 0.023
Absorption correction: numerical
(shape of crystal determined optically)
θmax = 27.9°, θmin = 1.7°
Tmin = 0.910, Tmax = 0.980h = 56
4586 measured reflectionsk = 3030
1858 independent reflectionsl = 1010
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0273P)2 + 0.979P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.004
wR(F2) = 0.086Δρmax = 0.19 e Å3
S = 1.27Δρmin = 0.26 e Å3
1858 reflectionsAbsolute structure: Flack (1983), 3363 Friedel pairs
163 parametersAbsolute structure parameter: 0.14 (11)
2 restraints
Crystal data top
C6H7N2O+·H2PO4V = 913.2 (5) Å3
Mr = 220.12Z = 4
Monoclinic, CcMo Kα radiation
a = 4.7748 (7) ŵ = 0.30 mm1
b = 23.629 (7) ÅT = 293 K
c = 8.340 (3) Å0.35 × 0.25 × 0.06 mm
β = 103.94 (3)°
Data collection top
STOE IPDS II
diffractometer
1858 independent reflections
Absorption correction: numerical
(shape of crystal determined optically)
1820 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.980Rint = 0.023
4586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024All H-atom parameters refined
wR(F2) = 0.086Δρmax = 0.19 e Å3
S = 1.27Δρmin = 0.26 e Å3
1858 reflectionsAbsolute structure: Flack (1983), 3363 Friedel pairs
163 parametersAbsolute structure parameter: 0.14 (11)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4437 (6)0.24832 (11)0.4892 (4)0.0339 (6)
C20.3191 (6)0.19021 (10)0.4761 (3)0.0278 (5)
C30.1908 (7)0.17827 (11)0.3488 (4)0.0345 (6)
H3A0.177 (7)0.2049 (13)0.269 (4)0.027 (7)*
C40.0827 (7)0.12493 (12)0.3384 (4)0.0377 (6)
H4A0.001 (8)0.1135 (15)0.261 (5)0.041 (9)*
C50.2227 (8)0.09561 (12)0.5738 (4)0.0423 (8)
H50.234 (9)0.0650 (15)0.645 (5)0.043 (9)*
C60.3409 (8)0.14827 (13)0.5879 (4)0.0393 (6)
H60.442 (10)0.1551 (17)0.669 (5)0.061 (12)*
N10.0962 (6)0.08611 (10)0.4504 (3)0.0359 (5)
H10.003 (9)0.0540 (19)0.437 (5)0.062 (12)*
N20.2814 (6)0.29148 (11)0.4720 (5)0.0490 (8)
H2A0.339 (9)0.3298 (16)0.484 (5)0.046 (9)*
H2B0.099 (11)0.2873 (19)0.475 (6)0.067 (14)*
O20.6852 (6)0.25244 (9)0.5158 (4)0.0563 (8)
O30.4720 (5)0.03277 (10)0.6565 (3)0.0440 (5)
H3B0.377 (10)0.0199 (18)0.716 (5)0.062 (13)*
O40.5034 (5)0.08807 (9)0.4108 (3)0.0374 (5)
H4B0.663 (11)0.0822 (18)0.444 (6)0.059 (14)*
O50.1924 (5)0.00130 (8)0.3746 (3)0.0404 (5)
O60.0475 (5)0.09051 (8)0.4977 (3)0.0341 (4)
P10.29004 (11)0.05229 (2)0.48238 (8)0.02305 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (14)0.0300 (13)0.0434 (14)0.0039 (10)0.0113 (11)0.0071 (11)
C20.0255 (12)0.0250 (11)0.0342 (12)0.0009 (9)0.0098 (11)0.0037 (9)
C30.0448 (17)0.0278 (12)0.0346 (14)0.0012 (11)0.0169 (13)0.0006 (10)
C40.0470 (18)0.0334 (14)0.0364 (14)0.0024 (12)0.0170 (14)0.0087 (11)
C50.060 (2)0.0305 (14)0.0369 (16)0.0009 (13)0.0126 (16)0.0068 (11)
C60.0517 (19)0.0347 (14)0.0368 (15)0.0016 (13)0.0213 (14)0.0007 (11)
N10.0416 (14)0.0236 (10)0.0401 (13)0.0055 (9)0.0050 (11)0.0049 (9)
N20.0386 (17)0.0236 (10)0.090 (2)0.0046 (8)0.0256 (18)0.0017 (12)
O20.0342 (12)0.0442 (11)0.097 (2)0.0012 (10)0.0272 (15)0.0221 (12)
O30.0345 (12)0.0595 (13)0.0350 (11)0.0087 (10)0.0028 (9)0.0145 (10)
O40.0218 (11)0.0431 (11)0.0477 (13)0.0055 (8)0.0092 (9)0.0164 (9)
O50.0518 (13)0.0302 (9)0.0441 (11)0.0118 (9)0.0213 (10)0.0122 (8)
O60.0266 (10)0.0308 (9)0.0465 (12)0.0011 (7)0.0116 (9)0.0015 (8)
P10.0231 (3)0.0211 (2)0.0264 (3)0.0036 (2)0.0086 (2)0.0005 (2)
Geometric parameters (Å, º) top
C1—O21.230 (4)C5—H50.95 (4)
C1—N21.310 (4)C6—H60.93 (4)
C1—C21.511 (3)N1—H10.92 (4)
C2—C31.376 (3)N2—H2A0.96 (4)
C2—C61.382 (4)N2—H2B0.87 (5)
C3—C41.373 (4)O3—P11.571 (2)
C3—H3A0.93 (3)O3—H3B0.81 (4)
C4—N11.322 (4)O4—P11.550 (2)
C4—H4A0.88 (4)O4—H4B0.76 (5)
C5—N11.332 (4)O5—P11.5084 (19)
C5—C61.383 (4)O6—P11.498 (2)
O2—C1—N2124.3 (3)C2—C6—H6120 (3)
O2—C1—C2119.2 (2)C5—C6—H6121 (3)
N2—C1—C2116.5 (2)C4—N1—C5122.5 (3)
C3—C2—C6119.6 (2)C4—N1—H1112 (3)
C3—C2—C1119.9 (2)C5—N1—H1125 (3)
C6—C2—C1120.5 (2)C1—N2—H2A122 (2)
C4—C3—C2118.7 (2)C1—N2—H2B121 (3)
C4—C3—H3A119.1 (18)H2A—N2—H2B115 (4)
C2—C3—H3A122.1 (18)P1—O3—H3B114 (3)
N1—C4—C3120.7 (3)P1—O4—H4B117 (3)
N1—C4—H4A114 (2)O6—P1—O5113.46 (13)
C3—C4—H4A125 (2)O6—P1—O4107.30 (11)
N1—C5—C6119.2 (3)O5—P1—O4110.09 (13)
N1—C5—H5118 (2)O6—P1—O3111.38 (13)
C6—C5—H5123 (2)O5—P1—O3109.83 (14)
C2—C6—C5119.3 (3)O4—P1—O3104.35 (13)
O2—C1—C2—C3133.7 (3)C2—C3—C4—N11.4 (5)
N2—C1—C2—C346.7 (4)C3—C2—C6—C52.7 (5)
O2—C1—C2—C644.2 (4)C1—C2—C6—C5179.4 (3)
N2—C1—C2—C6135.4 (3)N1—C5—C6—C21.5 (5)
C6—C2—C3—C41.2 (4)C3—C4—N1—C52.6 (5)
C1—C2—C3—C4179.2 (3)C6—C5—N1—C41.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.92 (4)1.74 (2)2.643 (6)169 (2)
N2—H2A···O6ii0.96 (4)1.97 (2)2.928 (8)177 (2)
N2—H2B···O2iii0.87 (5)2.09 (2)2.936 (7)162 (2)
O3—H3B···O5iv0.81 (4)1.83 (1)2.628 (7)171 (2)
O4—H4B···O6iii0.76 (5)1.79 (1)2.524 (8)162 (2)
C3—H3A···O2v0.93 (3)2.33 (1)2.229 (7)162 (2)
C4—H4A···O6iii0.88 (4)2.33 (1)2.158 (6)159 (2)
Symmetry codes: (i) x1, y, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y, z+1/2; (v) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H7N2O+·H2PO4
Mr220.12
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)4.7748 (7), 23.629 (7), 8.340 (3)
β (°) 103.94 (3)
V3)913.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.35 × 0.25 × 0.06
Data collection
DiffractometerSTOE IPDS II
Absorption correctionNumerical
(shape of crystal determined optically)
Tmin, Tmax0.910, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4586, 1858, 1820
Rint0.023
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.086, 1.27
No. of reflections1858
No. of parameters163
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.19, 0.26
Absolute structureFlack (1983), 3363 Friedel pairs
Absolute structure parameter0.14 (11)

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O5i0.92 (4)1.74 (2)2.643 (6)169 (2)
N2—H2A···O6ii0.96 (4)1.97 (2)2.928 (8)177 (2)
N2—H2B···O2iii0.87 (5)2.09 (2)2.936 (7)162 (2)
O3—H3B···O5iv0.81 (4)1.83 (1)2.628 (7)171 (2)
O4—H4B···O6iii0.76 (5)1.79 (1)2.524 (8)162 (2)
C3—H3A···O2v0.93 (3)2.33 (1)2.229 (7)162 (2)
C4—H4A···O6iii0.88 (4)2.33 (1)2.158 (6)159 (2)
Symmetry codes: (i) x1, y, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x, y, z+1/2; (v) x1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds