Download citation
Download citation
link to html
The mol­ecule of the title compound, C14H12BrNO2, is almost planar and the dihedral angle between the planes of the two aromatic rings is 3.8 (2)°. The mol­ecule exists in the crystal structure in the phenol-imine tautomeric form, with the H atom located on O rather than on N. This H atom is involved in a strong intra­molecular hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047824/lw2037sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047824/lw2037Isup2.hkl
Contains datablock I

CCDC reference: 667295

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.032
  • wR factor = 0.078
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.80 mm
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). There are two characteristic properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964). These properties result from proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). Schiff bases display two possible tautomeric forms, namely the phenol–imine and keto–amine forms. In the solid state, the keto–amine tautomer has been found in naphthaldimine (Hökelek et al., 2000). Nevertheless, in the solid state, it has been established that there is keto–amine tautomerism in naphthaldimine, while the phenol–imine form exists in salicylaldimine Schiff bases (Dey et al., 2001). Our investigations show that compound (I) adopts the phenol–imine tautomeric form. An ORTEP-3 (Farrugia, 1997) plot of the molecule of (I) is shown in Fig. 1. The C8—N1 and C1—C7 bond lengths are 1.413 (3) and 1.453 (3) Å, respectively (Table 1), and agree with the corresponding distances in (E)-2-Methoxy-6-[(2-trifluoromethylphenylimino)methyl]phenol [1.418 (5) and 1.454 (5) Å; Şahin et al., 2005]. The N1C7 bond length of 1.274 (3) Å is typical of a double bond, similar to the corresponding bond length in N-[3,5-Bis(trifluoromethyl)phenyl]salicylaldimine [1.276 (4) Å; Karadayı et al., 2003]. The O2—C4 distance of 1.338 (3) Å is close to the value of 1.349 (6) Å in 3-tert-butyl-2-hydroxy-5-methoxyazobenzene (Işık et al., 1998).

Fig. 1 also shows a strong intramolecular hydrogen bond (O2—H2···N1) can be described as an S(6) motif (Bernstein et al., 1995). The O1—N1 distance of 2.575 (3) Å is comparable to those observed for analogous hydrogen bonds in (E)-2-[4-(Dimethylamino)phenyliminomethyl]-6-methylphenol [2.574 (3) Å; Gül et al., 2007].

Related literature top

Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964; Hadjoudis et al., 1987). For other relevant literature, see: Bernstein et al. (1995); Calligaris et al. (1972); Dey et al. (2001); Farrugia (1999); Gül et al. (2007); Hökelek et al. (2000); Işık et al. (1998); Karadayı et al. (2003); Şahin et al. (2005).

Experimental top

The compound (E)-2-[(2-Methoxyphenylimino)methyl]-4-bromophenol was prepared by reflux a mixture of a solution containing 5-bromosalicylaldehyde (0.05 g 0.25 mmol) in 20 ml e thanol and a solution containing o-Anisidine (0.03 g 0.37 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (E)-2-[(2-Methoxyphenylimino)methyl]-4-bromophenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 70; m.p. 385–387 K).

Refinement top

The H2 atom was located in a difference map and refined freely (distances given in Table 2). All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Structure description top

Schiff bases have been extensively used as ligands in the field of coordination chemistry (Calligaris et al., 1972). There are two characteristic properties of Schiff bases, viz. photochromism and thermochromism (Cohen et al., 1964). These properties result from proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987). Schiff bases display two possible tautomeric forms, namely the phenol–imine and keto–amine forms. In the solid state, the keto–amine tautomer has been found in naphthaldimine (Hökelek et al., 2000). Nevertheless, in the solid state, it has been established that there is keto–amine tautomerism in naphthaldimine, while the phenol–imine form exists in salicylaldimine Schiff bases (Dey et al., 2001). Our investigations show that compound (I) adopts the phenol–imine tautomeric form. An ORTEP-3 (Farrugia, 1997) plot of the molecule of (I) is shown in Fig. 1. The C8—N1 and C1—C7 bond lengths are 1.413 (3) and 1.453 (3) Å, respectively (Table 1), and agree with the corresponding distances in (E)-2-Methoxy-6-[(2-trifluoromethylphenylimino)methyl]phenol [1.418 (5) and 1.454 (5) Å; Şahin et al., 2005]. The N1C7 bond length of 1.274 (3) Å is typical of a double bond, similar to the corresponding bond length in N-[3,5-Bis(trifluoromethyl)phenyl]salicylaldimine [1.276 (4) Å; Karadayı et al., 2003]. The O2—C4 distance of 1.338 (3) Å is close to the value of 1.349 (6) Å in 3-tert-butyl-2-hydroxy-5-methoxyazobenzene (Işık et al., 1998).

Fig. 1 also shows a strong intramolecular hydrogen bond (O2—H2···N1) can be described as an S(6) motif (Bernstein et al., 1995). The O1—N1 distance of 2.575 (3) Å is comparable to those observed for analogous hydrogen bonds in (E)-2-[4-(Dimethylamino)phenyliminomethyl]-6-methylphenol [2.574 (3) Å; Gül et al., 2007].

Schiff base compounds can be classified by their photochromic and thermochromic characteristics (Cohen et al., 1964; Hadjoudis et al., 1987). For other relevant literature, see: Bernstein et al. (1995); Calligaris et al. (1972); Dey et al. (2001); Farrugia (1999); Gül et al. (2007); Hökelek et al. (2000); Işık et al. (1998); Karadayı et al. (2003); Şahin et al. (2005).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability.
(E)-4-Bromo-2-(2-methoxyphenyliminomethyl)phenol top
Crystal data top
C14H12BrNO2F(000) = 1232
Mr = 306.16Dx = 1.613 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12164 reflections
a = 32.926 (3) Åθ = 2.4–29.5°
b = 4.5564 (2) ŵ = 3.25 mm1
c = 17.7214 (16) ÅT = 296 K
β = 108.465 (7)°Prism, brown
V = 2521.8 (4) Å30.80 × 0.38 × 0.08 mm
Z = 8
Data collection top
Stoe IPDS II
diffractometer
2480 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.4°
ω scansh = 4040
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 55
Tmin = 0.221, Tmax = 0.712l = 2121
12218 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
2480 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C14H12BrNO2V = 2521.8 (4) Å3
Mr = 306.16Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.926 (3) ŵ = 3.25 mm1
b = 4.5564 (2) ÅT = 296 K
c = 17.7214 (16) Å0.80 × 0.38 × 0.08 mm
β = 108.465 (7)°
Data collection top
Stoe IPDS II
diffractometer
2480 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
1712 reflections with I > 2σ(I)
Tmin = 0.221, Tmax = 0.712Rint = 0.052
12218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 0.98Δρmax = 0.26 e Å3
2480 reflectionsΔρmin = 0.46 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.234247 (8)0.00729 (8)0.138938 (19)0.06755 (13)
O20.41248 (5)0.4833 (4)0.22498 (11)0.0609 (5)
H20.41470.59890.19100.091*
N10.38806 (6)0.7855 (4)0.09558 (12)0.0442 (5)
C10.29059 (8)0.1497 (6)0.16474 (16)0.0456 (6)
C80.39867 (7)0.9886 (6)0.04460 (14)0.0421 (5)
C90.37013 (8)1.1040 (6)0.02393 (16)0.0492 (6)
H90.34151.04720.03910.059*
O10.46804 (6)0.9510 (5)0.13433 (11)0.0636 (6)
C30.34117 (7)0.4621 (5)0.13301 (14)0.0401 (5)
C40.37255 (7)0.3770 (6)0.20377 (15)0.0440 (6)
C100.38344 (9)1.3026 (6)0.07027 (16)0.0533 (7)
H100.36401.37750.11650.064*
C20.30006 (7)0.3460 (6)0.11415 (15)0.0453 (6)
H220.27910.40140.06740.054*
C70.35084 (8)0.6732 (6)0.07962 (15)0.0453 (6)
H70.32960.72710.03310.054*
C50.36185 (8)0.1758 (6)0.25349 (16)0.0519 (7)
H50.38250.11660.30030.062*
C130.44153 (8)1.0756 (6)0.06709 (16)0.0492 (7)
C60.32113 (9)0.0640 (6)0.23411 (16)0.0506 (7)
H60.31420.06940.26780.061*
C120.45450 (9)1.2780 (7)0.02073 (18)0.0646 (8)
H120.48291.33940.03590.078*
C110.42538 (10)1.3882 (7)0.04772 (18)0.0621 (8)
H110.43441.52190.07880.075*
C140.51133 (9)1.0510 (9)0.1620 (2)0.0876 (12)
H14A0.52660.94710.20970.131*
H14B0.51181.25740.17310.131*
H14C0.52471.01560.12200.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04646 (16)0.0750 (2)0.0816 (2)0.01226 (15)0.02084 (14)0.0042 (2)
O20.0431 (9)0.0699 (12)0.0585 (11)0.0084 (10)0.0001 (8)0.0139 (11)
N10.0433 (11)0.0431 (12)0.0450 (12)0.0022 (9)0.0125 (9)0.0001 (10)
C10.0409 (12)0.0454 (14)0.0517 (15)0.0011 (11)0.0161 (12)0.0004 (13)
C80.0450 (12)0.0389 (12)0.0427 (12)0.0022 (12)0.0145 (10)0.0045 (14)
C90.0462 (14)0.0480 (14)0.0496 (15)0.0037 (11)0.0098 (12)0.0006 (12)
O10.0456 (10)0.0797 (15)0.0555 (11)0.0110 (10)0.0019 (8)0.0151 (11)
C30.0400 (11)0.0388 (14)0.0403 (12)0.0008 (10)0.0113 (10)0.0036 (12)
C40.0378 (13)0.0453 (13)0.0456 (14)0.0021 (10)0.0083 (11)0.0022 (12)
C100.0612 (16)0.0525 (17)0.0435 (15)0.0005 (13)0.0126 (13)0.0031 (13)
C20.0401 (13)0.0468 (14)0.0452 (14)0.0002 (11)0.0082 (11)0.0006 (12)
C70.0456 (14)0.0432 (15)0.0436 (14)0.0018 (11)0.0093 (11)0.0006 (12)
C50.0508 (15)0.0559 (17)0.0444 (15)0.0025 (12)0.0084 (12)0.0086 (14)
C130.0453 (14)0.0537 (17)0.0458 (15)0.0038 (11)0.0105 (12)0.0015 (12)
C60.0556 (15)0.0505 (18)0.0490 (15)0.0009 (12)0.0211 (12)0.0056 (12)
C120.0513 (16)0.078 (2)0.0624 (19)0.0161 (15)0.0152 (14)0.0107 (17)
C110.0629 (18)0.0669 (18)0.0599 (18)0.0091 (15)0.0241 (15)0.0138 (15)
C140.0432 (15)0.137 (4)0.072 (2)0.0155 (19)0.0029 (14)0.022 (2)
Geometric parameters (Å, º) top
Br1—C11.904 (2)C4—C51.392 (4)
O2—C41.338 (3)C10—C111.367 (4)
O2—H20.8200C10—H100.9300
N1—C71.274 (3)C2—H220.9300
N1—C81.413 (3)C7—H70.9300
C1—C21.370 (4)C5—C61.372 (4)
C1—C61.376 (4)C5—H50.9300
C8—C91.382 (4)C13—C121.389 (4)
C8—C131.397 (3)C6—H60.9300
C9—C101.383 (4)C12—C111.381 (4)
C9—H90.9300C12—H120.9300
O1—C131.358 (3)C11—H110.9300
O1—C141.427 (3)C14—H14A0.9600
C3—C21.392 (3)C14—H14B0.9600
C3—C41.404 (3)C14—H14C0.9600
C3—C71.453 (3)
C4—O2—H2109.5N1—C7—C3121.0 (2)
C7—N1—C8122.4 (2)N1—C7—H7119.5
C2—C1—C6121.1 (2)C3—C7—H7119.5
C2—C1—Br1119.63 (19)C6—C5—C4120.6 (2)
C6—C1—Br1119.26 (19)C6—C5—H5119.7
C9—C8—C13119.1 (2)C4—C5—H5119.7
C9—C8—N1125.0 (2)O1—C13—C12124.3 (2)
C13—C8—N1115.8 (2)O1—C13—C8116.2 (2)
C8—C9—C10121.0 (2)C12—C13—C8119.4 (3)
C8—C9—H9119.5C5—C6—C1119.9 (2)
C10—C9—H9119.5C5—C6—H6120.1
C13—O1—C14117.6 (2)C1—C6—H6120.1
C2—C3—C4119.6 (2)C11—C12—C13120.2 (3)
C2—C3—C7119.5 (2)C11—C12—H12119.9
C4—C3—C7120.9 (2)C13—C12—H12119.9
O2—C4—C5118.9 (2)C10—C11—C12120.6 (3)
O2—C4—C3122.1 (2)C10—C11—H11119.7
C5—C4—C3119.0 (2)C12—C11—H11119.7
C11—C10—C9119.6 (3)O1—C14—H14A109.5
C11—C10—H10120.2O1—C14—H14B109.5
C9—C10—H10120.2H14A—C14—H14B109.5
C1—C2—C3119.8 (2)O1—C14—H14C109.5
C1—C2—H22120.1H14A—C14—H14C109.5
C3—C2—H22120.1H14B—C14—H14C109.5
C7—N1—C8—C94.9 (4)O2—C4—C5—C6179.4 (3)
C7—N1—C8—C13175.3 (2)C3—C4—C5—C60.6 (4)
C13—C8—C9—C100.1 (4)C14—O1—C13—C124.7 (4)
N1—C8—C9—C10179.9 (2)C14—O1—C13—C8175.6 (3)
C2—C3—C4—O2179.6 (2)C9—C8—C13—O1179.1 (2)
C7—C3—C4—O20.4 (4)N1—C8—C13—O11.1 (3)
C2—C3—C4—C50.4 (4)C9—C8—C13—C120.7 (4)
C7—C3—C4—C5179.6 (2)N1—C8—C13—C12179.1 (2)
C8—C9—C10—C110.5 (4)C4—C5—C6—C10.4 (4)
C6—C1—C2—C30.2 (4)C2—C1—C6—C50.0 (4)
Br1—C1—C2—C3179.73 (19)Br1—C1—C6—C5179.9 (2)
C4—C3—C2—C10.0 (4)O1—C13—C12—C11178.6 (3)
C7—C3—C2—C1179.2 (2)C8—C13—C12—C111.1 (4)
C8—N1—C7—C3179.3 (2)C9—C10—C11—C120.1 (5)
C2—C3—C7—N1179.3 (2)C13—C12—C11—C100.7 (5)
C4—C3—C7—N10.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.852.575 (3)147

Experimental details

Crystal data
Chemical formulaC14H12BrNO2
Mr306.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)32.926 (3), 4.5564 (2), 17.7214 (16)
β (°) 108.465 (7)
V3)2521.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)3.25
Crystal size (mm)0.80 × 0.38 × 0.08
Data collection
DiffractometerStoe IPDS II
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.221, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
12218, 2480, 1712
Rint0.052
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 0.98
No. of reflections2480
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.46

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
O2—C41.338 (3)N1—C81.413 (3)
N1—C71.274 (3)C3—C71.453 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.852.575 (3)147
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds