Download citation
Download citation
link to html
The crystal structure of the title compound, C16H23BrN2O2, contains two crystallographically independent mol­ecules in the asymmetric unit. In both mol­ecules, the morpholinyl rings adopt a chair conformation. One of the mol­ecules is associated into centrosymmetric dimers through C—H...Br inter­actions (3.01 Å), but there are no other hydrogen bonds in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051574/kp2140sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051574/kp2140Isup2.hkl
Contains datablock I

CCDC reference: 672841

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.051
  • wR factor = 0.100
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT431_ALERT_2_C Short Inter HL..A Contact Br1 .. O3 .. 3.23 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H14A .. BR1 .. 3.01 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Morpholine derivatives and their salts have gained much interest in recent years due to the considerable biological activities ascribed to many representatives (Dega-Szafran et al., 2004; Airaksinen et al., 2006) and their use as chiral reagents in asymmetric synthesis (D'Hooghe et al., 2006). Mopholine derivatives can be used as bidentate or monodentate ligands towards metals due to the capacity of the N and O heteroatoms to coordinate a metal center (Avent et al., 2003; Iravani & Neumüller, 2006; Kulcsar et al., 2007).

For the title compound two crystallographically independent molecules are present in the unit cell. (Fig. 1). Each morpholinyl ring is in a chair conformation with the torsion angles in the range ±57.4 (4) – ±58.2 (4)° for molecule A and ±56.7 (4) – ±58.2 (4)° for molecule B. The average C—O [1.4111 (3) Å] and C—N [1.453 (5) Å] bond distances in the morpholinyl rings are similar to the corresponding values found in related systems (Raj, Ponnuswamy et al., 1994; Raj, Velmurugan et al., 1994).

Molecule A shows dimer associations built through intermolecular interactions H14A···Br1i and Br1···H14Ai [3.01 Å; symmetry code: (i) = -x + 1, -y + 2, -z] with graph-set motif R22(16) (Bernstein et al., 1995). For molecule B no associations were observed. There are no further hydrogen-bonding interactions between morpholinyl groups belonging to other neighbouring molecules.

Related literature top

For general background, see: Dega-Szafran et al. (2004); Airaksinen et al. (2006); D'Hooghe et al. (2006); Avent et al. (2003); Iravani & Neumüller (2006); Kulcsar et al. (2007). For related compounds, see: Raj, Ponnuswamy et al. (1994); Raj, Velmurugan et al. (1994). For hydrogen-bonding nomenclature, see: Bernstein et al. (1995).

Experimental top

To a solution of 1-bromo-2,6-bis(bromomethyl)benzene (5.0 g, 14,5 mmol) in benzene (150 ml) was added dropwise a solution of N-morpholine (5.073 g, 58 mmol) in benzene (150 ml). The mixture was stirred at reflux for 8 h. After cooling to room temperature the precipitate was filtered off and the solvent was evaporated at reduced pressure to give a pale yellow solid. The reaction product was purified by recrystallization from a saturated hexane solution, giving the title compound as a white crystalline solid (4.157 g, Yield: 80%). Needle crystals suitable for single-crystal X-ray diffraction were obtained from hot hexane solution. 1H NMR (CDCl3, 300 MHz): δ(p.p.m.) 2.52 (t, 8H, N—CH2—CH2—O, 3JHH = 4.5 Hz); 3.61 (s, 4H, C6H3—CH2—N); 3.72 (t, 8H, N—CH2—CH2—O, 3JHH = 4.5 Hz); 7.24 (d, 1H, C6H3, H-4), 7.37 (br s, 2H, C6H3, H-3,5). 13C NMR (CDCl3, 75.47 MHz): δ(p.p.m.) 53.62 (s, N—CH2—CH2—O), 62.76 (s, C6H3—CH2—N), 67.03 (s, N—CH2—CH2—O), 126.53 (s, C-4), 126,79 (s, C-1), 129.13 (s, C-3,5), 137.74 (s, C-2,6).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and Uiso = 1.2Ueq (C) for aryl H.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. The title molecule (I) showing the atom-numbering scheme at the 30% probability thermal ellipsoids for molecules A (containing Br1 atom) and B (containing Br2 atom). H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. The dimer association for molecule A. H atoms not involved in hydrogen-bonding contacts have been omitted for clarity (hydrogen bonds showed as dashed lines).
[Figure 3] Fig. 3. Crystal packing along the c axis for the title compound.
1-Bromo-2,6-bis(N-morpholinylmethyl)benzene top
Crystal data top
C16H23BrN2O2F(000) = 1472
Mr = 355.27Dx = 1.433 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3430 reflections
a = 9.7086 (6) Åθ = 2.3–20.0°
b = 18.1384 (12) ŵ = 2.50 mm1
c = 18.7167 (12) ÅT = 297 K
β = 92.685 (1)°Block, colourless
V = 3292.4 (4) Å30.33 × 0.22 × 0.16 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5817 independent reflections
Radiation source: fine-focus sealed tube4588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
h = 1111
Tmin = 0.477, Tmax = 0.669k = 2121
23653 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0343P)2 + 1.9306P]
where P = (Fo2 + 2Fc2)/3
5817 reflections(Δ/σ)max = 0.001
379 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C16H23BrN2O2V = 3292.4 (4) Å3
Mr = 355.27Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.7086 (6) ŵ = 2.50 mm1
b = 18.1384 (12) ÅT = 297 K
c = 18.7167 (12) Å0.33 × 0.22 × 0.16 mm
β = 92.685 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5817 independent reflections
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
4588 reflections with I > 2σ(I)
Tmin = 0.477, Tmax = 0.669Rint = 0.053
23653 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
5817 reflectionsΔρmin = 0.54 e Å3
379 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.16374 (4)1.11940 (2)0.02444 (2)0.04951 (14)
Br20.44157 (5)0.08378 (2)0.70448 (2)0.05994 (16)
C10.2087 (4)1.03883 (19)0.08779 (19)0.0379 (9)
C20.2169 (4)1.0512 (2)0.16072 (19)0.0386 (9)
C30.2476 (4)0.9909 (2)0.2043 (2)0.0469 (10)
H30.25450.99720.25360.056*
C40.2681 (4)0.9220 (2)0.1761 (2)0.0508 (11)
H40.28700.88210.20620.061*
C50.2603 (4)0.9125 (2)0.1026 (2)0.0508 (11)
H50.27470.86580.08380.061*
C60.2320 (4)0.9702 (2)0.0566 (2)0.0400 (9)
C70.2000 (4)1.1272 (2)0.19304 (19)0.0477 (10)
H7A0.28211.15610.18540.057*
H7B0.12261.15180.16870.057*
C80.2190 (4)1.1916 (2)0.3066 (2)0.0519 (11)
H8A0.16181.23230.28950.062*
H8B0.31411.20300.29740.062*
C90.2038 (5)1.1812 (2)0.3857 (2)0.0575 (12)
H9A0.26461.14190.40280.069*
H9B0.23161.22610.41060.069*
C100.0255 (5)1.0994 (3)0.3643 (2)0.0650 (13)
H10A0.06931.08830.37460.078*
H10B0.08231.05840.38120.078*
C110.0364 (4)1.1067 (3)0.2846 (2)0.0558 (11)
H11A0.00931.06090.26130.067*
H11B0.02481.14540.26650.067*
C120.2232 (4)0.9589 (2)0.02350 (19)0.0485 (10)
H12A0.12810.96440.04080.058*
H12B0.27700.99680.04590.058*
C130.4226 (4)0.8842 (2)0.0478 (3)0.0615 (12)
H13A0.46490.89910.00210.074*
H13B0.45230.91810.08400.074*
C140.4677 (5)0.8074 (3)0.0654 (3)0.0702 (14)
H14A0.56740.80620.06730.084*
H14B0.44150.77400.02790.084*
C150.2629 (5)0.7873 (3)0.1303 (3)0.0650 (13)
H15A0.23160.75310.09460.078*
H15B0.22280.77210.17650.078*
C160.2135 (4)0.8631 (2)0.1135 (2)0.0528 (11)
H16A0.23980.89710.15050.063*
H16B0.11370.86310.11240.063*
C170.3327 (3)0.01732 (19)0.64600 (18)0.0345 (8)
C180.2771 (4)0.04389 (19)0.67931 (18)0.0350 (8)
C190.1967 (4)0.0910 (2)0.6366 (2)0.0410 (9)
H190.15600.13190.65680.049*
C200.1766 (4)0.0777 (2)0.5639 (2)0.0429 (9)
H200.12140.10920.53580.051*
C210.2379 (4)0.0179 (2)0.53320 (19)0.0404 (9)
H210.22510.01030.48420.049*
C220.3179 (4)0.03099 (19)0.57329 (18)0.0348 (8)
C230.3087 (4)0.0591 (2)0.75801 (19)0.0442 (10)
H23A0.27220.01910.78590.053*
H23B0.40790.06000.76690.053*
C240.1105 (4)0.1201 (2)0.8057 (2)0.0501 (10)
H24A0.10980.08550.84530.060*
H24B0.05190.10070.76680.060*
C250.0563 (4)0.1936 (2)0.8289 (3)0.0609 (12)
H25A0.05310.22720.78850.073*
H25B0.03700.18760.84440.073*
C260.2758 (5)0.2326 (2)0.8633 (2)0.0588 (12)
H26A0.33270.25280.90250.071*
H26B0.27640.26720.82380.071*
C270.3363 (4)0.1608 (2)0.8404 (2)0.0496 (10)
H27A0.42880.16890.82460.060*
H27B0.34200.12700.88060.060*
C280.3908 (4)0.0950 (2)0.53941 (19)0.0421 (9)
H28A0.48950.08700.54440.051*
H28B0.37010.13980.56510.051*
C290.2203 (4)0.1441 (2)0.4531 (2)0.0469 (10)
H29A0.14860.11780.47690.056*
H29B0.22800.19320.47340.056*
C300.1838 (4)0.1491 (2)0.3741 (2)0.0547 (11)
H30A0.09690.17500.36690.066*
H30B0.17200.09980.35470.066*
C310.4156 (4)0.1513 (3)0.3489 (2)0.0602 (12)
H31A0.41130.10200.32890.072*
H31B0.48550.17860.32470.072*
C320.4562 (4)0.1466 (2)0.4276 (2)0.0491 (10)
H32A0.46440.19570.44780.059*
H32B0.54480.12220.43420.059*
N10.1774 (3)1.12437 (16)0.26938 (15)0.0406 (7)
N20.2732 (3)0.88674 (17)0.04468 (16)0.0439 (8)
N30.2509 (3)0.12886 (16)0.78245 (16)0.0407 (8)
N40.3515 (3)0.10516 (16)0.46372 (15)0.0379 (7)
O10.0672 (3)1.16374 (18)0.40182 (15)0.0653 (8)
O20.4074 (3)0.78350 (17)0.13187 (16)0.0674 (9)
O30.1395 (3)0.22436 (15)0.88525 (15)0.0599 (8)
O40.2865 (3)0.18625 (16)0.33683 (14)0.0597 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0671 (3)0.0412 (2)0.0405 (2)0.0070 (2)0.00581 (19)0.00573 (18)
Br20.0811 (3)0.0517 (3)0.0452 (3)0.0274 (2)0.0169 (2)0.0063 (2)
C10.038 (2)0.033 (2)0.043 (2)0.0020 (17)0.0027 (17)0.0026 (17)
C20.040 (2)0.038 (2)0.038 (2)0.0010 (17)0.0029 (17)0.0003 (18)
C30.061 (3)0.047 (3)0.032 (2)0.000 (2)0.0055 (19)0.0017 (19)
C40.071 (3)0.032 (2)0.048 (3)0.006 (2)0.001 (2)0.0071 (19)
C50.069 (3)0.035 (2)0.049 (3)0.003 (2)0.002 (2)0.0039 (19)
C60.042 (2)0.036 (2)0.042 (2)0.0006 (17)0.0009 (18)0.0031 (18)
C70.066 (3)0.038 (2)0.039 (2)0.001 (2)0.008 (2)0.0001 (18)
C80.065 (3)0.044 (2)0.047 (2)0.008 (2)0.010 (2)0.007 (2)
C90.071 (3)0.054 (3)0.046 (3)0.004 (2)0.005 (2)0.008 (2)
C100.058 (3)0.084 (4)0.054 (3)0.016 (3)0.013 (2)0.004 (3)
C110.048 (3)0.072 (3)0.047 (3)0.011 (2)0.003 (2)0.004 (2)
C120.060 (3)0.046 (2)0.040 (2)0.003 (2)0.004 (2)0.0051 (19)
C130.053 (3)0.060 (3)0.071 (3)0.001 (2)0.003 (2)0.015 (2)
C140.049 (3)0.073 (3)0.088 (4)0.015 (2)0.002 (3)0.019 (3)
C150.062 (3)0.062 (3)0.070 (3)0.001 (2)0.002 (2)0.022 (2)
C160.052 (3)0.057 (3)0.049 (3)0.005 (2)0.000 (2)0.015 (2)
C170.035 (2)0.034 (2)0.034 (2)0.0005 (16)0.0009 (16)0.0040 (16)
C180.039 (2)0.032 (2)0.034 (2)0.0007 (17)0.0013 (16)0.0000 (16)
C190.043 (2)0.039 (2)0.042 (2)0.0030 (18)0.0087 (18)0.0012 (18)
C200.048 (2)0.040 (2)0.041 (2)0.0060 (18)0.0040 (18)0.0068 (18)
C210.048 (2)0.047 (2)0.0265 (19)0.0008 (19)0.0007 (17)0.0008 (17)
C220.035 (2)0.033 (2)0.037 (2)0.0065 (16)0.0033 (16)0.0022 (16)
C230.055 (3)0.039 (2)0.039 (2)0.0075 (19)0.0015 (19)0.0040 (18)
C240.049 (3)0.047 (2)0.054 (3)0.001 (2)0.002 (2)0.005 (2)
C250.054 (3)0.055 (3)0.074 (3)0.006 (2)0.016 (2)0.002 (2)
C260.076 (3)0.050 (3)0.051 (3)0.009 (2)0.009 (2)0.017 (2)
C270.049 (3)0.055 (3)0.045 (2)0.006 (2)0.005 (2)0.014 (2)
C280.049 (2)0.037 (2)0.040 (2)0.0001 (18)0.0027 (18)0.0067 (17)
C290.045 (2)0.054 (3)0.042 (2)0.012 (2)0.0052 (19)0.0030 (19)
C300.053 (3)0.059 (3)0.052 (3)0.013 (2)0.004 (2)0.002 (2)
C310.060 (3)0.079 (3)0.042 (3)0.000 (3)0.014 (2)0.013 (2)
C320.048 (3)0.054 (3)0.045 (2)0.003 (2)0.0039 (19)0.007 (2)
N10.0456 (19)0.0392 (18)0.0374 (18)0.0045 (15)0.0071 (14)0.0026 (14)
N20.049 (2)0.0433 (19)0.0386 (18)0.0034 (16)0.0019 (15)0.0108 (15)
N30.0437 (19)0.0380 (18)0.0408 (18)0.0033 (15)0.0046 (15)0.0048 (15)
N40.0378 (18)0.0413 (19)0.0349 (17)0.0058 (14)0.0052 (14)0.0071 (14)
O10.066 (2)0.084 (2)0.0469 (18)0.0065 (18)0.0123 (15)0.0065 (17)
O20.064 (2)0.068 (2)0.071 (2)0.0128 (16)0.0091 (17)0.0233 (17)
O30.074 (2)0.0481 (18)0.0592 (19)0.0059 (15)0.0206 (17)0.0124 (15)
O40.076 (2)0.0581 (19)0.0440 (17)0.0065 (17)0.0017 (15)0.0161 (14)
Geometric parameters (Å, º) top
Br1—C11.919 (4)C16—H16B0.9700
Br2—C171.913 (3)C17—C221.384 (5)
C1—C21.382 (5)C17—C181.395 (5)
C1—C61.398 (5)C18—C191.386 (5)
C2—C31.388 (5)C18—C231.516 (5)
C2—C71.517 (5)C19—C201.386 (5)
C3—C41.374 (5)C19—H190.9300
C3—H30.9300C20—C211.375 (5)
C4—C51.386 (5)C20—H200.9300
C4—H40.9300C21—C221.378 (5)
C5—C61.375 (5)C21—H210.9300
C5—H50.9300C22—C281.514 (5)
C6—C121.512 (5)C23—N31.466 (4)
C7—N11.457 (4)C23—H23A0.9700
C7—H7A0.9700C23—H23B0.9700
C7—H7B0.9700C24—N31.459 (5)
C8—N11.452 (4)C24—C251.505 (5)
C8—C91.507 (5)C24—H24A0.9700
C8—H8A0.9700C24—H24B0.9700
C8—H8B0.9700C25—O31.413 (5)
C9—O11.410 (5)C25—H25A0.9700
C9—H9A0.9700C25—H25B0.9700
C9—H9B0.9700C26—O31.412 (5)
C10—O11.412 (5)C26—C271.499 (5)
C10—C111.506 (5)C26—H26A0.9700
C10—H10A0.9700C26—H26B0.9700
C10—H10B0.9700C27—N31.454 (4)
C11—N11.447 (5)C27—H27A0.9700
C11—H11A0.9700C27—H27B0.9700
C11—H11B0.9700C28—N41.461 (4)
C12—N21.457 (4)C28—H28A0.9700
C12—H12A0.9700C28—H28B0.9700
C12—H12B0.9700C29—N41.462 (4)
C13—N21.456 (5)C29—C301.507 (5)
C13—C141.500 (6)C29—H29A0.9700
C13—H13A0.9700C29—H29B0.9700
C13—H13B0.9700C30—O41.414 (5)
C14—O21.418 (5)C30—H30A0.9700
C14—H14A0.9700C30—H30B0.9700
C14—H14B0.9700C31—O41.413 (5)
C15—O21.406 (5)C31—C321.509 (5)
C15—C161.494 (5)C31—H31A0.9700
C15—H15A0.9700C31—H31B0.9700
C15—H15B0.9700C32—N41.455 (4)
C16—N21.453 (5)C32—H32A0.9700
C16—H16A0.9700C32—H32B0.9700
C2—C1—C6123.6 (3)C20—C19—H19119.7
C2—C1—Br1119.2 (3)C21—C20—C19120.2 (3)
C6—C1—Br1117.2 (3)C21—C20—H20119.9
C1—C2—C3117.0 (3)C19—C20—H20119.9
C1—C2—C7122.6 (3)C20—C21—C22121.6 (3)
C3—C2—C7120.4 (3)C20—C21—H21119.2
C4—C3—C2121.5 (4)C22—C21—H21119.2
C4—C3—H3119.3C21—C22—C17116.8 (3)
C2—C3—H3119.3C21—C22—C28121.9 (3)
C3—C4—C5119.5 (4)C17—C22—C28121.3 (3)
C3—C4—H4120.3N3—C23—C18113.4 (3)
C5—C4—H4120.3N3—C23—H23A108.9
C6—C5—C4121.8 (4)C18—C23—H23A108.9
C6—C5—H5119.1N3—C23—H23B108.9
C4—C5—H5119.1C18—C23—H23B108.9
C5—C6—C1116.7 (3)H23A—C23—H23B107.7
C5—C6—C12121.2 (3)N3—C24—C25109.5 (3)
C1—C6—C12122.1 (3)N3—C24—H24A109.8
N1—C7—C2112.5 (3)C25—C24—H24A109.8
N1—C7—H7A109.1N3—C24—H24B109.8
C2—C7—H7A109.1C25—C24—H24B109.8
N1—C7—H7B109.1H24A—C24—H24B108.2
C2—C7—H7B109.1O3—C25—C24111.7 (3)
H7A—C7—H7B107.8O3—C25—H25A109.3
N1—C8—C9109.2 (3)C24—C25—H25A109.3
N1—C8—H8A109.8O3—C25—H25B109.3
C9—C8—H8A109.8C24—C25—H25B109.3
N1—C8—H8B109.8H25A—C25—H25B107.9
C9—C8—H8B109.8O3—C26—C27112.1 (3)
H8A—C8—H8B108.3O3—C26—H26A109.2
O1—C9—C8112.0 (3)C27—C26—H26A109.2
O1—C9—H9A109.2O3—C26—H26B109.2
C8—C9—H9A109.2C27—C26—H26B109.2
O1—C9—H9B109.2H26A—C26—H26B107.9
C8—C9—H9B109.2N3—C27—C26110.0 (3)
H9A—C9—H9B107.9N3—C27—H27A109.7
O1—C10—C11112.8 (4)C26—C27—H27A109.7
O1—C10—H10A109.0N3—C27—H27B109.7
C11—C10—H10A109.0C26—C27—H27B109.7
O1—C10—H10B109.0H27A—C27—H27B108.2
C11—C10—H10B109.0N4—C28—C22113.4 (3)
H10A—C10—H10B107.8N4—C28—H28A108.9
N1—C11—C10109.0 (3)C22—C28—H28A108.9
N1—C11—H11A109.9N4—C28—H28B108.9
C10—C11—H11A109.9C22—C28—H28B108.9
N1—C11—H11B109.9H28A—C28—H28B107.7
C10—C11—H11B109.9N4—C29—C30109.0 (3)
H11A—C11—H11B108.3N4—C29—H29A109.9
N2—C12—C6112.8 (3)C30—C29—H29A109.9
N2—C12—H12A109.0N4—C29—H29B109.9
C6—C12—H12A109.0C30—C29—H29B109.9
N2—C12—H12B109.0H29A—C29—H29B108.3
C6—C12—H12B109.0O4—C30—C29112.0 (3)
H12A—C12—H12B107.8O4—C30—H30A109.2
N2—C13—C14109.9 (3)C29—C30—H30A109.2
N2—C13—H13A109.7O4—C30—H30B109.2
C14—C13—H13A109.7C29—C30—H30B109.2
N2—C13—H13B109.7H30A—C30—H30B107.9
C14—C13—H13B109.7O4—C31—C32111.8 (3)
H13A—C13—H13B108.2O4—C31—H31A109.3
O2—C14—C13111.3 (4)C32—C31—H31A109.3
O2—C14—H14A109.4O4—C31—H31B109.3
C13—C14—H14A109.4C32—C31—H31B109.3
O2—C14—H14B109.4H31A—C31—H31B107.9
C13—C14—H14B109.4N4—C32—C31109.0 (3)
H14A—C14—H14B108.0N4—C32—H32A109.9
O2—C15—C16112.3 (4)C31—C32—H32A109.9
O2—C15—H15A109.1N4—C32—H32B109.9
C16—C15—H15A109.1C31—C32—H32B109.9
O2—C15—H15B109.1H32A—C32—H32B108.3
C16—C15—H15B109.1C11—N1—C8109.6 (3)
H15A—C15—H15B107.9C11—N1—C7112.9 (3)
N2—C16—C15109.9 (3)C8—N1—C7112.9 (3)
N2—C16—H16A109.7C16—N2—C13108.2 (3)
C15—C16—H16A109.7C16—N2—C12112.5 (3)
N2—C16—H16B109.7C13—N2—C12112.7 (3)
C15—C16—H16B109.7C27—N3—C24109.1 (3)
H16A—C16—H16B108.2C27—N3—C23111.3 (3)
C22—C17—C18123.9 (3)C24—N3—C23112.1 (3)
C22—C17—Br2118.6 (3)C32—N4—C28111.1 (3)
C18—C17—Br2117.4 (3)C32—N4—C29108.1 (3)
C19—C18—C17116.9 (3)C28—N4—C29112.2 (3)
C19—C18—C23122.1 (3)C9—O1—C10109.3 (3)
C17—C18—C23121.0 (3)C15—O2—C14109.8 (3)
C18—C19—C20120.5 (3)C26—O3—C25109.6 (3)
C18—C19—H19119.7C31—O4—C30110.3 (3)
C6—C1—C2—C31.2 (6)N3—C24—C25—O358.9 (5)
Br1—C1—C2—C3179.0 (3)O3—C26—C27—N357.9 (5)
C6—C1—C2—C7176.1 (4)C21—C22—C28—N48.4 (5)
Br1—C1—C2—C73.8 (5)C17—C22—C28—N4174.0 (3)
C1—C2—C3—C40.4 (6)N4—C29—C30—O458.8 (4)
C7—C2—C3—C4177.7 (4)O4—C31—C32—N459.3 (5)
C2—C3—C4—C51.1 (6)C10—C11—N1—C857.5 (5)
C3—C4—C5—C60.3 (7)C10—C11—N1—C7175.7 (3)
C4—C5—C6—C11.1 (6)C9—C8—N1—C1158.2 (4)
C4—C5—C6—C12179.7 (4)C9—C8—N1—C7175.0 (3)
C2—C1—C6—C51.9 (6)C2—C7—N1—C1179.8 (4)
Br1—C1—C6—C5178.2 (3)C2—C7—N1—C8155.2 (3)
C2—C1—C6—C12179.5 (4)C15—C16—N2—C1357.9 (4)
Br1—C1—C6—C120.3 (5)C15—C16—N2—C12177.0 (3)
C1—C2—C7—N1165.2 (3)C14—C13—N2—C1658.5 (5)
C3—C2—C7—N117.6 (5)C14—C13—N2—C12176.5 (4)
N1—C8—C9—O158.9 (5)C6—C12—N2—C16155.2 (3)
O1—C10—C11—N157.9 (5)C6—C12—N2—C1382.2 (4)
C5—C6—C12—N211.1 (5)C26—C27—N3—C2456.7 (4)
C1—C6—C12—N2170.4 (3)C26—C27—N3—C23179.0 (3)
N2—C13—C14—O259.1 (5)C25—C24—N3—C2757.2 (4)
O2—C15—C16—N258.6 (5)C25—C24—N3—C23179.0 (3)
C22—C17—C18—C193.4 (5)C18—C23—N3—C27149.3 (3)
Br2—C17—C18—C19179.0 (3)C18—C23—N3—C2488.1 (4)
C22—C17—C18—C23174.2 (3)C31—C32—N4—C28176.4 (3)
Br2—C17—C18—C233.3 (5)C31—C32—N4—C2960.1 (4)
C17—C18—C19—C201.4 (5)C22—C28—N4—C32158.6 (3)
C23—C18—C19—C20176.2 (3)C22—C28—N4—C2980.2 (4)
C18—C19—C20—C210.9 (6)C30—C29—N4—C3259.9 (4)
C19—C20—C21—C221.4 (6)C30—C29—N4—C28177.3 (3)
C20—C21—C22—C170.4 (5)C8—C9—O1—C1057.5 (5)
C20—C21—C22—C28177.3 (3)C11—C10—O1—C957.3 (5)
C18—C17—C22—C212.9 (5)C16—C15—O2—C1457.2 (5)
Br2—C17—C22—C21179.6 (3)C13—C14—O2—C1557.2 (5)
C18—C17—C22—C28174.8 (3)C27—C26—O3—C2557.8 (4)
Br2—C17—C22—C282.7 (5)C24—C25—O3—C2658.3 (4)
C19—C18—C23—N32.3 (5)C32—C31—O4—C3056.6 (5)
C17—C18—C23—N3175.2 (3)C29—C30—O4—C3156.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Br1i0.973.013.860 (5)146
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H23BrN2O2
Mr355.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)9.7086 (6), 18.1384 (12), 18.7167 (12)
β (°) 92.685 (1)
V3)3292.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)2.50
Crystal size (mm)0.33 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SHELXTL; Bruker, 2001)
Tmin, Tmax0.477, 0.669
No. of measured, independent and
observed [I > 2σ(I)] reflections
23653, 5817, 4588
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.100, 1.07
No. of reflections5817
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.54

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Bruker, 2001), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Br1i0.973.013.860 (5)146
Symmetry code: (i) x+1, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds