Download citation
Download citation
link to html
In the title compound, [Cu(C11H7Br2NO5)(C3H7NO)(H2O)]·C3H7NO·H2O, the CuII atom is coordinated in a slightly distorted square-pyramidal geometry defined by two O atoms and one N atom from a 3-carb­oxy-2-(3,5-dibromo-2-oxidobenzyl­amino)propanoate ligand, one O atom from a dimethyl­formamide (DMF) mol­ecule in the basal plane, and by one O atom from an aqua ligand in the apical position. In the crystal structure, the water mol­ecules are linked by O—H...O hydrogen bonds into chains which resemble a pearl necklace. The mol­ecules form a three-dimensional supra­molecular network through O—H...O hydrogen bonds and C—H...Br hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041517/er2034sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041517/er2034Isup2.hkl
Contains datablock I

CCDC reference: 667095

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.038
  • wR factor = 0.087
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O9 .. 9.50 su PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N3 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 O6 -CU1 -N1 -C5 -146.70 1.20 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 7 O6 -CU1 -N1 -C2 41.60 1.40 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 9 O5 -CU1 -O1 -C1 -86.20 0.80 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 14 O1 -CU1 -O5 -C7 74.90 0.90 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 18 N1 -CU1 -O6 -C12 151.20 1.30 1.555 1.555 1.555 1.555
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.24
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Rencently, compounds containing dimmer water (Ghosh & Bharadwaj, 2003), water ring (Moorthy et al., 2002, Ugalde et al., 2000, Ghosh & Bharadwaj, 2004), water chain (Neogi & Bharadwaj, 2005, Cheruzel et al., 2003, Ghosh et al., 2005), metal-water chain (Ye et al., 2004), water network (Zhang et al., 2005), water-methanol intermix clusters (Raghuraman et al., 2003), and water ring chain (Feng, et al., 2007) give rise to considerable interest. Because these dimmer water, water ring, water chain, metal-water chain, water network, water ring chain and intermix clusters are potentially important form of water that is poorly understood. Water chains appear to facilitate the selective permeation (Tajkhorshid et al., 2002) of water across membranes and also to be important (Zaslavsky, & Gennis, 2000) in the control of proton fluxes in a variety of biomolecules.

The title compound, (I), is a CuII complex containing a ligand constructed from 2-(3,5-dibromo-2-hydroxy-benzylamino)-succinic acid and 3,5-dichloro-2-hydroxy-benzaldehyde. Each CuII atom is coordinated by two O atoms and one N atom from L2- and one O atom from DMF and one O atom from H2O to furnish a slightly distorted tetragonal pyramidal(Table 1). The asymmetric unit (Fig. 1) comprises one CuII complexes, one water molecule and one DMF molecule. The water molecules are linked by O—H···O hydrogen bonds (Table 2), forming a 'peral necklace' water chains. In the 'pearl necklace' water chains, the O8 water act as thread and the O9 water as pearl along 101 plan(Fig. 2). The water chains lie between layers of CuII complexes (Fig. 3), forming O—H···O hydrogen bonds to the O2 atoms of the carboxylate groups. The complex are further constructed three-dimensional supramolecular network through O—H···O hydrogen bond and C—H···Br hydrogen bond (Fig. 3).

Related literature top

For related literature, see: Cheruzel et al. (2003); Feng et al. (2007); Ghosh & Bharadwaj (2003); Ghosh & Bharadwaj (2004); Ghosh et al. (2005); Moorthy et al. (2002); Neogi & Bharadwaj (2005); Raghuraman et al. (2003); Tajkhorshid et al. (2002); Ugalde et al. (2000); Ye et al. (2004); Zaslavsky & Gennis (2000); Zhang et al. (2005).

Experimental top

A solution of aspartic acid (0.059 g, 0.5 mmol) and pottasium hydroxide (0.028 g, 0.5 mmol) in distilled water (10 ml) was added slowly to a solution of 3,5-dibromo-2-hydroxybenzaldehyde (0.5 mmol, 0.140 g) in ethanol (10 ml). The mixture was stirred for 1 h at 323 K, then added slowly to a solution of copper(II) nitrate (0.121 g, 0.5 mmol) in distilled water (10 ml). This mixture was stirred and refluxed for 2 h at 323 K; The precipitate was separated by filtration. Dregs were dissolved in DMF. The solution was filtered and the filtrate was left to stand at room temperature. Blue strips suitable for X-ray diffraction were obtained in a yield of 65% (based on copper nitrate).

Refinement top

H atoms of the water molecule were located in a difference Fourier map. The O—H distances were normalized to 0.85 Å and the H atoms were allowed to ride on the O atom, with Uiso(H) = 1.5 Ueq(O). All other H atoms were positioned geometrically and refined as riding, with C—H distances of 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C) and with O—H distances of 0.82 Å and Uiso(H) = 1.5 Ueq(O).

Structure description top

Rencently, compounds containing dimmer water (Ghosh & Bharadwaj, 2003), water ring (Moorthy et al., 2002, Ugalde et al., 2000, Ghosh & Bharadwaj, 2004), water chain (Neogi & Bharadwaj, 2005, Cheruzel et al., 2003, Ghosh et al., 2005), metal-water chain (Ye et al., 2004), water network (Zhang et al., 2005), water-methanol intermix clusters (Raghuraman et al., 2003), and water ring chain (Feng, et al., 2007) give rise to considerable interest. Because these dimmer water, water ring, water chain, metal-water chain, water network, water ring chain and intermix clusters are potentially important form of water that is poorly understood. Water chains appear to facilitate the selective permeation (Tajkhorshid et al., 2002) of water across membranes and also to be important (Zaslavsky, & Gennis, 2000) in the control of proton fluxes in a variety of biomolecules.

The title compound, (I), is a CuII complex containing a ligand constructed from 2-(3,5-dibromo-2-hydroxy-benzylamino)-succinic acid and 3,5-dichloro-2-hydroxy-benzaldehyde. Each CuII atom is coordinated by two O atoms and one N atom from L2- and one O atom from DMF and one O atom from H2O to furnish a slightly distorted tetragonal pyramidal(Table 1). The asymmetric unit (Fig. 1) comprises one CuII complexes, one water molecule and one DMF molecule. The water molecules are linked by O—H···O hydrogen bonds (Table 2), forming a 'peral necklace' water chains. In the 'pearl necklace' water chains, the O8 water act as thread and the O9 water as pearl along 101 plan(Fig. 2). The water chains lie between layers of CuII complexes (Fig. 3), forming O—H···O hydrogen bonds to the O2 atoms of the carboxylate groups. The complex are further constructed three-dimensional supramolecular network through O—H···O hydrogen bond and C—H···Br hydrogen bond (Fig. 3).

For related literature, see: Cheruzel et al. (2003); Feng et al. (2007); Ghosh & Bharadwaj (2003); Ghosh & Bharadwaj (2004); Ghosh et al. (2005); Moorthy et al. (2002); Neogi & Bharadwaj (2005); Raghuraman et al. (2003); Tajkhorshid et al. (2002); Ugalde et al. (2000); Ye et al. (2004); Zaslavsky & Gennis (2000); Zhang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing displacement ellipsoids drawn at the 30% probability level for non-H atoms. The dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
[Figure 2] Fig. 2. Water molecules linked by O—H···O hydrogen bonds (dashed lines) that form chains. Displacement ellipsoids are shown at the 30% probability level for O atoms.
[Figure 3] Fig. 3. Projection of (I) along b, showing layers of CuII complexes with the water molecules lying between them. Dashed lines denote hydrogen bonds and H atoms not involved in hydrogen bonding have been omitted.
Aqua[3-carboxy-2-(3,5-dibromo-2-oxidobenzylamino-κ2N,O)propanoato-\ κO1](dimethylformamide-κO)copper(II) dimethylformamide solvate monohydrate top
Crystal data top
[Cu(C11H7Br2NO5)(C3H7NO)(H2O)]·C3H7NO·H2OF(000) = 2552
Mr = 638.76Dx = 1.820 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4147 reflections
a = 46.176 (3) Åθ = 2.7–25.7°
b = 5.1633 (19) ŵ = 4.42 mm1
c = 21.793 (2) ÅT = 298 K
β = 116.186 (4)°Strip, blue
V = 4662.6 (18) Å30.56 × 0.10 × 0.07 mm
Z = 8
Data collection top
Bruker SMART 1K CCD
diffractometer
4091 independent reflections
Radiation source: fine-focus sealed tube3197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10 pixels mm-1θmax = 25.0°, θmin = 1.9°
φ and ω scansh = 5433
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 66
Tmin = 0.191, Tmax = 0.747l = 2525
11320 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0358P)2 + 6.521P]
where P = (Fo2 + 2Fc2)/3
4091 reflections(Δ/σ)max = 0.002
290 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C11H7Br2NO5)(C3H7NO)(H2O)]·C3H7NO·H2OV = 4662.6 (18) Å3
Mr = 638.76Z = 8
Monoclinic, C2/cMo Kα radiation
a = 46.176 (3) ŵ = 4.42 mm1
b = 5.1633 (19) ÅT = 298 K
c = 21.793 (2) Å0.56 × 0.10 × 0.07 mm
β = 116.186 (4)°
Data collection top
Bruker SMART 1K CCD
diffractometer
4091 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3197 reflections with I > 2σ(I)
Tmin = 0.191, Tmax = 0.747Rint = 0.044
11320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
4091 reflectionsΔρmin = 0.34 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.667762 (11)0.45742 (9)0.32640 (2)0.03304 (14)
Br10.631916 (12)0.16100 (10)0.48947 (2)0.05071 (15)
Br20.550915 (11)0.56975 (9)0.29641 (3)0.05290 (15)
N10.64487 (7)0.2519 (6)0.24615 (15)0.0299 (7)
N20.70705 (8)0.8065 (7)0.51375 (15)0.0370 (8)
N30.49942 (10)0.0691 (9)0.3994 (2)0.0650 (12)
O10.68006 (6)0.6679 (5)0.26737 (13)0.0379 (7)
O20.67757 (7)0.6785 (6)0.16312 (13)0.0459 (7)
O30.59772 (7)0.6053 (6)0.12787 (15)0.0564 (9)
O40.58105 (8)0.3707 (7)0.03307 (14)0.0592 (9)
H40.56560.46950.02010.089*
O50.64999 (6)0.2798 (5)0.37752 (12)0.0377 (7)
O60.69090 (6)0.6953 (5)0.40330 (12)0.0380 (7)
O70.52932 (10)0.3581 (10)0.4777 (2)0.1011 (15)
O80.74314 (7)0.2116 (6)0.71684 (16)0.0562 (8)
H180.72300.23800.70120.084*
H190.74660.06050.73410.084*
O90.71561 (7)0.1607 (6)0.34796 (14)0.0518 (8)
H200.72560.19840.32440.078*
H210.70510.02190.33150.078*
C10.67179 (9)0.5756 (8)0.20757 (19)0.0325 (9)
C20.65577 (9)0.3065 (8)0.19336 (18)0.0338 (9)
H20.67320.18270.20150.041*
C30.63146 (9)0.2660 (8)0.11995 (18)0.0366 (10)
H3A0.64210.29680.09090.044*
H3B0.62470.08610.11420.044*
C40.60197 (10)0.4333 (8)0.0956 (2)0.0386 (10)
C50.62537 (9)0.0658 (8)0.23949 (19)0.0322 (9)
H50.61670.02350.19820.039*
C60.61567 (9)0.0170 (8)0.29146 (19)0.0314 (9)
C70.62860 (9)0.0981 (7)0.35723 (18)0.0304 (9)
C80.61662 (9)0.0012 (7)0.40234 (19)0.0323 (9)
C90.59465 (9)0.1957 (8)0.3859 (2)0.0371 (10)
H90.58800.25730.41770.044*
C100.58250 (9)0.3019 (7)0.3207 (2)0.0353 (9)
C110.59296 (9)0.2178 (8)0.2745 (2)0.0345 (9)
H110.58500.29420.23150.041*
C120.69048 (9)0.6671 (8)0.4600 (2)0.0359 (9)
H120.67740.53730.46380.043*
C130.72672 (11)1.0211 (9)0.5119 (2)0.0540 (12)
H13A0.72381.04660.46590.081*
H13B0.74900.98420.54100.081*
H13C0.72041.17520.52760.081*
C140.70679 (12)0.7506 (10)0.5795 (2)0.0557 (13)
H14A0.69340.60230.57480.084*
H14B0.69840.89730.59350.084*
H14C0.72840.71560.61330.084*
C150.52653 (13)0.1844 (12)0.4396 (3)0.0691 (15)
H150.54520.12500.43820.083*
C160.49831 (18)0.1326 (14)0.3523 (4)0.122 (3)
H16A0.51980.16920.35840.183*
H16B0.48530.07600.30620.183*
H16C0.48910.28630.36110.183*
C170.46963 (14)0.1399 (15)0.3995 (3)0.097 (2)
H17A0.47370.25360.43730.145*
H17B0.45880.01290.40380.145*
H17C0.45630.22660.35740.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0410 (3)0.0322 (3)0.0282 (3)0.0060 (2)0.0174 (2)0.0026 (2)
Br10.0727 (3)0.0537 (3)0.0363 (2)0.0067 (3)0.0336 (2)0.0012 (2)
Br20.0474 (3)0.0431 (3)0.0706 (3)0.0103 (2)0.0282 (2)0.0033 (2)
N10.0345 (17)0.0314 (18)0.0297 (16)0.0006 (16)0.0197 (14)0.0012 (14)
N20.0403 (19)0.040 (2)0.0302 (17)0.0008 (17)0.0149 (15)0.0066 (16)
N30.060 (3)0.066 (3)0.060 (3)0.004 (2)0.018 (2)0.012 (2)
O10.0504 (16)0.0331 (16)0.0333 (15)0.0083 (14)0.0213 (13)0.0022 (13)
O20.0609 (19)0.0492 (19)0.0368 (16)0.0100 (16)0.0300 (15)0.0027 (14)
O30.060 (2)0.052 (2)0.0504 (19)0.0087 (17)0.0179 (16)0.0108 (16)
O40.056 (2)0.076 (3)0.0342 (17)0.0043 (18)0.0098 (15)0.0064 (17)
O50.0487 (17)0.0384 (17)0.0305 (14)0.0143 (14)0.0214 (12)0.0066 (13)
O60.0495 (17)0.0360 (17)0.0305 (15)0.0091 (14)0.0194 (13)0.0041 (12)
O70.072 (3)0.130 (4)0.086 (3)0.023 (3)0.021 (2)0.053 (3)
O80.0523 (19)0.049 (2)0.072 (2)0.0015 (16)0.0317 (16)0.0006 (17)
O90.0545 (18)0.0473 (19)0.0528 (19)0.0079 (16)0.0228 (15)0.0021 (16)
C10.031 (2)0.034 (2)0.032 (2)0.0023 (18)0.0140 (17)0.0036 (18)
C20.041 (2)0.033 (2)0.034 (2)0.0002 (19)0.0231 (18)0.0036 (18)
C30.045 (2)0.037 (2)0.033 (2)0.005 (2)0.0217 (18)0.0082 (19)
C40.049 (3)0.037 (3)0.033 (2)0.008 (2)0.021 (2)0.0044 (19)
C50.035 (2)0.034 (2)0.027 (2)0.0017 (19)0.0142 (17)0.0027 (18)
C60.031 (2)0.029 (2)0.037 (2)0.0018 (18)0.0175 (17)0.0007 (17)
C70.036 (2)0.029 (2)0.030 (2)0.0060 (19)0.0171 (17)0.0046 (17)
C80.038 (2)0.028 (2)0.033 (2)0.0050 (18)0.0171 (17)0.0029 (17)
C90.041 (2)0.035 (2)0.042 (2)0.005 (2)0.0245 (19)0.009 (2)
C100.033 (2)0.028 (2)0.044 (2)0.0021 (18)0.0168 (19)0.0005 (19)
C110.035 (2)0.033 (2)0.035 (2)0.0025 (19)0.0155 (18)0.0018 (18)
C120.036 (2)0.034 (2)0.038 (2)0.0040 (19)0.0173 (18)0.0038 (19)
C130.065 (3)0.044 (3)0.053 (3)0.021 (3)0.026 (2)0.013 (2)
C140.068 (3)0.067 (3)0.038 (2)0.005 (3)0.028 (2)0.005 (2)
C150.058 (3)0.077 (4)0.062 (3)0.003 (3)0.017 (3)0.001 (3)
C160.110 (6)0.089 (5)0.135 (6)0.014 (5)0.024 (5)0.047 (5)
C170.069 (4)0.134 (6)0.090 (5)0.019 (4)0.038 (4)0.025 (5)
Geometric parameters (Å, º) top
Cu1—O51.887 (3)C2—H20.9800
Cu1—N11.916 (3)C3—C41.498 (6)
Cu1—O11.950 (3)C3—H3A0.9700
Cu1—O61.969 (3)C3—H3B0.9700
Cu1—O92.556 (3)C5—C61.454 (5)
Br1—C81.898 (4)C5—H50.9300
Br2—C101.907 (4)C6—C111.403 (5)
N1—C51.281 (5)C6—C71.417 (5)
N1—C21.472 (5)C7—C81.415 (5)
N2—C121.299 (5)C8—C91.368 (5)
N2—C131.444 (5)C9—C101.390 (5)
N2—C141.467 (5)C9—H90.9300
N3—C151.312 (6)C10—C111.366 (5)
N3—C171.424 (7)C11—H110.9300
N3—C161.447 (7)C12—H120.9300
O1—C11.277 (4)C13—H13A0.9600
O2—C11.233 (4)C13—H13B0.9600
O3—C41.202 (5)C13—H13C0.9600
O4—C41.316 (5)C14—H14A0.9600
O4—H40.8200C14—H14B0.9600
O5—C71.291 (4)C14—H14C0.9600
O6—C121.252 (4)C15—H150.9300
O7—C151.190 (7)C16—H16A0.9600
O8—H180.8502C16—H16B0.9600
O8—H190.8500C16—H16C0.9600
O9—H200.8501C17—H17A0.9600
O9—H210.8500C17—H17B0.9600
C1—C21.540 (6)C17—H17C0.9600
C2—C31.509 (5)
O5—Cu1—N193.51 (12)C11—C6—C7120.6 (3)
O5—Cu1—O1171.55 (12)C11—C6—C5117.6 (3)
N1—Cu1—O184.86 (12)C7—C6—C5121.8 (3)
O5—Cu1—O690.85 (11)O5—C7—C8119.6 (3)
N1—Cu1—O6174.78 (12)O5—C7—C6124.6 (3)
O1—Cu1—O690.42 (11)C8—C7—C6115.8 (4)
O5—Cu1—O999.55 (11)C9—C8—C7123.6 (4)
N1—Cu1—O985.39 (11)C9—C8—Br1119.4 (3)
O1—Cu1—O988.60 (11)C7—C8—Br1117.0 (3)
O6—Cu1—O996.73 (11)C8—C9—C10118.6 (4)
C5—N1—C2121.4 (3)C8—C9—H9120.7
C5—N1—Cu1126.6 (3)C10—C9—H9120.7
C2—N1—Cu1111.5 (2)C11—C10—C9120.9 (4)
C12—N2—C13121.9 (4)C11—C10—Br2120.1 (3)
C12—N2—C14121.1 (4)C9—C10—Br2118.9 (3)
C13—N2—C14117.0 (3)C10—C11—C6120.4 (4)
C15—N3—C17121.4 (5)C10—C11—H11119.8
C15—N3—C16121.7 (5)C6—C11—H11119.8
C17—N3—C16117.0 (5)O6—C12—N2124.5 (4)
C1—O1—Cu1115.0 (3)O6—C12—H12117.8
C4—O4—H4109.5N2—C12—H12117.8
C7—O5—Cu1128.1 (2)N2—C13—H13A109.5
C12—O6—Cu1121.9 (3)N2—C13—H13B109.5
H18—O8—H19106.6H13A—C13—H13B109.5
Cu1—O9—H20114.0N2—C13—H13C109.5
Cu1—O9—H2198.3H13A—C13—H13C109.5
H20—O9—H21107.2H13B—C13—H13C109.5
O2—C1—O1124.7 (4)N2—C14—H14A109.5
O2—C1—C2118.8 (3)N2—C14—H14B109.5
O1—C1—C2116.2 (3)H14A—C14—H14B109.5
N1—C2—C3116.8 (3)N2—C14—H14C109.5
N1—C2—C1108.4 (3)H14A—C14—H14C109.5
C3—C2—C1113.9 (3)H14B—C14—H14C109.5
N1—C2—H2105.6O7—C15—N3125.9 (6)
C3—C2—H2105.6O7—C15—H15117.1
C1—C2—H2105.6N3—C15—H15117.1
C4—C3—C2115.5 (3)N3—C16—H16A109.5
C4—C3—H3A108.4N3—C16—H16B109.5
C2—C3—H3A108.4H16A—C16—H16B109.5
C4—C3—H3B108.4N3—C16—H16C109.5
C2—C3—H3B108.4H16A—C16—H16C109.5
H3A—C3—H3B107.5H16B—C16—H16C109.5
O3—C4—O4123.6 (4)N3—C17—H17A109.5
O3—C4—C3125.2 (4)N3—C17—H17B109.5
O4—C4—C3111.3 (4)H17A—C17—H17B109.5
N1—C5—C6125.1 (3)N3—C17—H17C109.5
N1—C5—H5117.4H17A—C17—H17C109.5
C6—C5—H5117.4H17B—C17—H17C109.5
O5—Cu1—N1—C50.2 (3)C1—C2—C3—C465.5 (4)
O1—Cu1—N1—C5171.9 (3)C2—C3—C4—O35.9 (6)
O6—Cu1—N1—C5146.7 (12)C2—C3—C4—O4175.0 (4)
O9—Cu1—N1—C599.1 (3)C2—N1—C5—C6174.1 (3)
O5—Cu1—N1—C2171.9 (2)Cu1—N1—C5—C63.2 (5)
O1—Cu1—N1—C216.4 (2)N1—C5—C6—C11177.3 (4)
O6—Cu1—N1—C241.6 (14)N1—C5—C6—C73.0 (6)
O9—Cu1—N1—C272.6 (2)Cu1—O5—C7—C8175.5 (3)
O5—Cu1—O1—C186.2 (8)Cu1—O5—C7—C64.6 (5)
N1—Cu1—O1—C17.0 (3)C11—C6—C7—O5178.6 (3)
O6—Cu1—O1—C1175.2 (3)C5—C6—C7—O51.0 (6)
O9—Cu1—O1—C178.5 (3)C11—C6—C7—C81.3 (5)
N1—Cu1—O5—C73.6 (3)C5—C6—C7—C8179.1 (3)
O1—Cu1—O5—C774.9 (9)O5—C7—C8—C9178.1 (4)
O6—Cu1—O5—C7173.5 (3)C6—C7—C8—C91.8 (5)
O9—Cu1—O5—C789.5 (3)O5—C7—C8—Br12.8 (5)
O5—Cu1—O6—C124.6 (3)C6—C7—C8—Br1177.3 (3)
N1—Cu1—O6—C12151.2 (13)C7—C8—C9—C102.2 (6)
O1—Cu1—O6—C12176.2 (3)Br1—C8—C9—C10176.9 (3)
O9—Cu1—O6—C1295.1 (3)C8—C9—C10—C112.1 (6)
Cu1—O1—C1—O2179.4 (3)C8—C9—C10—Br2178.2 (3)
Cu1—O1—C1—C24.2 (4)C9—C10—C11—C61.7 (6)
C5—N1—C2—C336.1 (5)Br2—C10—C11—C6178.6 (3)
Cu1—N1—C2—C3151.8 (3)C7—C6—C11—C101.3 (6)
C5—N1—C2—C1166.3 (3)C5—C6—C11—C10179.1 (4)
Cu1—N1—C2—C121.6 (3)Cu1—O6—C12—N2175.0 (3)
O2—C1—C2—N1167.5 (3)C13—N2—C12—O63.3 (6)
O1—C1—C2—N117.0 (4)C14—N2—C12—O6176.1 (4)
O2—C1—C2—C335.7 (5)C17—N3—C15—O72.2 (10)
O1—C1—C2—C3148.8 (3)C16—N3—C15—O7176.9 (6)
N1—C2—C3—C462.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.762.565 (5)169
O8—H18···O2ii0.851.932.780 (4)176
O8—H19···O8iii0.852.042.889 (3)175
O9—H20···O8iv0.852.062.904 (4)170
O9—H21···O1v0.852.283.116 (4)167
C3—H3A···Br1vi0.973.133.605 (2)112
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+1; (v) x, y1, z; (vi) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C11H7Br2NO5)(C3H7NO)(H2O)]·C3H7NO·H2O
Mr638.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)46.176 (3), 5.1633 (19), 21.793 (2)
β (°) 116.186 (4)
V3)4662.6 (18)
Z8
Radiation typeMo Kα
µ (mm1)4.42
Crystal size (mm)0.56 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.191, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
11320, 4091, 3197
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.087, 1.04
No. of reflections4091
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.34

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O51.887 (3)Cu1—O61.969 (3)
Cu1—N11.916 (3)Cu1—O92.556 (3)
Cu1—O11.950 (3)
O5—Cu1—N193.51 (12)O1—Cu1—O690.42 (11)
O5—Cu1—O1171.55 (12)O5—Cu1—O999.55 (11)
N1—Cu1—O184.86 (12)N1—Cu1—O985.39 (11)
O5—Cu1—O690.85 (11)O1—Cu1—O988.60 (11)
N1—Cu1—O6174.78 (12)O6—Cu1—O996.73 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.762.565 (5)168.5
O8—H18···O2ii0.851.932.780 (4)175.9
O8—H19···O8iii0.852.042.889 (3)175.3
O9—H20···O8iv0.852.062.904 (4)170.0
O9—H21···O1v0.852.283.116 (4)167.0
C3—H3A···Br1vi0.973.133.605 (2)112
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y+1, z+1/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+3/2, y+1/2, z+1; (v) x, y1, z; (vi) x, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds