Download citation
Download citation
link to html
In the title compound, [Zn2(C14H8N2O4)(C2H8N2)2]·2C3H7NO·2H2O, the Zn2 complex mol­ecule lies on a crystallographic inversion centre. The two Zn atoms are bridged by two diazine N atoms of a 1,2-bis­(salicylo­yl)hydrazine(4−) ligand (bsh4−); the inversion centre is located at the mid-point of the N—N bond. The coordination geometry of the Zn atom is distorted square-pyramidal. Each water mol­ecule is linked with three surrounding binuclear complexes through four hydrogen bonds, resulting in a two-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807057212/gg3120sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807057212/gg3120Isup2.hkl
Contains datablock I

CCDC reference: 672722

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.043
  • wR factor = 0.110
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.55 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for N4 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 1.94
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Diazine ligands can provide four or more donor atoms, its several possible mononucleating and dinucleating coordination modes lead to formation of mononuclear, binuclear and polynuclear complexes. In some cases, six or more donors in this type of ligand coordinated to two metal atoms M(II) to get centrosymmetrical binuclear complexes with discrete structure (Zhang et al., 1996; Chen et al., 2005 & Xiang et al., 2005), using multidentate ligand and divalent metal salts. Several polynuclear complexes with one-dimensional structure (Adams et al., 2000), two-dimensional structure (Xu et al., 2000; Xu et al., 2002) and three-dimensional structure (Mo et al., 2002) have been synthesized, respectively, depending on the different types of donor and coordination models in the ligands and the different coordination geometries in different metal atoms. Two fancy 30-MC-10 type of azametallacrowns were obtained, using trianionic pentadentate ligand N-phenylsalicylhydrazidate and trivalent metal salts (Liu et al., 2001). The guanidine-based hydrazone ligands with diazine promise a rich coordination chemistry and access to a wide range of oligomers and polymers (Müller et al., 2000). As an extension of our previous work (Chen et al., 2005), we report here the synthesis and crystal structure of the title compound (I) [Zn2(bsh)(en)2].2DMF.2H2O (bsh and en are 1,2-bis(salicyloyl)hydrazine and ethylenediamine, respectively).

The molecular structure of complex (I) is illustrated in Fig. 1. The title binuclear complex molecule (I) is centrosymmetric, with the symmetric center located at the midpoint of the N—N single bond. Every Zn atom is coordinated by three donors (O1, N1 and O2i) of the bsh4- ligand [symmetry code (i): -x + 1/2, -y + 1/2, -z + 1] and two N atoms (N2 and N3) of ethylenediamine. Each zinc atom has a distorted ZnN3O2 square-pyramid coordination geometry with τ value of 0.08 (some parameters are listed in Table 1), atoms N1/N3/O1/O2i being in the basal plane, atom N2 being at the top of the pyramid. The bond length of Zn—O(phenol oxygen) (Zn1—O1) in complex (I) is 2.049 (2) Å, while the corresponding values in the known binuclear Zn complexes are between 1.948–2.094Å (Adams et al., 2002; You, 2005). The bond lengths of Zn—O(carbonyl oxygen) (Zn1—O2i) in complex (I) is 2.121 (2) Å, and the corresponding values in the known binuclear Zn complexes are between 2.010 and 2.215Å (Nfor et al., 2006; Wu et al., 2003).

Many binuclear zinc complexes have been reported. The two Zn atoms in many binuclear zinc complexes are bridged by two acid liands (You, 2005; Nfor et al., 2006), two µ2-N3 ligands (Wang et al., 2004), two µ2-OH groups (Gultneh et al., 1999) or other two ligands (Li et al., 2003; Mimoun et al., 1999; Sousa et al., 2000). It is found in some binuclear zinc complexes that two Zn atoms are linked by several donors from one ligand, such as [Zn2(2)(AN)2](ClO4)4] (Zhu et al., 2003), MeLZn2(OiPr)2 (Hlavinka et al., 2006), [Zn2(C9H7NO4)Cl2(C12H8N2)2] (He et al., 2007), and in (I). Some binuclear zinc complexes with macrocyclic ligand were also synthesized (Bazzicalupi et al., 1997; Khoury et al., 1999; Fletcher et al., 2000). The Zn···Zn interatomic distances in different binuclear complexes are quite different from 2.652–5.354Å (You, 2005; Nfor et al., 2006; Bazzicalupi et al., 1997; Hlavinka et al., 2006), depending on different connecting ways between the two Zn atoms. The two zinc atoms in (I) are linked by N—N single bond of the bsh4- ligand. The ligand bsh4- in (I) is a tetraanionic hexadentate ligand. The bsh4- anion coordinated to one metal atom through its three donors and coordinated to the other metal atom through its other three donors. The ligand bsh4- is in trans configuration. These structural phenomena have been observed in [Ni2(bsh)(C5H5N)6].2C5H5N (Chen et al., 2005). The Zn···Zn distance in (I) is 4.783 (2) Å, while the Ni···Ni distance in the nickel complex mentioned above is 4.6883 (4) Å.

As shown in Fig. 2 and Table 2, every water molecule is linked with three surrounding binuclear structure units [Zn2(C14H8N2O4) (C2H8N2)2] through four hydrogen bonds. These hydrogen bonds are O1W—H01A···O2ii, O1W—H01B···O1, N2iii—H2Aiii···O1W and N3—H3B···O1W [symmetry codes: (ii) x, -y + 1, z + 1/2; (iii) x, -y, z + 1/2]. Therefore, an extended two-dimensional structure paralleled the bc plane is formed.

Related literature top

For related literature, see: Adams et al. (2000, 2002); Bazzicalupi et al. (1997); Chen & Liu et al. (2005); Fletcher & Therien (2000); Gultneh et al. (1999); He et al. (2007); Hlavinka et al. (2006); Khoury et al. (1999); Li et al. (2003); Liu et al. (2001); Mimoun et al. (1999); Mo et al. (2002); Müller & Robson (2000); Nfor et al. (2006); Sousa et al. (2000); Wang et al. (2004); Wu et al. (2003); Xiang et al. (2005); Xu et al. (2000, 2002); You (2005); Zhang et al. (1996); Zhu et al. (2003).

Experimental top

To a mixed solution of H4bsh dissolved by DMF (1 ml), methanol (4 ml) and CH2Cl2 (6 ml), Zn(acac)2.H2O (0.028 g, 0.1 mmol) was added (acac is short for acetylacetone). Then add two drops of ethylenediamine, and the white suspended solution turned to light yellow mixture. After stirring for 3 h at ambient temperature, the mixture was filtrated to obtain a light yellow solution. The filtrate was left to stand and evaporate at room temperature and yellow crystals of suitable size were obtained after 10 days.

Refinement top

The water H atoms and the H atom bonded to C10 in DMF were located in difference Fourier maps and their positional parameters were refined. The remaining H atoms were placed in calculated positions and treated using a riding model with C—H = 0.93–0.97 Å, N—H = 0.90Å and Uiso(H) = 1.2–1.5 Ueq(C/N).

Computing details top

Data collection: TEXRAY (MSC, 1999); cell refinement: TEXRAY (MSC, 1999); data reduction: TEXSAN (MSC, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick,1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. The intermolecular hydrogen bond is shown as a dashed line [symmetry code (i) -x + 1/2,-y + 1/2,-z + 1].
[Figure 2] Fig. 2. The hydrogen-bonding interactions involving solvent water molecules. Dashed lines represent hydrogen bonds. [Symmetry codes: (i) 1/2 - x, 1/2 - y, 1 - z; (ii) x, 1 - y, 1/2 + z; (iii) x, -y, 1/2 + z.].
[µ-1,2-Bis(salicyloyl)hydrazine(4-)]bis[(ethylenediamine)zinc(II)] bis(dimethylformamide) solvate dihydrate top
Crystal data top
[Zn2(C14H8N2O4)(C2H8N2)2]·2C3H7NO·2H2OF(000) = 1464
Mr = 701.40Dx = 1.510 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 13504 reflections
a = 28.715 (14) Åθ = 3.0–26.5°
b = 8.812 (4) ŵ = 1.61 mm1
c = 13.522 (6) ÅT = 293 K
β = 115.606 (18)°Block, yellow
V = 3086 (2) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Rigaku Weissenberg IP
diffractometer
3191 independent reflections
Radiation source: rotor target2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: ψ scan
(TEXRAY; MSC, 1999)
h = 3636
Tmin = 0.728, Tmax = 0.917k = 1110
13504 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 3.1677P]
where P = (Fo2 + 2Fc2)/3
3191 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn2(C14H8N2O4)(C2H8N2)2]·2C3H7NO·2H2OV = 3086 (2) Å3
Mr = 701.40Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.715 (14) ŵ = 1.61 mm1
b = 8.812 (4) ÅT = 293 K
c = 13.522 (6) Å0.20 × 0.20 × 0.05 mm
β = 115.606 (18)°
Data collection top
Rigaku Weissenberg IP
diffractometer
3191 independent reflections
Absorption correction: ψ scan
(TEXRAY; MSC, 1999)
2537 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.917Rint = 0.056
13504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.84 e Å3
3191 reflectionsΔρmin = 0.33 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.283933 (14)0.09578 (4)0.66136 (3)0.03147 (14)
N10.27204 (10)0.2583 (3)0.54944 (18)0.0303 (6)
N20.33371 (11)0.0796 (3)0.6755 (2)0.0356 (6)
H2A0.32820.11450.60880.043*
H2B0.36670.04840.71050.043*
N30.26794 (10)0.0216 (3)0.7784 (2)0.0349 (6)
H3B0.26670.04220.82920.042*
H3C0.23780.07190.74650.042*
O10.32649 (9)0.2536 (2)0.77614 (16)0.0390 (5)
O20.28689 (9)0.4695 (3)0.46998 (17)0.0389 (5)
C10.35718 (12)0.3510 (4)0.7583 (2)0.0324 (7)
C20.34744 (12)0.4106 (3)0.6532 (2)0.0300 (6)
C30.38339 (13)0.5084 (4)0.6438 (3)0.0393 (7)
H3A0.37760.54340.57460.047*
C40.42691 (15)0.5551 (4)0.7325 (3)0.0490 (9)
H4A0.45040.61980.72360.059*
C50.43535 (14)0.5043 (4)0.8359 (3)0.0491 (9)
H5A0.46430.53690.89710.059*
C60.40102 (15)0.4058 (4)0.8483 (3)0.0435 (8)
H6A0.40700.37450.91850.052*
C70.29969 (12)0.3788 (3)0.5520 (2)0.0287 (6)
C80.32285 (14)0.1992 (4)0.7391 (3)0.0432 (8)
H8A0.35240.26640.77180.052*
H8B0.29340.25880.69090.052*
C90.31175 (14)0.1279 (4)0.8275 (3)0.0439 (8)
H9A0.30350.20620.86780.053*
H9B0.34210.07390.87840.053*
O1W0.19090 (11)0.2778 (3)0.04279 (18)0.0487 (6)
H01A0.18250.26360.09480.073*
H01B0.19720.17850.02790.073*
N40.52553 (14)0.0566 (4)0.8992 (3)0.0605 (9)
O30.44552 (14)0.0441 (5)0.8158 (3)0.0913 (12)
C100.4743 (2)0.0630 (7)0.8429 (4)0.0735 (14)
H10A0.46300.17610.82180.088*
C110.5515 (2)0.0861 (6)0.9321 (4)0.0772 (14)
H11A0.52650.16620.91370.116*
H11B0.57260.08561.00980.116*
H11C0.57300.10220.89470.116*
C120.5555 (2)0.1936 (7)0.9292 (5)0.1004 (19)
H12A0.53320.27930.89920.151*
H12B0.58090.19100.90090.151*
H12C0.57240.20201.00770.151*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0396 (2)0.0271 (2)0.02645 (19)0.00065 (16)0.01315 (16)0.00291 (13)
N10.0334 (14)0.0287 (14)0.0246 (11)0.0044 (11)0.0085 (10)0.0009 (9)
N20.0362 (15)0.0356 (15)0.0336 (13)0.0013 (12)0.0139 (12)0.0032 (11)
N30.0359 (15)0.0367 (15)0.0321 (12)0.0038 (12)0.0146 (12)0.0004 (11)
O10.0534 (15)0.0357 (13)0.0272 (10)0.0105 (11)0.0168 (10)0.0020 (9)
O20.0453 (14)0.0337 (12)0.0315 (11)0.0107 (11)0.0107 (10)0.0072 (9)
C10.0371 (18)0.0246 (15)0.0328 (14)0.0026 (13)0.0125 (13)0.0031 (12)
C20.0311 (16)0.0262 (15)0.0310 (14)0.0028 (13)0.0117 (13)0.0007 (11)
C30.0365 (19)0.0367 (19)0.0430 (17)0.0018 (15)0.0155 (15)0.0036 (14)
C40.040 (2)0.044 (2)0.060 (2)0.0159 (17)0.0179 (17)0.0031 (17)
C50.037 (2)0.044 (2)0.0475 (19)0.0014 (17)0.0006 (16)0.0040 (15)
C60.046 (2)0.040 (2)0.0344 (16)0.0013 (16)0.0077 (15)0.0013 (13)
C70.0313 (16)0.0302 (16)0.0259 (13)0.0001 (13)0.0134 (12)0.0007 (11)
C80.044 (2)0.0284 (18)0.055 (2)0.0038 (15)0.0195 (17)0.0048 (14)
C90.044 (2)0.048 (2)0.0367 (16)0.0013 (16)0.0144 (15)0.0159 (15)
O1W0.0784 (19)0.0356 (13)0.0357 (12)0.0049 (13)0.0280 (13)0.0001 (10)
N40.050 (2)0.066 (2)0.060 (2)0.0007 (18)0.0177 (17)0.0060 (17)
O30.055 (2)0.123 (3)0.089 (3)0.025 (2)0.0244 (19)0.027 (2)
C100.057 (3)0.093 (4)0.064 (3)0.004 (3)0.019 (2)0.011 (3)
C110.080 (4)0.076 (4)0.074 (3)0.018 (3)0.032 (3)0.007 (2)
C120.087 (4)0.081 (4)0.107 (4)0.026 (3)0.018 (3)0.007 (3)
Geometric parameters (Å, º) top
Zn1—N12.003 (2)C4—H4A0.9300
Zn1—N22.057 (3)C5—C61.378 (5)
Zn1—N32.101 (3)C5—H5A0.9300
Zn1—O12.049 (2)C6—H6A0.9300
Zn1—O2i2.121 (2)C8—C91.500 (5)
N1—C71.317 (4)C8—H8A0.9700
N1—N1i1.396 (5)C8—H8B0.9700
N2—C81.477 (4)C9—H9A0.9700
N2—H2A0.9000C9—H9B0.9700
N2—H2B0.9000O1W—H01A0.8457
N3—C91.476 (4)O1W—H01B0.9335
N3—H3B0.9000N4—C101.335 (6)
N3—H3C0.9000N4—C111.432 (6)
O1—C11.325 (4)N4—C121.435 (6)
O2—C71.286 (4)O3—C101.202 (6)
O2—Zn1i2.121 (2)C10—H10A1.0485
C1—C61.405 (5)C11—H11A0.9600
C1—C21.424 (4)C11—H11B0.9600
C2—C31.392 (4)C11—H11C0.9600
C2—C71.486 (4)C12—H12A0.9600
C3—C41.369 (5)C12—H12B0.9600
C3—H3A0.9300C12—H12C0.9600
C4—C51.386 (5)
N1—Zn1—O186.46 (10)C6—C5—H5A119.9
N1—Zn1—N2119.46 (11)C4—C5—H5A119.9
O1—Zn1—N2106.06 (11)C5—C6—C1122.1 (3)
N1—Zn1—N3154.15 (11)C5—C6—H6A119.0
O1—Zn1—N390.96 (10)C1—C6—H6A119.0
N2—Zn1—N385.97 (11)O2—C7—N1122.3 (3)
N1—Zn1—O2i76.84 (9)O2—C7—C2118.9 (3)
O1—Zn1—O2i149.38 (10)N1—C7—C2118.8 (3)
N2—Zn1—O2i104.49 (11)N2—C8—C9109.7 (3)
N3—Zn1—O2i93.13 (10)N2—C8—H8A109.7
C7—N1—N1i113.3 (3)C9—C8—H8A109.7
C7—N1—Zn1130.7 (2)N2—C8—H8B109.7
N1i—N1—Zn1115.9 (2)C9—C8—H8B109.7
C8—N2—Zn1106.1 (2)H8A—C8—H8B108.2
C8—N2—H2A110.5N3—C9—C8109.9 (3)
Zn1—N2—H2A110.5N3—C9—H9A109.7
C8—N2—H2B110.5C8—C9—H9A109.7
Zn1—N2—H2B110.5N3—C9—H9B109.7
H2A—N2—H2B108.7C8—C9—H9B109.7
C9—N3—Zn1103.29 (19)H9A—C9—H9B108.2
C9—N3—H3B111.1H01A—O1W—H01B101.0
Zn1—N3—H3B111.1C10—N4—C11120.9 (5)
C9—N3—H3C111.1C10—N4—C12120.3 (5)
Zn1—N3—H3C111.1C11—N4—C12118.8 (4)
H3B—N3—H3C109.1O3—C10—N4125.7 (6)
C1—O1—Zn1121.85 (17)O3—C10—H10A124.9
C7—O2—Zn1i111.55 (19)N4—C10—H10A109.3
O1—C1—C6118.8 (3)N4—C11—H11A109.5
O1—C1—C2124.1 (3)N4—C11—H11B109.5
C6—C1—C2117.0 (3)H11A—C11—H11B109.5
C3—C2—C1119.0 (3)N4—C11—H11C109.5
C3—C2—C7117.3 (3)H11A—C11—H11C109.5
C1—C2—C7123.6 (3)H11B—C11—H11C109.5
C4—C3—C2122.6 (3)N4—C12—H12A109.5
C4—C3—H3A118.7N4—C12—H12B109.5
C2—C3—H3A118.7H12A—C12—H12B109.5
C3—C4—C5118.8 (3)N4—C12—H12C109.5
C3—C4—H4A120.6H12A—C12—H12C109.5
C5—C4—H4A120.6H12B—C12—H12C109.5
C6—C5—C4120.3 (3)
O1—Zn1—N1—C725.5 (3)O1—C1—C2—C74.5 (5)
N2—Zn1—N1—C780.9 (3)C6—C1—C2—C7172.4 (3)
N3—Zn1—N1—C7110.4 (3)C1—C2—C3—C42.8 (5)
O2i—Zn1—N1—C7179.7 (3)C7—C2—C3—C4175.0 (3)
O1—Zn1—N1—N1i156.1 (3)C2—C3—C4—C50.6 (6)
N2—Zn1—N1—N1i97.5 (3)C3—C4—C5—C61.5 (6)
N3—Zn1—N1—N1i71.2 (4)C4—C5—C6—C11.2 (6)
O2i—Zn1—N1—N1i1.9 (3)O1—C1—C6—C5178.4 (3)
N1—Zn1—N2—C8164.09 (19)C2—C1—C6—C54.5 (5)
O1—Zn1—N2—C8100.8 (2)Zn1i—O2—C7—N12.5 (4)
N3—Zn1—N2—C811.0 (2)Zn1i—O2—C7—C2177.8 (2)
O2i—Zn1—N2—C881.2 (2)N1i—N1—C7—O20.9 (5)
N1—Zn1—N3—C9172.2 (2)Zn1—N1—C7—O2177.5 (2)
O1—Zn1—N3—C988.4 (2)N1i—N1—C7—C2179.4 (3)
N2—Zn1—N3—C917.6 (2)Zn1—N1—C7—C22.2 (4)
O2i—Zn1—N3—C9122.0 (2)C3—C2—C7—O218.4 (4)
N1—Zn1—O1—C139.0 (2)C1—C2—C7—O2159.3 (3)
N2—Zn1—O1—C180.7 (2)C3—C2—C7—N1161.4 (3)
N3—Zn1—O1—C1166.7 (2)C1—C2—C7—N120.9 (4)
O2i—Zn1—O1—C195.5 (3)Zn1—N2—C8—C938.1 (3)
Zn1—O1—C1—C6151.3 (2)Zn1—N3—C9—C843.6 (3)
Zn1—O1—C1—C231.8 (4)N2—C8—C9—N357.5 (4)
O1—C1—C2—C3177.8 (3)C11—N4—C10—O30.9 (8)
C6—C1—C2—C35.2 (4)C12—N4—C10—O3178.3 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.902.092.956 (5)162
N3—H3C···O1ii0.902.323.177 (4)159
O1W—H01A···O1i0.851.882.716 (3)171
O1W—H01B···O2iii0.931.902.814 (3)168
N2—H2A···O1Wiii0.902.102.998 (4)172
N3—H3B···O1Wi0.902.273.064 (4)146
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn2(C14H8N2O4)(C2H8N2)2]·2C3H7NO·2H2O
Mr701.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)28.715 (14), 8.812 (4), 13.522 (6)
β (°) 115.606 (18)
V3)3086 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerRigaku Weissenberg IP
diffractometer
Absorption correctionψ scan
(TEXRAY; MSC, 1999)
Tmin, Tmax0.728, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
13504, 3191, 2537
Rint0.056
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.03
No. of reflections3191
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.33

Computer programs: TEXRAY (MSC, 1999), TEXSAN (MSC, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXL97 (Sheldrick,1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O30.902.092.956 (5)162
N3—H3C···O1i0.902.323.177 (4)159
O1W—H01A···O1ii0.851.882.716 (3)171
O1W—H01B···O2iii0.931.902.814 (3)168
N2—H2A···O1Wiii0.902.102.998 (4)172
N3—H3B···O1Wii0.902.273.064 (4)146
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds