Download citation
Download citation
link to html
The title compound, [Rh(C5H7O2)(C18H21P)(CO)], has the acetyl­acetonate-chelated RhI atom in a square-planar geometry. Intra­molecular C—H...O hydrogen bonds exist between the acetyl­acetonate group and the cyclo­hexyl ring, resulting in a buckling of the acetyl­acetonate skeleton. Mol­ecules are packed in positions of least steric hindrance, with the phosphine ligands positioned above and below the Rh–acetyl­acetonate backbone.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052427/ng2345sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052427/ng2345Isup2.hkl
Contains datablock I

CCDC reference: 667229

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.024
  • wR factor = 0.061
  • Data-to-parameter ratio = 18.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.56 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C14 - C15 .. 6.20 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C15 - C16 .. 5.02 su
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.00 From the CIF: _reflns_number_total 4825 Count of symmetry unique reflns 2762 Completeness (_total/calc) 174.69% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2063 Fraction of Friedel pairs measured 0.747 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

This work is part of an ongoing investigation aimed at determing the steric and electronic effects induced by various phosphine ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphine complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy et al., 1989). Symmetrical di-phosphine ligands result in the producton of acetaldehyde, whereas unsymmetrical di-phosphine ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). The title compound, [Rh(acac)(CO)(PCyPh2)] (Cy = cyclohexyl, Ph = phenyl), (Fig. 1), forms part of our study on complexes of the type [Rh(β-diketone)(CO)(PR1R2R3)] (R1, R2 and R3 = cyclohexyl or phenyl).

Slight distortion of the square-planar coordination sphere is observed as illustrated by a 5.04 (4)° deviation from the square plane. The Rh(I) atom deviates by 0.0596 (2) Å from the plane defined by the four coordinate atoms O2, O3, P1 and C1. The acetylacetonate ligand exhibits a bite angle of 88.72 (7)° and the C1—Rh—P1 bond angle is 88.51 (8)°. The carbonyl ligand is nearly linear (Rh1—C1—O1 = 179.2 (3)°). Intramolecular C—H···O interaction (Table 2) results in twisting of the the acetylacetonate backbone as indicated by the C2—O2—O3—C4 torsion angle (3.1 (2)°).

The steric demand of the cyclohexyldiphenyl phosphine ligand is quantified by the effective cone angle (θE), calculated using the actual Rh—P bond distance (Otto et al., 2000). The θE value of 151° agrees with the value determined by Meij et al. (2003) for the trans-[PdCl2(PCyPh2)2] complex (151 and 155°). The value of the effective cone angle of the title compound fits the sequence of 163° for [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and of 145 and 170° for the corresponding Vaska-type rhodium complexes trans- [Rh(CO)(Cl)(PPh3)2] and trans-[Rh(CO)(Cl)(PCy3)2] (Roodt et al., 2003). In Table 3, the title compound is compared with other closely related Rh(I) phosphine complexes from literature containing the acetylacetonate bidentate ligand.

Related literature top

For background literature on the catalytic activity of rhodium–phosphine adducts, see Carraz et al. (2000); Moloy & Wegman (1989). Corresponding [Rh(acac)(CO)(PR1R2R3)] complexes, such as [Rh(acac)(CO)(PPh3)] (Leipoldt et al., 1978), [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and [Rh(acac)(CO)(PCy3)] (Trzeciak et al., 2004) have similar square-planar geometries. For related structures, see Marthinus Janse van Rensburg et al. (2006). For comparison of electronic parameters, see Otto & Roodt (2004).For a related palladium compound, see Meij et al. (2003). For the related Vaska-type compunds, see Otto et al. (2000); Roodt et al. (2003). For the synthesis of the starting dirhodium compound, see McCleverty & Wilkinson (1990).

Experimental top

[RhCl(CO)2]2 was prepared according to McCleverty and Wilkinson (1990). [Rh(acac)(CO)2] was synthesized by mixing a solution of acetylacetonate (85.0 mg, 0.849 mmol) in dimethylformamide (DMF) and [RhCl(CO)2]2 (121.5 mg, 0.313 mmol) in DMF. Upon addition of ice-water, the complex precipitated and was filtered off. Ligand substitution on the complex [Rh(acac)(CO)2] was performed by dissolving (80.0 mg, 0.310 mmol) in acetone followed by slow addition of PCyPh2 (95.5 mg, 0.356 mmol). Crystals of (I) were obtained by slow evaporation of the reaction mixture. Spectroscopic analysis: 31P{H} NMR (CDCl3, 121.495 MHz, p.p.m.): 53.3 [d, 1J(Rh—P) = 171.3 Hz]; IR υ(CO): 1971.2 cm-1; (CH2Cl2) υ(CO): 1959.3 cm-1.

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–0.98Å and Uiso(H) = 1.5Ueq(C) and 1.2Ueq(C), respectively. The methyl protons were located in a difference Fourier map and the group was refined as a rigid rotor. Residual electron density due to disorder resulted in large thermal vibrations on the periphery. Phenyl carbons, C31 to C36, were restrained as planar atoms. The anisotropic displacement parameters for C13 were restrained.

Structure description top

This work is part of an ongoing investigation aimed at determing the steric and electronic effects induced by various phosphine ligands on a rhodium(I) metal centre. Previous work illustrating the catalytic importance of the rhodium(I) square-planar moieties has been conducted on rhodium mono- and di-phosphine complexes containing the symmetrical bidentate ligand, acac (acac = acetylacetonate) (Moloy et al., 1989). Symmetrical di-phosphine ligands result in the producton of acetaldehyde, whereas unsymmetrical di-phosphine ligands are more stable and efficient catalysts for the carbonylation of methanol to acetic acid (Carraz et al., 2000). The title compound, [Rh(acac)(CO)(PCyPh2)] (Cy = cyclohexyl, Ph = phenyl), (Fig. 1), forms part of our study on complexes of the type [Rh(β-diketone)(CO)(PR1R2R3)] (R1, R2 and R3 = cyclohexyl or phenyl).

Slight distortion of the square-planar coordination sphere is observed as illustrated by a 5.04 (4)° deviation from the square plane. The Rh(I) atom deviates by 0.0596 (2) Å from the plane defined by the four coordinate atoms O2, O3, P1 and C1. The acetylacetonate ligand exhibits a bite angle of 88.72 (7)° and the C1—Rh—P1 bond angle is 88.51 (8)°. The carbonyl ligand is nearly linear (Rh1—C1—O1 = 179.2 (3)°). Intramolecular C—H···O interaction (Table 2) results in twisting of the the acetylacetonate backbone as indicated by the C2—O2—O3—C4 torsion angle (3.1 (2)°).

The steric demand of the cyclohexyldiphenyl phosphine ligand is quantified by the effective cone angle (θE), calculated using the actual Rh—P bond distance (Otto et al., 2000). The θE value of 151° agrees with the value determined by Meij et al. (2003) for the trans-[PdCl2(PCyPh2)2] complex (151 and 155°). The value of the effective cone angle of the title compound fits the sequence of 163° for [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and of 145 and 170° for the corresponding Vaska-type rhodium complexes trans- [Rh(CO)(Cl)(PPh3)2] and trans-[Rh(CO)(Cl)(PCy3)2] (Roodt et al., 2003). In Table 3, the title compound is compared with other closely related Rh(I) phosphine complexes from literature containing the acetylacetonate bidentate ligand.

For background literature on the catalytic activity of rhodium–phosphine adducts, see Carraz et al. (2000); Moloy & Wegman (1989). Corresponding [Rh(acac)(CO)(PR1R2R3)] complexes, such as [Rh(acac)(CO)(PPh3)] (Leipoldt et al., 1978), [Rh(acac)(CO)(PCy2Ph)] (Brink et al., 2007) and [Rh(acac)(CO)(PCy3)] (Trzeciak et al., 2004) have similar square-planar geometries. For related structures, see Marthinus Janse van Rensburg et al. (2006). For comparison of electronic parameters, see Otto & Roodt (2004).For a related palladium compound, see Meij et al. (2003). For the related Vaska-type compunds, see Otto et al. (2000); Roodt et al. (2003). For the synthesis of the starting dirhodium compound, see McCleverty & Wilkinson (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004) and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I), with atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. For the C atoms in rings; the first digit indicates ring number and the second digit indicates the position of the atom in the ring.
[Figure 2] Fig. 2. Unit cell view, showing the intermolecular H-bonding. The interaction is indicated with dashed lines. [Symmetry operators: (Rh1) x, y, z]
(Acetylacetonato-κ2O,O')carbonyl(cyclohexyldiphenylphosphine- κP)rhodium(I) top
Crystal data top
[Rh(C5H7O2)(C18H21P)(CO)]F(000) = 1024
Mr = 498.34Dx = 1.485 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7313 reflections
a = 9.4682 (5) Åθ = 2.4–28.3°
b = 12.7534 (6) ŵ = 0.86 mm1
c = 18.4602 (9) ÅT = 100 K
V = 2229.10 (19) Å3Plate, yellow
Z = 40.42 × 0.27 × 0.06 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4825 independent reflections
Radiation source: sealed tube4672 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 512 pixels mm-1θmax = 27°, θmin = 2.2°
ω and φ scansh = 1112
Absorption correction: multi-scan
SADABS (Bruker, 2004)
k = 1616
Tmin = 0.714, Tmax = 0.950l = 2312
12624 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0301P)2 + 1.123P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max = 0.001
wR(F2) = 0.061Δρmax = 0.56 e Å3
S = 1.06Δρmin = 0.62 e Å3
4825 reflectionsAbsolute structure: Flack (1983), 2064 Friedel pairs
258 parametersAbsolute structure parameter: 0.02 (2)
3 restraints
Crystal data top
[Rh(C5H7O2)(C18H21P)(CO)]V = 2229.10 (19) Å3
Mr = 498.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4682 (5) ŵ = 0.86 mm1
b = 12.7534 (6) ÅT = 100 K
c = 18.4602 (9) Å0.42 × 0.27 × 0.06 mm
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
4825 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2004)
4672 reflections with I > 2σ(I)
Tmin = 0.714, Tmax = 0.950Rint = 0.023
12624 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.56 e Å3
S = 1.06Δρmin = 0.62 e Å3
4825 reflectionsAbsolute structure: Flack (1983), 2064 Friedel pairs
258 parametersAbsolute structure parameter: 0.02 (2)
3 restraints
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 566 frames were collected with a frame width of 0.5° covering up to θ = 27.00° with 99.0% completeness accomplized.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2396 (3)0.5478 (2)0.07028 (15)0.0204 (6)
O10.3520 (2)0.56474 (19)0.04995 (13)0.0321 (5)
P10.07950 (8)0.66367 (5)0.17222 (3)0.01498 (14)
O20.0442 (2)0.38392 (14)0.04299 (9)0.0194 (4)
O30.1404 (2)0.50184 (14)0.13645 (10)0.0200 (4)
C20.0620 (4)0.32317 (19)0.04253 (13)0.0192 (5)
C40.2233 (3)0.4269 (2)0.11987 (14)0.0184 (6)
C30.1889 (3)0.3388 (2)0.07867 (14)0.0212 (6)
H30.2580.28510.0750.025*
C50.0467 (4)0.2258 (2)0.00365 (16)0.0288 (7)
H5A0.01880.24590.05290.043*
H5B0.13710.18840.00530.043*
H5C0.02570.18010.01730.043*
C60.3723 (3)0.4384 (3)0.14649 (17)0.0264 (7)
H6A0.37260.47780.19210.04*
H6B0.41330.36880.15450.04*
H6C0.42830.4760.11020.04*
C310.1614 (4)0.7821 (2)0.13684 (15)0.0265 (7)
C210.1791 (3)0.6308 (2)0.25351 (14)0.0189 (6)
C110.0933 (3)0.7092 (3)0.20456 (16)0.0270 (7)
H110.13850.64280.22150.032*
C160.1869 (3)0.7417 (2)0.14486 (15)0.0236 (6)
H16A0.1460.80460.12140.028*
H16B0.18940.6850.10820.028*
C120.1011 (4)0.7767 (3)0.26998 (19)0.0344 (6)
H12A0.04910.74220.30990.041*
H12B0.05380.84420.25960.041*
C140.3460 (4)0.8275 (3)0.2347 (2)0.0372 (8)
H14A0.4440.82030.25280.045*
H14B0.33080.90240.22290.045*
C150.3322 (4)0.7656 (3)0.1672 (2)0.0430 (9)
H15A0.38370.69870.17360.052*
H15B0.3790.80460.12750.052*
C130.2474 (4)0.7977 (3)0.29391 (19)0.0344 (6)
H13A0.24560.85490.33020.041*
H13B0.28450.73420.31820.041*
C220.1109 (4)0.5767 (2)0.30957 (15)0.0260 (7)
H220.01280.56180.30610.031*
C230.1872 (5)0.5446 (2)0.37068 (16)0.0373 (9)
H230.14030.5090.40890.045*
C260.3233 (4)0.6486 (2)0.25875 (17)0.0261 (7)
H260.37170.68230.22010.031*
C240.3293 (5)0.5644 (3)0.37565 (19)0.0471 (11)
H240.38070.54190.4170.056*
C250.3979 (4)0.6174 (2)0.3202 (2)0.0393 (9)
H250.49590.63240.32410.047*
C320.1993 (3)0.8649 (2)0.18374 (15)0.0223 (6)
H320.18530.8580.23450.027*
C340.2447 (4)0.9782 (3)0.08060 (18)0.0388 (8)
H340.2611.04680.06230.047*
C360.1472 (4)0.8045 (3)0.06191 (16)0.0278 (7)
H360.09740.75770.0310.033*
C330.2576 (4)0.9577 (2)0.15549 (18)0.0350 (8)
H330.3051.00580.18630.042*
C350.2078 (5)0.8969 (3)0.03382 (18)0.0434 (10)
H350.22350.90380.01680.052*
Rh10.06207 (2)0.522795 (15)0.100971 (10)0.01435 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (16)0.0182 (14)0.0201 (13)0.0012 (10)0.0019 (12)0.0027 (10)
O10.0224 (13)0.0363 (13)0.0375 (12)0.0007 (9)0.0068 (10)0.0054 (10)
P10.0197 (4)0.0144 (3)0.0109 (3)0.0002 (3)0.0014 (3)0.0011 (2)
O20.0264 (12)0.0162 (9)0.0155 (8)0.0010 (9)0.0038 (9)0.0021 (7)
O30.0222 (11)0.0178 (11)0.0199 (9)0.0002 (7)0.0036 (8)0.0021 (7)
C20.0292 (15)0.0164 (12)0.0120 (11)0.0011 (13)0.0025 (13)0.0023 (9)
C40.0209 (15)0.0191 (12)0.0152 (13)0.0002 (11)0.0003 (10)0.0050 (10)
C30.0267 (16)0.0167 (12)0.0202 (13)0.0051 (12)0.0016 (12)0.0002 (10)
C50.043 (2)0.0180 (14)0.0250 (13)0.0045 (14)0.0063 (15)0.0072 (11)
C60.0235 (16)0.0287 (16)0.0268 (15)0.0007 (13)0.0037 (12)0.0043 (12)
C310.046 (2)0.0160 (13)0.0173 (13)0.0047 (13)0.0026 (14)0.0035 (11)
C210.0291 (16)0.0155 (13)0.0120 (11)0.0003 (11)0.0047 (12)0.0002 (10)
C110.0209 (18)0.0337 (16)0.0264 (14)0.0049 (12)0.0039 (12)0.0160 (13)
C160.0217 (16)0.0277 (15)0.0215 (13)0.0030 (12)0.0002 (12)0.0003 (11)
C120.0340 (15)0.0293 (12)0.0400 (13)0.0005 (10)0.0058 (11)0.0135 (10)
C140.0270 (19)0.0256 (17)0.059 (2)0.0020 (13)0.0096 (17)0.0005 (16)
C150.032 (2)0.041 (2)0.055 (2)0.0136 (16)0.0134 (18)0.0221 (18)
C130.0340 (15)0.0293 (12)0.0400 (13)0.0005 (10)0.0058 (11)0.0135 (10)
C220.042 (2)0.0177 (14)0.0183 (13)0.0026 (12)0.0014 (13)0.0004 (11)
C230.078 (3)0.0185 (15)0.0153 (12)0.0046 (16)0.0058 (17)0.0013 (11)
C260.0294 (18)0.0163 (14)0.0325 (16)0.0016 (12)0.0064 (14)0.0008 (12)
C240.084 (3)0.0221 (16)0.0351 (18)0.0128 (19)0.038 (2)0.0035 (14)
C250.042 (2)0.0219 (15)0.054 (2)0.0050 (14)0.0323 (18)0.0090 (15)
C320.0242 (16)0.0227 (14)0.0200 (13)0.0049 (12)0.0014 (12)0.0034 (11)
C340.046 (2)0.0363 (17)0.0337 (17)0.0129 (18)0.0090 (15)0.0143 (16)
C360.038 (2)0.0290 (16)0.0167 (14)0.0021 (14)0.0033 (13)0.0016 (12)
C330.053 (2)0.0193 (15)0.0332 (17)0.0011 (14)0.0033 (16)0.0041 (13)
C350.080 (3)0.0309 (18)0.0194 (15)0.0161 (19)0.0104 (18)0.0101 (13)
Rh10.01800 (10)0.01415 (9)0.01091 (8)0.00045 (8)0.00012 (9)0.00112 (8)
Geometric parameters (Å, º) top
C1—O11.149 (4)C16—H16A0.99
C1—Rh11.802 (3)C16—H16B0.99
P1—C311.819 (3)C12—C131.479 (5)
P1—C211.821 (3)C12—H12A0.99
P1—C111.836 (3)C12—H12B0.99
P1—Rh12.2328 (6)C14—C151.480 (5)
O2—C21.269 (4)C14—C131.487 (5)
O2—Rh12.0764 (18)C14—H14A0.99
O3—C41.274 (3)C14—H14B0.99
O3—Rh12.044 (2)C15—H15A0.99
C2—C31.388 (4)C15—H15B0.99
C2—C51.513 (4)C13—H13A0.99
C4—O31.274 (3)C13—H13B0.99
C4—O31.274 (3)C22—C231.401 (4)
C4—C31.395 (4)C22—H220.95
C4—C61.501 (4)C23—C241.372 (6)
C3—H30.95C23—H230.95
C5—H5A0.98C26—C251.394 (4)
C5—H5B0.98C26—H260.95
C5—H5C0.98C24—C251.387 (6)
C6—H6A0.98C24—H240.95
C6—H6B0.98C25—H250.95
C6—H6C0.98C32—C331.406 (4)
C31—C321.412 (4)C32—H320.95
C31—C361.419 (4)C34—C351.393 (5)
C21—C261.388 (5)C34—C331.412 (5)
C21—C221.402 (4)C34—H340.95
C11—C161.473 (4)C36—C351.410 (5)
C11—C121.485 (4)C36—H360.95
C11—H111C33—H330.95
C16—C151.469 (5)C35—H350.95
O1—C1—Rh1179.0 (3)C15—C14—C13115.3 (3)
C31—P1—C21105.44 (14)C15—C14—H14A108.5
C31—P1—C11103.52 (16)C13—C14—H14A108.5
C21—P1—C11105.45 (14)C15—C14—H14B108.5
C31—P1—Rh1119.22 (10)C13—C14—H14B108.5
C21—P1—Rh1109.80 (9)H14A—C14—H14B107.5
C11—P1—Rh1112.35 (10)C16—C15—C14115.5 (3)
C2—O2—Rh1126.06 (18)C16—C15—H15A108.4
C4—O3—Rh1126.78 (18)C14—C15—H15A108.4
O2—C2—C3126.5 (2)C16—C15—H15B108.4
O2—C2—C5115.4 (3)C14—C15—H15B108.4
C3—C2—C5118.2 (3)H15A—C15—H15B107.5
O3—C4—C3126.3 (3)C12—C13—C14114.5 (3)
O3—C4—C6115.3 (3)C12—C13—H13A108.6
C3—C4—C6118.5 (3)C14—C13—H13A108.6
C2—C3—C4125.4 (3)C12—C13—H13B108.6
C2—C3—H3117.3C14—C13—H13B108.6
C4—C3—H3117.3H13A—C13—H13B107.6
C2—C5—H5A109.5C23—C22—C21120.0 (3)
C2—C5—H5B109.5C23—C22—H22120
H5A—C5—H5B109.5C21—C22—H22120
C2—C5—H5C109.5C24—C23—C22120.4 (3)
H5A—C5—H5C109.5C24—C23—H23119.8
H5B—C5—H5C109.5C22—C23—H23119.8
C4—C6—H6A109.5C21—C26—C25120.6 (3)
C4—C6—H6B109.5C21—C26—H26119.7
H6A—C6—H6B109.5C25—C26—H26119.7
C4—C6—H6C109.5C23—C24—C25119.9 (3)
H6A—C6—H6C109.5C23—C24—H24120
H6B—C6—H6C109.5C25—C24—H24120
C32—C31—C36118.1 (3)C24—C25—C26120.1 (3)
C32—C31—P1120.6 (2)C24—C25—H25119.9
C36—C31—P1118.5 (2)C26—C25—H25119.9
C26—C21—C22118.9 (3)C33—C32—C31120.1 (3)
C26—C21—P1122.0 (2)C33—C32—H32119.9
C22—C21—P1118.9 (2)C31—C32—H32119.9
C16—C11—C12114.6 (3)C35—C34—C33119.4 (3)
C16—C11—P1112.4 (2)C35—C34—H34120.3
C12—C11—P1119.5 (2)C33—C34—H34120.3
C16—C11—H11102.4C35—C36—C31119.2 (3)
C12—C11—H11102.4C35—C36—H36120.4
P1—C11—H11102.4C31—C36—H36120.4
C15—C16—C11114.3 (3)C32—C33—C34119.0 (3)
C15—C16—H16A108.7C32—C33—H33120.5
C11—C16—H16A108.7C34—C33—H33120.5
C15—C16—H16B108.7C34—C35—C36119.7 (3)
C11—C16—H16B108.7C34—C35—H35120.1
H16A—C16—H16B107.6C36—C35—H35120.1
C13—C12—C11113.3 (3)C1—Rh1—O3177.31 (10)
C13—C12—H12A108.9C1—Rh1—O293.72 (10)
C11—C12—H12A108.9O3—Rh1—O288.69 (8)
C13—C12—H12B108.9C1—Rh1—P188.50 (9)
C11—C12—H12B108.9O3—Rh1—P189.18 (5)
H12A—C12—H12B107.7O2—Rh1—P1174.94 (5)
Rh1—O2—C2—C32.2 (4)C11—C16—C15—C1442.9 (4)
Rh1—O2—C2—C5179.09 (18)C13—C14—C15—C1640.8 (5)
Rh1—O3—C4—C35.7 (4)C11—C12—C13—C1445.8 (4)
Rh1—O3—C4—C6172.64 (18)C15—C14—C13—C1242.3 (4)
O2—C2—C3—C42.6 (5)C26—C21—C22—C232.2 (4)
C5—C2—C3—C4176.1 (3)P1—C21—C22—C23176.0 (2)
O3—C4—C3—C26.9 (5)C21—C22—C23—C241.0 (4)
C6—C4—C3—C2171.3 (3)C22—C21—C26—C252.9 (4)
C21—P1—C31—C3243.6 (3)P1—C21—C26—C25176.5 (2)
C11—P1—C31—C3266.9 (3)C22—C23—C24—C250.6 (5)
Rh1—P1—C31—C32167.5 (2)C23—C24—C25—C261.3 (5)
C21—P1—C31—C36155.6 (3)C21—C26—C25—C242.5 (5)
C11—P1—C31—C3693.9 (3)C36—C31—C32—C3316.8 (5)
Rh1—P1—C31—C3631.8 (3)P1—C31—C32—C33177.6 (3)
C31—P1—C21—C2634.9 (3)C32—C31—C36—C3517.6 (5)
C11—P1—C21—C26144.0 (2)P1—C31—C36—C35178.9 (3)
Rh1—P1—C21—C2694.7 (2)C31—C32—C33—C3416.1 (5)
C31—P1—C21—C22151.5 (2)C35—C34—C33—C3216.1 (6)
C11—P1—C21—C2242.4 (3)C33—C34—C35—C3617.2 (6)
Rh1—P1—C21—C2278.9 (2)C31—C36—C35—C3418.1 (6)
C31—P1—C11—C1668.1 (2)C4—O3—Rh1—O21.2 (2)
C21—P1—C11—C16178.6 (2)C4—O3—Rh1—P1176.6 (2)
Rh1—P1—C11—C1661.8 (2)C2—O2—Rh1—C1178.6 (2)
C31—P1—C11—C1270.5 (3)C2—O2—Rh1—O32.6 (2)
C21—P1—C11—C1240.0 (3)C31—P1—Rh1—C142.38 (16)
Rh1—P1—C11—C12159.6 (2)C21—P1—Rh1—C179.31 (14)
C12—C11—C16—C1546.9 (4)C11—P1—Rh1—C1163.68 (15)
P1—C11—C16—C15172.4 (2)C31—P1—Rh1—O3136.25 (14)
C16—C11—C12—C1348.4 (4)C21—P1—Rh1—O3102.06 (12)
P1—C11—C12—C13173.9 (3)C11—P1—Rh1—O314.95 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O312.392.962 (3)116
C16—H16B···O30.992.443.094 (3)123

Experimental details

Crystal data
Chemical formula[Rh(C5H7O2)(C18H21P)(CO)]
Mr498.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.4682 (5), 12.7534 (6), 18.4602 (9)
V3)2229.10 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.42 × 0.27 × 0.06
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
SADABS (Bruker, 2004)
Tmin, Tmax0.714, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
12624, 4825, 4672
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.06
No. of reflections4825
No. of parameters258
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.62
Absolute structureFlack (1983), 2064 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004) and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—O11.149 (4)O2—Rh12.0764 (18)
C1—Rh11.802 (3)O3—Rh12.044 (2)
P1—Rh12.2328 (6)
O1—C1—Rh1179.0 (3)O3—Rh1—O288.69 (8)
C1—Rh1—O3177.31 (10)C1—Rh1—P188.50 (9)
C1—Rh1—O293.72 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O312.392.962 (3)115.8
C16—H16B···O30.992.443.094 (3)123.3
Comparative spectroscopic (cm-1, ppm, Hz) and geometrical parameters (Å) for selected [Rh(acac)(CO)(P-Lig)] complexes. top
P-Ligυ(CO)δ31P1J(Rh-P)Rh-PC1-O1notes
PPh3198346177.42.244 (2)1.153 (11)(i,iv)
PCyPh2195953.3171.32.2327 (6)1.149 (4)(ii)
PCy2Ph194958.8168.32.2425 (9)1.151 (3)(iii)
PCy3194558170.02.2613 (10)1.169 (4)(iv)
Notes: (i) Leipoldt et al. (1978); (ii) This work; (iii) Brink et al. (2007); (iv) Trzeciak et al. (2004).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds