Download citation
Download citation
link to html
In the title compound, octa­chlorido-1κ4Cl,3κ4Cl-di-μ2-nitrido-1:2κ2N:N;2:3κ2N:N-tetra­pyridine-1κN,2κ2N,3κN-bis­(trimeth­yl­silylimido-2κN)tritungsten(V) dichloro­methane disolvate, [W3(C3H9NSi)2Cl8N2(C5H5N)4]·2CH2Cl2, the central W metal atom is located on a twofold rotation axis and is coordinated in a distorted octa­hedral environment by two trimethyl­silylimido groups, two pyridine mol­ecules and two μ-N atoms which bridge it to the two other W atoms. These terminal W centers also show a distorted octa­hedral coordination, the bridging N atom and the pyridine ligand being trans with respect to each other. Additionally, four Cl atoms are bound to each terminal W atom, in a square-planar geometry, completing the octa­hedral coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049033/zl2070sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049033/zl2070Isup2.hkl
Contains datablock I

CCDC reference: 667164

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.029
  • wR factor = 0.054
  • Data-to-parameter ratio = 23.7

checkCIF/PLATON results

No syntax errors found



Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.758 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.51 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.09 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Si1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C14
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for W1 (9) 7.09
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The title compound is a C2-symmetric trimetallic tungsten complex incorporating two µ-N moieties which are fairly rare in organometallic chemistry with only a few reported occurrences (Ergezinger et al., 1989). The W1—N2 bond distance of 2.090 (4) Å is in the range of W—N single bonds seen in tungsten amido compounds (Wu et al., 2006), whereas the W2—N2 bond (1.707 (4) Å) more closely resembles a tungsten imido triple bond (Bradley et al., 1987). Both bond lengths are comparable to the bond lengths seen in [WNCl3(PhCN)]4.3CH2Cl2, a compound which also incorporates a µ-N moiety (Ergezinger et al., 1989). This observation is further corroborated by a W2—N2—W1 bond angle of 169.2° which is typical for tungsten imido complexes (Bradley et al., 1983). The trimethylsilyl-imido functionality with a W1—N1 bond distance of 1.773 (4) Å and a W1—N1—Si1 bond angle of 169.3° are similar to reported values (Rische et al., 2006). The W—Cl bonds averaging 2.33 Å are within the expected range for chlorine rich tungsten imido complexes (Orpen et al., 1989). The W1—N3(py) bond length of 2.326 (4) Å is consistent with reported values whereas the W2—N4(py) bond (2.424 (4) Å) seems to be elongated due to the decreased trans-effect of the trimethylsilyl imido ligand compared to the bridging µ-N atom (Rische et al., 2006). Although the complex is C2-symmetric in the solid state, two resonances (δ 0.77 and 0.76 p.p.m.) can be observed in the 1H NMR spectrum.

Related literature top

Closely related structures were reported by Dehnicke & Strähle (1992) and Ergezinger et al. (1989). For related literature concerning the properties of tungsten nitrides, see: Dehnicke & Strähle (1965). For properties of tungsten–imido complexes and their application in chemical vapor deposition, see: Bradley et al., (1983, 1987) Bchir et al.(2005), Orpen et al., (1989) and Rische et al. (2006). For related literature, see: Wu et al. (2006).

Experimental top

In a 250 ml Schlenk flask WCl6 (3.75 g, 9.46 mmol) was suspended in 100 ml of toluene. 1,1,1,3,3,3-Hexamethyldisilazane (2.76 ml, 13.2 mmol) and of pyridine (4.08 ml, 50.4 mmol) were added via syringe at room temperature. The reaction mixture was stirred for an additional 24 h. The resulting red solution was filtered and the solvent removed in vacuo. The remaining solid was extracted with 2 x 10 ml of methylene chloride. The extracts were combined and filtered. The solution was layered with an equal volume of pentane and cooled to 248 K (-25 °C) to yield the pure title compound as a red crystalline solid. Yield 411 mg (10%, 3.15 mmol). 1H NMR (Benzene-d6, 298 K): δ 9.70 (br s, 4H, aromatic), 9.42 (d, 4H, aromatic), 6.95 (br s, 6H, aromatic), 6.73 (t, 2H, aromatic), 6.48 (t, 4H, aromatic), 0.77 (s, 9H, (SiCH3)3), 0.76 (s, 9H, (SiCH3)3). 13C NMR (Benzene-d6, 298 K): δ 3.59 (Si(CH3)3), 124.36 (aromatic), 125.07 (aromatic), 138.10 (aromatic), 139.35 (aromatic), 152.11 (aromatic), 153.26 (aromatic).

Refinement top

The H atoms were placed in idealized positions and were refined riding on their parent atoms. C—H distances of 0.98 and 0.95 Å were used for aromatic and methyl atoms respectively. The H atoms thermal parameters were 1.2Ueq of the parent C; 1.5U~eq~ for the methyl atoms.

Structure description top

The title compound is a C2-symmetric trimetallic tungsten complex incorporating two µ-N moieties which are fairly rare in organometallic chemistry with only a few reported occurrences (Ergezinger et al., 1989). The W1—N2 bond distance of 2.090 (4) Å is in the range of W—N single bonds seen in tungsten amido compounds (Wu et al., 2006), whereas the W2—N2 bond (1.707 (4) Å) more closely resembles a tungsten imido triple bond (Bradley et al., 1987). Both bond lengths are comparable to the bond lengths seen in [WNCl3(PhCN)]4.3CH2Cl2, a compound which also incorporates a µ-N moiety (Ergezinger et al., 1989). This observation is further corroborated by a W2—N2—W1 bond angle of 169.2° which is typical for tungsten imido complexes (Bradley et al., 1983). The trimethylsilyl-imido functionality with a W1—N1 bond distance of 1.773 (4) Å and a W1—N1—Si1 bond angle of 169.3° are similar to reported values (Rische et al., 2006). The W—Cl bonds averaging 2.33 Å are within the expected range for chlorine rich tungsten imido complexes (Orpen et al., 1989). The W1—N3(py) bond length of 2.326 (4) Å is consistent with reported values whereas the W2—N4(py) bond (2.424 (4) Å) seems to be elongated due to the decreased trans-effect of the trimethylsilyl imido ligand compared to the bridging µ-N atom (Rische et al., 2006). Although the complex is C2-symmetric in the solid state, two resonances (δ 0.77 and 0.76 p.p.m.) can be observed in the 1H NMR spectrum.

Closely related structures were reported by Dehnicke & Strähle (1992) and Ergezinger et al. (1989). For related literature concerning the properties of tungsten nitrides, see: Dehnicke & Strähle (1965). For properties of tungsten–imido complexes and their application in chemical vapor deposition, see: Bradley et al., (1983, 1987) Bchir et al.(2005), Orpen et al., (1989) and Rische et al. (2006). For related literature, see: Wu et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker 1998); data reduction: SHELXTL (Sheldrick, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL (Sheldrick, 2000); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. : The molecular structure with 50% probability ellipsoids, showing the atom labeling scheme. Subscript "A" in the atomic labels denotes atoms created by the symmetry operation i = (x + 1, y, z + 1/2).
octachlorido-1κ4Cl,3κ4Cl-di-µ2-nitrido-1:2κ2N:N;2:3κ2N:N-tetrapyridine-1κN,2κ2N,3κN-bis(trimethylsilylimido-2κN)tritungsten(V) dichloromethane disolvate top
Crystal data top
[W3(C3H9NSi)2Cl8N2(C5H5N)4]·2CH2Cl2F(000) = 2880
Mr = 1523.83Dx = 2.036 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 10.0546 (8) ÅCell parameters from 4105 reflections
b = 19.5493 (15) Åθ = 2.0–28.0°
c = 25.359 (2) ŵ = 7.65 mm1
β = 94.329 (2)°T = 173 K
V = 4970.3 (7) Å3Plate, red
Z = 40.34 × 0.29 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5688 independent reflections
Radiation source: fine-focus sealed tube3802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: integration
[based on measured indexed crystal faces (SHELXTL; Sheldrick, 2000)]
h = 1212
Tmin = 0.107, Tmax = 0.736k = 2325
15825 measured reflectionsl = 3032
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0063P)2]
where P = (Fo2 + 2Fc2)/3
5688 reflections(Δ/σ)max = 0.002
240 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
[W3(C3H9NSi)2Cl8N2(C5H5N)4]·2CH2Cl2V = 4970.3 (7) Å3
Mr = 1523.83Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.0546 (8) ŵ = 7.65 mm1
b = 19.5493 (15) ÅT = 173 K
c = 25.359 (2) Å0.34 × 0.29 × 0.04 mm
β = 94.329 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5688 independent reflections
Absorption correction: integration
[based on measured indexed crystal faces (SHELXTL; Sheldrick, 2000)]
3802 reflections with I > 2σ(I)
Tmin = 0.107, Tmax = 0.736Rint = 0.074
15825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 0.76Δρmax = 1.54 e Å3
5688 reflectionsΔρmin = 1.24 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The asymmetric unit consists of a half complex and a dichloromethane molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.50000.579772 (14)0.25000.02631 (8)
W20.700778 (18)0.558005 (11)0.130958 (9)0.02924 (6)
Cl10.75725 (13)0.44150 (7)0.13040 (6)0.0456 (4)
Cl20.91447 (12)0.57892 (8)0.17020 (6)0.0528 (4)
Cl30.67204 (14)0.67298 (7)0.11095 (6)0.0488 (4)
Cl40.51146 (11)0.53051 (7)0.07504 (5)0.0388 (3)
Cl50.14238 (18)0.81650 (10)0.01595 (9)0.0922 (7)
Cl60.12476 (16)0.79117 (9)0.04710 (7)0.0704 (5)
Si10.29608 (13)0.70110 (8)0.18333 (7)0.0444 (4)
N10.3864 (3)0.6351 (2)0.21422 (16)0.0335 (11)
N20.6182 (3)0.5604 (2)0.18735 (16)0.0310 (10)
N30.3784 (3)0.4851 (2)0.21409 (16)0.0295 (10)
N40.8088 (4)0.5616 (2)0.04871 (17)0.0350 (11)
C10.1684 (5)0.7262 (3)0.2266 (3)0.075 (2)
H1A0.21090.74450.25970.112*
H1B0.11420.68630.23430.112*
H1C0.11130.76140.20920.112*
C20.2213 (6)0.6674 (4)0.1205 (2)0.086 (3)
H2A0.16170.62930.12750.129*
H2B0.29190.65120.09900.129*
H2C0.17030.70370.10150.129*
C30.4096 (6)0.7721 (3)0.1717 (3)0.091 (3)
H3A0.44850.78950.20570.136*
H3B0.36010.80880.15260.136*
H3C0.48100.75590.15060.136*
C40.2439 (5)0.4848 (3)0.2134 (2)0.0410 (15)
H4A0.20100.52320.22760.049*
C50.1662 (6)0.4319 (3)0.1934 (2)0.0494 (16)
H5A0.07200.43380.19410.059*
C60.2253 (6)0.3769 (3)0.1726 (2)0.0560 (18)
H6A0.17290.33950.15920.067*
C70.3623 (6)0.3757 (3)0.1709 (2)0.0441 (15)
H7A0.40600.33840.15550.053*
C80.4322 (5)0.4299 (2)0.1920 (2)0.0363 (13)
H8A0.52640.42880.19110.044*
C90.7786 (5)0.5171 (3)0.0082 (2)0.0414 (15)
H9A0.71510.48200.01280.050*
C100.8371 (5)0.5209 (3)0.0397 (2)0.0456 (15)
H10A0.81280.48950.06730.055*
C110.9305 (5)0.5707 (3)0.0464 (2)0.0495 (16)
H11A0.97230.57370.07870.059*
C120.9635 (5)0.6164 (3)0.0061 (2)0.0450 (15)
H12A1.02740.65140.01030.054*
C130.9011 (5)0.6101 (3)0.0410 (2)0.0425 (15)
H13A0.92450.64130.06880.051*
C140.0070 (6)0.8512 (3)0.0316 (3)0.0626 (19)
H14A0.04420.87880.00130.075*
H14B0.01000.88240.06210.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.02293 (14)0.02997 (17)0.02613 (19)0.0000.00256 (12)0.000
W20.02455 (10)0.03619 (13)0.02732 (13)0.00144 (9)0.00412 (8)0.00063 (10)
Cl10.0468 (7)0.0413 (8)0.0502 (10)0.0111 (6)0.0139 (7)0.0082 (7)
Cl20.0292 (7)0.0874 (12)0.0414 (10)0.0116 (7)0.0003 (6)0.0000 (8)
Cl30.0599 (9)0.0359 (8)0.0531 (11)0.0014 (7)0.0215 (7)0.0034 (7)
Cl40.0298 (6)0.0512 (8)0.0349 (9)0.0032 (6)0.0007 (6)0.0006 (7)
Cl50.0739 (12)0.0853 (15)0.120 (2)0.0036 (11)0.0277 (12)0.0040 (13)
Cl60.0784 (11)0.0629 (11)0.0714 (14)0.0211 (9)0.0153 (9)0.0163 (9)
Si10.0259 (7)0.0428 (10)0.0640 (13)0.0041 (7)0.0001 (7)0.0170 (9)
N10.032 (2)0.037 (3)0.031 (3)0.0010 (19)0.005 (2)0.005 (2)
N20.0173 (19)0.048 (3)0.027 (3)0.0022 (18)0.0010 (17)0.006 (2)
N30.024 (2)0.036 (3)0.027 (3)0.0002 (18)0.0007 (18)0.003 (2)
N40.029 (2)0.047 (3)0.029 (3)0.001 (2)0.0058 (19)0.002 (2)
C10.052 (4)0.064 (5)0.109 (7)0.021 (3)0.018 (4)0.000 (4)
C20.063 (4)0.146 (7)0.047 (5)0.004 (5)0.017 (4)0.027 (5)
C30.051 (4)0.047 (4)0.176 (9)0.005 (3)0.021 (5)0.033 (5)
C40.030 (3)0.057 (4)0.035 (4)0.008 (3)0.005 (2)0.006 (3)
C50.040 (3)0.064 (4)0.043 (4)0.014 (3)0.003 (3)0.001 (3)
C60.064 (4)0.049 (4)0.053 (5)0.024 (3)0.009 (3)0.004 (3)
C70.062 (4)0.034 (3)0.037 (4)0.008 (3)0.006 (3)0.004 (3)
C80.039 (3)0.038 (3)0.032 (3)0.003 (2)0.006 (3)0.003 (3)
C90.033 (3)0.045 (4)0.045 (4)0.004 (2)0.004 (3)0.004 (3)
C100.039 (3)0.068 (4)0.029 (4)0.008 (3)0.002 (3)0.009 (3)
C110.036 (3)0.084 (5)0.030 (4)0.010 (3)0.013 (3)0.016 (3)
C120.037 (3)0.062 (4)0.038 (4)0.000 (3)0.010 (3)0.006 (3)
C130.031 (3)0.053 (4)0.043 (4)0.003 (3)0.006 (3)0.001 (3)
C140.081 (4)0.042 (4)0.067 (5)0.002 (3)0.024 (4)0.009 (3)
Geometric parameters (Å, º) top
W1—N1i1.773 (4)C2—H2B0.9800
W1—N11.773 (4)C2—H2C0.9800
W1—N22.090 (4)C3—H3A0.9800
W1—N2i2.090 (4)C3—H3B0.9800
W1—N3i2.362 (4)C3—H3C0.9800
W1—N32.362 (4)C4—C51.370 (7)
W2—N21.707 (4)C4—H4A0.9500
W2—Cl32.3174 (14)C5—C61.356 (8)
W2—Cl22.3347 (12)C5—H5A0.9500
W2—Cl12.3475 (13)C6—C71.382 (7)
W2—Cl42.3486 (12)C6—H6A0.9500
W2—N42.424 (4)C7—C81.358 (6)
Cl5—C141.721 (6)C7—H7A0.9500
Cl6—C141.733 (6)C8—H8A0.9500
Si1—N11.730 (4)C9—C101.390 (7)
Si1—C11.819 (6)C9—H9A0.9500
Si1—C21.831 (6)C10—C111.373 (7)
Si1—C31.835 (6)C10—H10A0.9500
N3—C81.349 (6)C11—C121.379 (8)
N3—C41.351 (6)C11—H11A0.9500
N4—C131.351 (6)C12—C131.396 (7)
N4—C91.364 (6)C12—H12A0.9500
C1—H1A0.9800C13—H13A0.9500
C1—H1B0.9800C14—H14A0.9900
C1—H1C0.9800C14—H14B0.9900
C2—H2A0.9800
N1i—W1—N1104.8 (2)H1B—C1—H1C109.5
N1i—W1—N296.79 (16)Si1—C2—H2A109.5
N1—W1—N295.93 (16)Si1—C2—H2B109.5
N1i—W1—N2i95.93 (17)H2A—C2—H2B109.5
N1—W1—N2i96.79 (16)Si1—C2—H2C109.5
N2—W1—N2i159.1 (2)H2A—C2—H2C109.5
N1i—W1—N3i89.20 (15)H2B—C2—H2C109.5
N1—W1—N3i165.99 (15)Si1—C3—H3A109.5
N2—W1—N3i80.98 (14)Si1—C3—H3B109.5
N2i—W1—N3i82.67 (14)H3A—C3—H3B109.5
N1i—W1—N3165.99 (15)Si1—C3—H3C109.5
N1—W1—N389.20 (15)H3A—C3—H3C109.5
N2—W1—N382.67 (14)H3B—C3—H3C109.5
N2i—W1—N380.98 (14)N3—C4—C5123.4 (5)
N3i—W1—N376.87 (18)N3—C4—H4A118.3
N2—W2—Cl395.54 (14)C5—C4—H4A118.3
N2—W2—Cl297.36 (11)C6—C5—C4119.3 (5)
Cl3—W2—Cl291.09 (5)C6—C5—H5A120.4
N2—W2—Cl199.47 (14)C4—C5—H5A120.4
Cl3—W2—Cl1164.98 (5)C5—C6—C7119.6 (5)
Cl2—W2—Cl187.55 (5)C5—C6—H6A120.2
N2—W2—Cl495.10 (11)C7—C6—H6A120.2
Cl3—W2—Cl490.45 (5)C8—C7—C6117.5 (6)
Cl2—W2—Cl4167.24 (5)C8—C7—H7A121.3
Cl1—W2—Cl487.69 (5)C6—C7—H7A121.3
N2—W2—N4175.95 (16)N3—C8—C7125.2 (5)
Cl3—W2—N480.80 (10)N3—C8—H8A117.4
Cl2—W2—N484.49 (10)C7—C8—H8A117.4
Cl1—W2—N484.18 (10)N4—C9—C10122.6 (5)
Cl4—W2—N483.25 (10)N4—C9—H9A118.7
N1—Si1—C1107.3 (3)C10—C9—H9A118.7
N1—Si1—C2107.0 (3)C11—C10—C9119.1 (5)
C1—Si1—C2111.1 (3)C11—C10—H10A120.5
N1—Si1—C3109.0 (2)C9—C10—H10A120.5
C1—Si1—C3111.6 (3)C10—C11—C12119.7 (6)
C2—Si1—C3110.6 (3)C10—C11—H11A120.2
Si1—N1—W1169.3 (3)C12—C11—H11A120.2
W2—N2—W1169.2 (2)C11—C12—C13118.6 (6)
C8—N3—C4115.1 (4)C11—C12—H12A120.7
C8—N3—W1125.1 (3)C13—C12—H12A120.7
C4—N3—W1119.8 (3)N4—C13—C12122.9 (5)
C13—N4—C9117.1 (5)N4—C13—H13A118.5
C13—N4—W2120.1 (4)C12—C13—H13A118.5
C9—N4—W2122.8 (4)Cl5—C14—Cl6114.1 (3)
Si1—C1—H1A109.5Cl5—C14—H14A108.7
Si1—C1—H1B109.5Cl6—C14—H14A108.7
H1A—C1—H1B109.5Cl5—C14—H14B108.7
Si1—C1—H1C109.5Cl6—C14—H14B108.7
H1A—C1—H1C109.5H14A—C14—H14B107.6
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[W3(C3H9NSi)2Cl8N2(C5H5N)4]·2CH2Cl2
Mr1523.83
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)10.0546 (8), 19.5493 (15), 25.359 (2)
β (°) 94.329 (2)
V3)4970.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)7.65
Crystal size (mm)0.34 × 0.29 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionIntegration
[based on measured indexed crystal faces (SHELXTL; Sheldrick, 2000)]
Tmin, Tmax0.107, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
15825, 5688, 3802
Rint0.074
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.054, 0.76
No. of reflections5688
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 1.24

Computer programs: SMART (Bruker, 1998), SAINT (Bruker 1998), SHELXTL (Sheldrick, 2000).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds