Download citation
Download citation
link to html
In the title mol­ecule, C17H18Cl2N2O, the angle between the mean planes of the 2,5-dichloro­phenyl­imino and phenol groups is 19.5 (5)°. The two ethyl groups adopt a synclinal conformation. The crystal structure is stabilized by inter­molecular π–π stacking inter­actions between adjacent 2,5-dichloro­phenyl rings, the distance between the centroids of inter­acting rings being 3.860 (8) Å. The mol­ecules are stacked parallel to the a axis. In addition, an O—H...N intra­molecular hydrogen-bonding inter­action between the phenol H atom and imino N atom is observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807055791/fj2061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807055791/fj2061Isup2.hkl
Contains datablock I

CCDC reference: 672856

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.041
  • wR factor = 0.120
  • Data-to-parameter ratio = 27.2

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.720 0.927 Tmin(prime) and Tmax expected: 0.807 0.927 RR(prime) = 0.892 Please check that your absorption correction is appropriate. PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 48 Perc. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.89
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases are synthesized from an aromatic amine and a carbonyl compound by a nucleophilic addition reaction. They are used as substrates in the preparation of number of biologically active compounds (Siddiqui et al., 2006). Some Schiff base derivatives are also known to have activities such as antimicrobial (El-Masry et al., 2000; Pandey et al., 1999), antifungal (Singh & Dash, 1988; Varma et al., 1986), antitumor (Hodnett & Dunn, 1970; Misra et al., 1981; Agarwal et al., 1983) and as herbicides (Samadhiya & Halve, 2001). The crystal structures of (E)-2-hydroxy-5-methyl-3-[(4-methyl-2 pyridyl)iminomethyl] benzaldehyde (Büyükgüngör et al., 2007), (E)-2-hydroxy-5-methyl-3-[(2-pyridylimino) methyl]benzaldehyde (Odabaşoğlu et al., 2007), 1-(4-{[(E)-(4-diethylamino-2-hydroxy phenyl)methylene]amino} phenyl)ethanone (Yathirajan et al., (2007), 2-{(E)-[(2-chloro-5-nitrophenyl)imino]methyl}-5-(diethylamino)phenol (Butcher et al., 2007) have been reported. A new Schiff base, (I), C17H18Cl2N2O is prepared and its crystal structure is reported.

The angle between the mean planes of the 2,5-dichlorophenyl-imino and phenol groups is 19.5 (5)° Fig. 1). The two ethyl groups adopt a syn-clinal conformation [C11—N2—C14—C15 = -87.9 (2)°; C11—N2—C16—C17 = -87.58 (19)°]. Crystal packing is stabilized by intermolecular π stacking interactions between Cg1i-π orbitals of nearby 2,5-dichlorolphenyl rings [Cg1···Cg1 = 3.860 (8) Å; Cg1 = center of gravity of the 2,5-dichlorophenyl ring (Fig. 2)]. The molecules are aligned in an inverted pattern along the c axis with the with the 2,5-dichlorophenyl rings stacked obliquely parallel to the ac face of the unit cell (Fig. 3). Intramolecular hydrogen bonding interactions [O1—H10···N1] between the phenol hydrogen atom and imino nitrogen atom provides additional crystal stability within the asymmetric unit. [i = 2 - x, -y, 2 - z].

Related literature top

For related structures, see: Büyükgüngör et al. (2007); Odabaşoğlu et al. (2007); Yathirajan et al. (2007); Butcher et al. (2007). For related literature, see: Hodnett & Dunn (1970); Misra et al. (1981); Agarwal et al. (1983); Varma et al. (1986); Singh & Dash (1988); Pandey et al. (1999); El-Masry et al. (2000); Samadhiya & Halve (2001); Siddiqui et al. (2006).

Experimental top

A mixture of 2,5-dichloroaniline (1.62 g, 0.01 mol) and 4-(diethylamino)-2-hydroxybenzaldehyde (1.93 g, 0.01 mol) in 30 ml of ethanol containing 2 drops of 4 M sulfuric acid was refluxed for about 7 h (Fig. 4). On cooling, the solid separated was filtered and recrystallized from acetone (m.p.: 397–401 K). Analysis found: C 60.46, H 5.32, N 8.24%; C17H18Cl2N2O requires: C 60.54, H 5.38, N 8.31%.

Refinement top

The hydroxyl atom (H10) was located in a difference Fourier map and along with all other H atoms were placed in their calculated positions and then refined using the riding model with O—H = 0.82 Å and C—H = 0.93 to 0.97 Å, and with Uiso(H) = 1.19–1.49Ueq(C, O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom labeling and 50% probability displacement ellipsoids. The dashed line indicates the intramolecular O—H···N hydrogen bond.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis.
[Figure 3] Fig. 3. Packing diagram of the title compound, viewed down the b axis. Dashed lines indicate intramolecular O—H···N hydrogen bonds.
[Figure 4] Fig. 4. Synthetic scheme for C17H18Cl2N2O.
2-[(Z)-(2,5-Dichlorophenyl)iminomethyl]-5-(diethylamino)phenol top
Crystal data top
C17H18Cl2N2OF(000) = 704
Mr = 337.23Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4869 reflections
a = 7.1729 (2) Åθ = 4.7–32.5°
b = 18.6396 (6) ŵ = 0.40 mm1
c = 12.6378 (4) ÅT = 296 K
β = 104.157 (3)°Thick needle, pale yellow
V = 1638.36 (9) Å30.53 × 0.25 × 0.19 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
5491 independent reflections
Radiation source: fine-focus sealed tube2626 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.7°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 2727
Tmin = 0.720, Tmax = 0.927l = 1819
17605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
5491 reflections(Δ/σ)max = 0.003
202 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H18Cl2N2OV = 1638.36 (9) Å3
Mr = 337.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1729 (2) ŵ = 0.40 mm1
b = 18.6396 (6) ÅT = 296 K
c = 12.6378 (4) Å0.53 × 0.25 × 0.19 mm
β = 104.157 (3)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
5491 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2626 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.927Rint = 0.034
17605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.98Δρmax = 0.28 e Å3
5491 reflectionsΔρmin = 0.31 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43274 (6)0.45456 (3)0.77923 (4)0.06735 (16)
Cl20.37011 (6)0.41423 (3)0.46310 (4)0.06539 (16)
O10.30792 (15)0.59856 (7)0.95939 (10)0.0573 (3)
H1O0.27800.57220.90600.069*
N10.07935 (18)0.52207 (6)0.80838 (10)0.0435 (3)
N20.0292 (2)0.73892 (7)1.19527 (11)0.0532 (3)
C10.0490 (2)0.47783 (7)0.71617 (12)0.0398 (3)
C20.2079 (2)0.44459 (8)0.69148 (13)0.0443 (4)
C30.1895 (3)0.40261 (9)0.59958 (14)0.0547 (4)
H3A0.29760.38120.58490.066*
C40.0108 (3)0.39229 (9)0.52911 (14)0.0539 (4)
H4A0.00330.36360.46740.065*
C50.1452 (2)0.42544 (8)0.55252 (12)0.0458 (4)
C60.1297 (2)0.46767 (8)0.64337 (12)0.0433 (3)
H6A0.23850.48950.65640.052*
C70.0578 (2)0.53797 (8)0.85377 (12)0.0441 (4)
H7A0.17740.51660.82770.053*
C80.0324 (2)0.58710 (8)0.94251 (12)0.0411 (3)
C90.1485 (2)0.61728 (8)0.99181 (12)0.0422 (3)
C100.1682 (2)0.66657 (8)1.07560 (13)0.0474 (4)
H10A0.28890.68561.10700.057*
C110.0095 (2)0.68848 (8)1.11419 (12)0.0439 (4)
C120.1712 (2)0.65751 (8)1.06588 (13)0.0484 (4)
H12A0.27900.67071.08990.058*
C130.1882 (2)0.60832 (8)0.98419 (13)0.0474 (4)
H13A0.30810.58800.95480.057*
C140.2107 (3)0.77568 (9)1.24016 (14)0.0550 (4)
H14A0.18390.82291.26500.066*
H14B0.27760.78201.18280.066*
C150.3403 (3)0.73581 (11)1.33400 (16)0.0708 (5)
H15A0.45510.76321.36180.106*
H15B0.37370.69011.30900.106*
H15C0.27460.72881.39090.106*
C160.1285 (3)0.75621 (9)1.24523 (14)0.0548 (4)
H16A0.07570.77191.31970.066*
H16B0.20350.71321.24770.066*
C170.2591 (3)0.81395 (10)1.18432 (16)0.0647 (5)
H17A0.35740.82451.22170.097*
H17B0.31770.79761.11170.097*
H17C0.18550.85651.18070.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0356 (2)0.1007 (4)0.0625 (3)0.0009 (2)0.00571 (19)0.0005 (2)
Cl20.0521 (3)0.0786 (3)0.0573 (3)0.0096 (2)0.0023 (2)0.0120 (2)
O10.0354 (6)0.0763 (8)0.0580 (8)0.0022 (5)0.0073 (5)0.0187 (6)
N10.0392 (7)0.0453 (7)0.0430 (7)0.0010 (6)0.0047 (5)0.0007 (5)
N20.0458 (8)0.0567 (8)0.0551 (9)0.0044 (6)0.0086 (6)0.0122 (6)
C10.0394 (8)0.0400 (7)0.0390 (8)0.0030 (6)0.0077 (6)0.0033 (6)
C20.0343 (8)0.0548 (9)0.0433 (9)0.0019 (7)0.0088 (6)0.0063 (7)
C30.0462 (10)0.0688 (11)0.0533 (10)0.0061 (8)0.0202 (8)0.0015 (8)
C40.0577 (11)0.0601 (10)0.0461 (10)0.0042 (9)0.0170 (8)0.0085 (7)
C50.0420 (9)0.0507 (9)0.0420 (9)0.0074 (7)0.0048 (7)0.0000 (7)
C60.0381 (8)0.0455 (8)0.0455 (9)0.0012 (7)0.0088 (6)0.0006 (6)
C70.0380 (8)0.0453 (8)0.0455 (9)0.0056 (7)0.0038 (6)0.0021 (7)
C80.0370 (8)0.0433 (8)0.0412 (8)0.0031 (6)0.0065 (6)0.0035 (6)
C90.0349 (8)0.0453 (8)0.0436 (8)0.0038 (7)0.0043 (6)0.0028 (6)
C100.0358 (8)0.0533 (9)0.0486 (9)0.0021 (7)0.0017 (7)0.0024 (7)
C110.0425 (9)0.0440 (8)0.0424 (9)0.0035 (7)0.0048 (7)0.0021 (6)
C120.0396 (9)0.0541 (9)0.0526 (10)0.0017 (7)0.0134 (7)0.0006 (7)
C130.0382 (8)0.0518 (9)0.0518 (10)0.0090 (7)0.0103 (7)0.0022 (7)
C140.0587 (11)0.0498 (9)0.0528 (10)0.0009 (8)0.0065 (8)0.0075 (7)
C150.0641 (12)0.0752 (12)0.0644 (12)0.0043 (10)0.0014 (10)0.0011 (10)
C160.0593 (11)0.0566 (10)0.0490 (10)0.0041 (8)0.0144 (8)0.0022 (7)
C170.0571 (11)0.0673 (11)0.0693 (12)0.0124 (9)0.0149 (9)0.0008 (9)
Geometric parameters (Å, º) top
Cl1—C21.7293 (16)C8—C91.411 (2)
Cl2—C51.7412 (16)C9—C101.383 (2)
O1—C91.3516 (17)C10—C111.404 (2)
O1—H1O0.8200C10—H10A0.9300
N1—C71.2885 (19)C11—C121.414 (2)
N1—C11.4005 (18)C12—C131.364 (2)
N2—C111.372 (2)C12—H12A0.9300
N2—C141.457 (2)C13—H13A0.9300
N2—C161.461 (2)C14—C151.511 (2)
C1—C61.396 (2)C14—H14A0.9700
C1—C21.398 (2)C14—H14B0.9700
C2—C31.380 (2)C15—H15A0.9600
C3—C41.384 (2)C15—H15B0.9600
C3—H3A0.9300C15—H15C0.9600
C4—C51.372 (2)C16—C171.508 (2)
C4—H4A0.9300C16—H16A0.9700
C5—C61.374 (2)C16—H16B0.9700
C6—H6A0.9300C17—H17A0.9600
C7—C81.425 (2)C17—H17B0.9600
C7—H7A0.9300C17—H17C0.9600
C8—C131.404 (2)
C9—O1—H1O109.5C11—C10—H10A119.4
C7—N1—C1121.73 (13)N2—C11—C10120.95 (14)
C11—N2—C14122.14 (14)N2—C11—C12121.22 (14)
C11—N2—C16121.65 (14)C10—C11—C12117.83 (14)
C14—N2—C16116.15 (14)C13—C12—C11120.25 (15)
C6—C1—C2117.40 (14)C13—C12—H12A119.9
C6—C1—N1123.98 (13)C11—C12—H12A119.9
C2—C1—N1118.53 (13)C12—C13—C8122.81 (15)
C3—C2—C1121.60 (15)C12—C13—H13A118.6
C3—C2—Cl1118.88 (12)C8—C13—H13A118.6
C1—C2—Cl1119.51 (12)N2—C14—C15113.20 (15)
C2—C3—C4120.22 (15)N2—C14—H14A108.9
C2—C3—H3A119.9C15—C14—H14A108.9
C4—C3—H3A119.9N2—C14—H14B108.9
C5—C4—C3118.33 (15)C15—C14—H14B108.9
C5—C4—H4A120.8H14A—C14—H14B107.8
C3—C4—H4A120.8C14—C15—H15A109.5
C4—C5—C6122.32 (15)C14—C15—H15B109.5
C4—C5—Cl2118.75 (13)H15A—C15—H15B109.5
C6—C5—Cl2118.93 (12)C14—C15—H15C109.5
C5—C6—C1120.12 (14)H15A—C15—H15C109.5
C5—C6—H6A119.9H15B—C15—H15C109.5
C1—C6—H6A119.9N2—C16—C17112.77 (14)
N1—C7—C8122.27 (14)N2—C16—H16A109.0
N1—C7—H7A118.9C17—C16—H16A109.0
C8—C7—H7A118.9N2—C16—H16B109.0
C13—C8—C9116.88 (14)C17—C16—H16B109.0
C13—C8—C7121.09 (14)H16A—C16—H16B107.8
C9—C8—C7122.03 (14)C16—C17—H17A109.5
O1—C9—C10117.90 (13)C16—C17—H17B109.5
O1—C9—C8121.19 (13)H17A—C17—H17B109.5
C10—C9—C8120.91 (14)C16—C17—H17C109.5
C9—C10—C11121.29 (14)H17A—C17—H17C109.5
C9—C10—H10A119.4H17B—C17—H17C109.5
C7—N1—C1—C623.4 (2)C13—C8—C9—C101.4 (2)
C7—N1—C1—C2160.16 (14)C7—C8—C9—C10177.95 (14)
C6—C1—C2—C30.7 (2)O1—C9—C10—C11179.71 (14)
N1—C1—C2—C3177.40 (14)C8—C9—C10—C110.2 (2)
C6—C1—C2—Cl1179.43 (11)C14—N2—C11—C104.2 (2)
N1—C1—C2—Cl13.92 (18)C16—N2—C11—C10172.72 (15)
C1—C2—C3—C40.2 (2)C14—N2—C11—C12175.03 (15)
Cl1—C2—C3—C4178.53 (13)C16—N2—C11—C128.0 (2)
C2—C3—C4—C50.8 (2)C9—C10—C11—N2178.16 (14)
C3—C4—C5—C60.5 (2)C9—C10—C11—C121.1 (2)
C3—C4—C5—Cl2178.80 (12)N2—C11—C12—C13178.94 (15)
C4—C5—C6—C10.4 (2)C10—C11—C12—C130.3 (2)
Cl2—C5—C6—C1179.72 (11)C11—C12—C13—C81.4 (2)
C2—C1—C6—C51.0 (2)C9—C8—C13—C122.2 (2)
N1—C1—C6—C5177.46 (13)C7—C8—C13—C12177.13 (15)
C1—N1—C7—C8175.23 (13)C11—N2—C14—C1587.9 (2)
N1—C7—C8—C13174.32 (14)C16—N2—C14—C1589.23 (18)
N1—C7—C8—C95.0 (2)C11—N2—C16—C1787.58 (19)
C13—C8—C9—O1178.08 (14)C14—N2—C16—C1795.31 (19)
C7—C8—C9—O12.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.821.892.6139 (16)147

Experimental details

Crystal data
Chemical formulaC17H18Cl2N2O
Mr337.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.1729 (2), 18.6396 (6), 12.6378 (4)
β (°) 104.157 (3)
V3)1638.36 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.53 × 0.25 × 0.19
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.720, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
17605, 5491, 2626
Rint0.034
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.120, 0.98
No. of reflections5491
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.821.892.6139 (16)147.0
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds