organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Bis(4-nitro­phen­yl)-1,2,5-oxa­diazole 2-oxide

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar El Mehraz, Fès, Morocco, bLaboratoire d'Activation Moléculaire, Faculté des Sciences, 60000 Oujda, Morocco, and cInstitut de Microtechnique, Université de Neuchâtel, Rue Emile Argand 11, CH-2009 Neuchâtel, Switzerland
*Correspondence e-mail: tbenhadda@yahoo.fr

(Received 20 November 2007; accepted 12 December 2007; online 23 January 2008)

The title compound, C14H8N4O6, a new 1,2,5-oxadiazole N-oxide derivative, was formed by dimerization of 4-nitro­benz­al­de­hyde oxime. The compound crystallizes with two independent mol­ecules per asymmetric unit. The N-oxide O atom is disordered over two sites in each mol­ecule; site occupancy factors are 0.57/0.43 and 0.5/0.5. The mean planes through the two benzene rings are inclined to the planar 1,2,3-oxadiazole ring by 25.03 (11) and 41.64 (11)° in one mol­ecule, and 22.58 (11) and 42.66 (11)° in the other mol­ecule, the smaller angle being for the ring on the oxide side of the oxadiazole ring in each case. In the crystal structure, the individual mol­ecules form centrosymmetric dimers linked via C—H⋯O hydrogen bonds. The dimers of one mol­ecule are then linked to those of the other mol­ecule via C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For related literature, see: Sillitoe & Harding (1978[Sillitoe, A. K. & Harding, M. M. (1978). Acta Cryst. B34, 2021-2022.]); Easton et al. (1995[Easton, C. J., Hughes, C. M., Tiekink, E. R. T., Savage, G. P. & Simpson, G. W. (1995). Z. Kristallogr. 210, 625-626.]); Baker et al. (2002[Baker, K. W. J., March, A. R., Parsons, S., Paton, R. M. & Stewart, G. W. (2002). Tetrahedron, 58, 8505-8513.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Howe & Shelton (1990[Howe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603-4607.]); Kerbal et al. (1990[Kerbal, A., Tshiamala, K., Cerutti, E., Laude, B. & Vebrel, J. (1990). Bull. Soc. Chim. Fr. 127, 252-257.]); Smietana et al. (1999[Smietana, M., Gouverneur, V. & Mioskowski, C. (1999). Tetrahedron Lett. 40, 1291-1294.]).

[Scheme 1]

Experimental

Crystal data
  • C14H8N4O6

  • Mr = 328.24

  • Monoclinic, P 21 /c

  • a = 17.3977 (11) Å

  • b = 7.2813 (4) Å

  • c = 21.5341 (13) Å

  • β = 91.667 (5)°

  • V = 2726.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 (2) K

  • 0.40 × 0.35 × 0.30 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: none

  • 29047 measured reflections

  • 7339 independent reflections

  • 5558 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.133

  • S = 1.15

  • 7339 reflections

  • 452 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O5i 0.95 2.59 3.283 (3) 130
C14—H14⋯O23ii 0.95 2.46 3.244 (3) 139
C25—H25⋯O25iii 0.95 2.57 3.358 (3) 141
C27—H27⋯O1Aiv 0.95 2.36 3.254 (4) 156
C31—H31⋯O5v 0.95 2.52 3.261 (3) 135
C34—H34⋯O4ii 0.95 2.50 3.284 (3) 140
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) x+1, y, z; (v) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA (Version 1.35) and X-RED32 (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2006[Stoe & Cie (2006). X-AREA (Version 1.35) and X-RED32 (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our research aimed at the synthesis of new efficient antitubercular agents containing simple pharmacophore sites of the type X—C—C—Y we turned our attention to the spiro-isoxazolines which posses a rigid (O=C—C—O) pharmacophore. These compounds display interesting biological properties, such as herbicidal, plant-growth regulatory and antitumor activities (Howe & Shelton, 1990; Smietana et al., 1999). The preparation of the spiro-isoxazolines, in which we are interested, normally involves the reaction of a nitriloxyde [(E)-4-nitrobenzaldehyde oxime, (I)] with an isothiochromanone in a solution of hydrogen peroxyde (Kerbal et al., 1990). We have noted many times the formation of a by-product during this reaction. Finally this compound has been isolated and examined crystallographically. It was found to be a new 1,2,5-oxadiazole N-oxide derivative, (II).

The molecular structure of compound (II) is shown in Fig. 1. The compound crystallizes with two independent molecules (1 & 2) per asymmetric unit. The 1,2,5-oxadiazole units are disordered with two alternative positions for the N-oxide O-atom [atom O1a/O1b in molecule 1, and atom O21a/O21b in molecule 2]. There are some short intramolecular C···O contacts in the two molecules involving the disordered atoms; O1b and neighbouring C-atoms C2 and C3, and atom O21b with atom C22. A search of the Cambridge Crystallographic Data Base (Version 1.8, last update May 2007: Allen, 2002) indicates that such short interactions are not unusual. The 1,2,5-oxadiazole ring is planar [to within 0.008 and 0.009 Å, in molecules 1 and 2, respectively] and the bond distances and angles are similar to those in the diphenyl analoque 3,4-Diphenylfurazan N-oxide, (III) [Sillitoe & Harding, 1978)]. They do not indicate the presence of delocalized electron density as in the dichlorophenyl analoque 4,5-bis(2,6-Dichlorophenyl)-1-oxide-2-oxa-1,3-diazole, (IV) [Easton et al., 1995] or a D-mannose-derived furoxan [Baker et al., 2002]. The C?N bonds being significantly shorter than the C—C or O—N bonds. The remainder of the bond distances in (II) are within normal limits (Allen et al., 1987). The best planes through the phenyl rings are inclined to the best plane through the 1,2,5-oxadiazole ring by 25.03 (11) and 41.64 (11)° in molecule 1, and 22.58 (11) and 42.66 (11)° in molecule 2. This is quite different to the situation in (III), where the same dihedral angles are 16.7 and 59.6°, or in (IV), where the same dihedral angles are 63.1 (3) and 65.6 (5)°.

In the crystal structure of (II) the individual molecules are linked to their symmetry related molecule via C—H···O hydrogen bonds to form centrosynmetric dimers. These dimers are in turn linked by other C—H···O hydrogen bonds to form a three-dimensional network. Details of the hydrogen bonding are given in Table 1 and Fig. 2.

The formation of compound (II) is similar to that described by Baker et al. (2002), who have studied in detail the synthesis and X-ray structure of 3,4-dipyranosyl-1,2,5-oxadiazole 2-oxide. Similarly we found that the reaction of 4-nitrobenzaldehyde oxime with pure NaOCl in CHCl3, but never CH2Cl2, gives an almost quantitative yield of (II) (95%), on simply stirring at room temperature for 16 h.

Related literature top

For related literature, see: Sillitoe & Harding (1978); Easton et al. (1995); Baker et al. (2002); Allen (2002); Allen et al. (1987); Howe & Shelton (1990); Kerbal et al. (1990); Smietana et al. (1999).

Experimental top

The reaction of 4-nitrobenzaldehyde oxime with pure NaOCl, in a 2:1 molar ratio, in CHCl3 (but never CH2Cl2) gives an almost quantitative yield of (II) (95%), on stirring at room temperature for 16 h. Yellow block-like crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution of (II).

Refinement top

The N-oxide O-atom is disordered over two sites in each molecule (1 & 2); the occupancies were finally fixed at O1a/O1b = 0.57/0.43 and O31a/O31b = 0.5/0.5. The hydrogen atoms could all be located from difference Fourier maps. They were included in calculated positons and treated as riding atoms with C—H distances = 0.95 Å and Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2006); cell refinement: X-AREA (Stoe & Cie, 2006); data reduction: X-RED32 (Stoe & Cie, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two independent molecules (1 and 2) of compound (II), showing the crystallographic atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. The disordered N-oxide O-atoms, O1B and O21B, bonded to atoms N2 and N22, respectively, are drawn with red and white checkered patterned ellipses. The hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of compound (II). The C—H···O contacts are shown as dashed lines. The atoms of Molecule 2 are red [H-atoms not involved in C—H···O contacts have been removed for clarity].
3,4-Bis(4-nitrophenyl)-1,2,5-oxadiazole 2-oxide top
Crystal data top
C14H8N4O6F(000) = 1344
Mr = 328.24Dx = 1.599 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22316 reflections
a = 17.3977 (11) Åθ = 1.4–29.6°
b = 7.2813 (4) ŵ = 0.13 mm1
c = 21.5341 (13) ÅT = 173 K
β = 91.667 (5)°Block, yellow
V = 2726.7 (3) Å30.40 × 0.35 × 0.30 mm
Z = 8
Data collection top
Stoe IPDS-2
diffractometer
5558 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 29.3°, θmin = 1.9°
Detector resolution: 6.67 pixels mm-1h = 2323
ϕ and ω scansk = 99
29047 measured reflectionsl = 2927
7339 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0291P)2 + 1.6814P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
7339 reflectionsΔρmax = 0.22 e Å3
452 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (7)
Crystal data top
C14H8N4O6V = 2726.7 (3) Å3
Mr = 328.24Z = 8
Monoclinic, P21/cMo Kα radiation
a = 17.3977 (11) ŵ = 0.13 mm1
b = 7.2813 (4) ÅT = 173 K
c = 21.5341 (13) Å0.40 × 0.35 × 0.30 mm
β = 91.667 (5)°
Data collection top
Stoe IPDS-2
diffractometer
5558 reflections with I > 2σ(I)
29047 measured reflectionsRint = 0.054
7339 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.15Δρmax = 0.22 e Å3
7339 reflectionsΔρmin = 0.17 e Å3
452 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.20064 (15)1.0812 (5)0.33132 (14)0.0569 (10)0.570
O1B0.0065 (2)1.3687 (5)0.26989 (17)0.0467 (12)0.430
O20.11135 (10)1.2492 (2)0.29646 (8)0.0559 (6)
O30.34176 (9)0.9789 (2)0.41298 (8)0.0532 (6)
O40.35733 (9)1.0989 (3)0.32312 (9)0.0613 (6)
O50.16080 (10)0.2648 (3)0.48002 (10)0.0649 (7)
O60.03872 (10)0.2186 (2)0.47351 (8)0.0533 (6)
N10.13345 (11)1.0918 (3)0.32958 (9)0.0482 (6)
N20.03118 (11)1.2504 (3)0.29531 (9)0.0458 (6)
N30.31689 (10)1.0437 (2)0.36429 (9)0.0408 (5)
N40.09605 (11)0.3130 (3)0.46617 (8)0.0435 (6)
C10.07019 (11)1.0052 (3)0.34783 (9)0.0374 (6)
C20.00587 (12)1.1062 (3)0.32676 (9)0.0376 (6)
C30.07736 (11)1.0830 (3)0.33666 (9)0.0350 (6)
C40.10802 (12)1.0318 (3)0.39460 (9)0.0384 (6)
C50.18658 (11)1.0173 (3)0.40352 (10)0.0378 (6)
C60.23332 (11)1.0561 (3)0.35481 (10)0.0359 (6)
C70.20455 (12)1.1079 (3)0.29709 (10)0.0403 (6)
C80.12612 (12)1.1209 (3)0.28824 (10)0.0403 (6)
C90.07511 (11)0.8297 (3)0.38100 (9)0.0359 (6)
C100.14024 (12)0.7885 (3)0.41433 (10)0.0442 (7)
C110.14705 (12)0.6194 (3)0.44269 (11)0.0449 (7)
C120.08802 (12)0.4955 (3)0.43814 (9)0.0384 (6)
C130.02201 (11)0.5341 (3)0.40691 (10)0.0382 (6)
C140.01649 (11)0.7014 (3)0.37723 (9)0.0373 (6)
O21A0.29246 (18)1.1020 (5)0.16767 (16)0.0578 (13)0.500
O21B0.49456 (18)1.3863 (4)0.22893 (14)0.0461 (10)0.500
O220.38508 (9)1.2667 (2)0.20230 (8)0.0542 (6)
O230.85144 (9)1.0823 (3)0.17637 (9)0.0620 (7)
O240.82849 (10)0.9729 (3)0.08579 (9)0.0597 (6)
O250.31736 (10)0.2800 (2)0.02256 (9)0.0582 (6)
O260.44007 (10)0.2367 (2)0.02397 (8)0.0537 (6)
N210.36029 (11)1.1097 (3)0.17004 (9)0.0464 (6)
N220.46569 (11)1.2675 (3)0.20255 (9)0.0445 (6)
N230.80723 (10)1.0366 (2)0.13458 (9)0.0420 (6)
N240.38324 (11)0.3300 (3)0.03385 (8)0.0425 (6)
C210.42189 (11)1.0222 (3)0.15133 (9)0.0367 (6)
C220.48800 (11)1.1233 (3)0.17116 (9)0.0366 (6)
C230.57059 (11)1.0973 (3)0.16113 (9)0.0351 (6)
C240.59670 (11)1.0453 (3)0.10327 (9)0.0378 (6)
C250.67416 (12)1.0243 (3)0.09420 (10)0.0384 (6)
C260.72470 (11)1.0581 (3)0.14354 (10)0.0361 (6)
C270.70047 (12)1.1111 (3)0.20112 (10)0.0396 (6)
C280.62323 (12)1.1303 (3)0.20988 (9)0.0391 (6)
C290.41346 (11)0.8464 (3)0.11884 (9)0.0359 (6)
C300.34415 (12)0.8024 (3)0.08826 (10)0.0449 (7)
C310.33437 (12)0.6338 (3)0.06037 (11)0.0452 (7)
C320.39471 (12)0.5119 (3)0.06177 (9)0.0380 (6)
C330.46440 (11)0.5523 (3)0.09033 (10)0.0387 (6)
C340.47300 (11)0.7196 (3)0.11986 (10)0.0375 (6)
H40.074901.006900.427900.0460*
H70.238101.133900.264200.0480*
H80.105101.155900.248800.0480*
H100.180100.876900.417600.0530*
H110.191700.589400.464900.0540*
H130.018800.447600.405800.0460*
H140.027700.728800.354100.0450*
H50.208100.981000.442700.0450*
H240.560901.024300.069900.0450*
H250.692400.987500.055000.0460*
H270.736601.133900.234100.0480*
H280.605501.166300.249400.0470*
H300.303500.889400.086700.0540*
H310.286700.602200.040500.0540*
H330.505700.467000.089700.0460*
H340.520100.748100.141100.0450*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0354 (14)0.080 (2)0.0549 (17)0.0116 (14)0.0039 (12)0.0144 (15)
O1B0.054 (2)0.042 (2)0.044 (2)0.0035 (16)0.0018 (16)0.0160 (16)
O20.0530 (10)0.0577 (11)0.0558 (10)0.0170 (8)0.0162 (8)0.0003 (8)
O30.0414 (8)0.0630 (11)0.0547 (10)0.0061 (8)0.0064 (7)0.0046 (8)
O40.0396 (9)0.0799 (13)0.0647 (11)0.0101 (8)0.0077 (8)0.0087 (10)
O50.0531 (10)0.0581 (11)0.0836 (13)0.0183 (9)0.0061 (9)0.0106 (10)
O60.0598 (10)0.0446 (9)0.0553 (10)0.0018 (8)0.0015 (8)0.0031 (7)
N10.0411 (10)0.0575 (12)0.0454 (10)0.0076 (9)0.0081 (8)0.0004 (9)
N20.0463 (10)0.0458 (11)0.0445 (10)0.0058 (8)0.0100 (8)0.0011 (9)
N30.0367 (9)0.0356 (9)0.0501 (10)0.0017 (7)0.0009 (8)0.0050 (8)
N40.0467 (10)0.0430 (10)0.0406 (9)0.0107 (8)0.0025 (8)0.0041 (8)
C10.0344 (10)0.0432 (11)0.0342 (10)0.0044 (8)0.0047 (7)0.0030 (8)
C20.0396 (10)0.0394 (11)0.0334 (10)0.0023 (8)0.0049 (8)0.0012 (8)
C30.0350 (10)0.0319 (10)0.0379 (10)0.0039 (8)0.0036 (8)0.0014 (8)
C40.0388 (10)0.0399 (11)0.0365 (10)0.0040 (8)0.0007 (8)0.0027 (8)
C50.0382 (10)0.0376 (11)0.0374 (10)0.0017 (8)0.0044 (8)0.0020 (8)
C60.0342 (9)0.0285 (9)0.0450 (11)0.0025 (8)0.0009 (8)0.0034 (8)
C70.0403 (11)0.0396 (11)0.0412 (11)0.0049 (9)0.0033 (8)0.0022 (9)
C80.0417 (11)0.0397 (11)0.0393 (11)0.0041 (9)0.0030 (8)0.0051 (9)
C90.0310 (9)0.0428 (11)0.0337 (9)0.0030 (8)0.0030 (7)0.0022 (8)
C100.0351 (10)0.0493 (13)0.0485 (12)0.0030 (9)0.0047 (9)0.0019 (10)
C110.0355 (10)0.0519 (13)0.0475 (12)0.0038 (9)0.0056 (9)0.0012 (10)
C120.0394 (10)0.0391 (11)0.0364 (10)0.0069 (8)0.0036 (8)0.0023 (8)
C130.0344 (10)0.0379 (10)0.0419 (11)0.0026 (8)0.0033 (8)0.0048 (9)
C140.0331 (10)0.0404 (11)0.0383 (10)0.0041 (8)0.0005 (8)0.0037 (8)
O21A0.0357 (16)0.078 (3)0.060 (2)0.0089 (16)0.0076 (14)0.0136 (18)
O21B0.0495 (17)0.0430 (17)0.0459 (17)0.0024 (14)0.0008 (13)0.0184 (14)
O220.0515 (9)0.0603 (11)0.0514 (9)0.0154 (8)0.0136 (7)0.0062 (8)
O230.0375 (8)0.0833 (14)0.0650 (11)0.0078 (9)0.0038 (8)0.0061 (10)
O240.0454 (9)0.0716 (12)0.0628 (11)0.0054 (8)0.0119 (8)0.0120 (9)
O250.0519 (10)0.0559 (11)0.0669 (11)0.0174 (8)0.0022 (8)0.0114 (9)
O260.0573 (10)0.0465 (9)0.0572 (10)0.0029 (8)0.0022 (8)0.0064 (8)
N210.0406 (10)0.0574 (12)0.0414 (10)0.0057 (9)0.0070 (7)0.0025 (9)
N220.0470 (10)0.0452 (11)0.0416 (10)0.0037 (8)0.0085 (8)0.0041 (8)
N230.0386 (9)0.0359 (9)0.0516 (11)0.0028 (7)0.0045 (8)0.0039 (8)
N240.0481 (10)0.0408 (10)0.0386 (9)0.0057 (8)0.0037 (8)0.0020 (8)
C210.0334 (9)0.0439 (11)0.0331 (9)0.0015 (8)0.0041 (7)0.0002 (8)
C220.0372 (10)0.0397 (11)0.0331 (9)0.0008 (8)0.0050 (7)0.0004 (8)
C230.0371 (10)0.0309 (10)0.0375 (10)0.0038 (8)0.0036 (8)0.0006 (8)
C240.0379 (10)0.0374 (10)0.0380 (10)0.0030 (8)0.0015 (8)0.0029 (8)
C250.0414 (11)0.0367 (10)0.0375 (10)0.0023 (8)0.0058 (8)0.0039 (8)
C260.0371 (10)0.0280 (9)0.0433 (11)0.0036 (8)0.0040 (8)0.0021 (8)
C270.0402 (11)0.0384 (11)0.0401 (11)0.0061 (9)0.0022 (8)0.0006 (9)
C280.0422 (11)0.0397 (11)0.0354 (10)0.0053 (9)0.0036 (8)0.0030 (8)
C290.0319 (9)0.0415 (11)0.0343 (9)0.0019 (8)0.0038 (7)0.0012 (8)
C300.0357 (10)0.0499 (13)0.0488 (12)0.0062 (9)0.0046 (9)0.0042 (10)
C310.0338 (10)0.0525 (13)0.0488 (12)0.0026 (9)0.0064 (9)0.0063 (10)
C320.0395 (10)0.0400 (11)0.0346 (10)0.0054 (8)0.0041 (8)0.0006 (8)
C330.0324 (9)0.0385 (11)0.0454 (11)0.0013 (8)0.0045 (8)0.0032 (9)
C340.0291 (9)0.0412 (11)0.0421 (11)0.0049 (8)0.0005 (8)0.0026 (9)
Geometric parameters (Å, º) top
O1A—N11.173 (3)C10—C111.381 (3)
O1B—N21.113 (4)C11—C121.373 (3)
O2—N21.396 (3)C12—C131.377 (3)
O2—N11.409 (3)C13—C141.380 (3)
O3—N31.218 (2)C4—H40.9500
O4—N31.216 (3)C5—H50.9500
O5—N41.225 (3)C7—H70.9500
O6—N41.218 (3)C8—H80.9500
O21A—N211.181 (4)C10—H100.9500
O21B—N221.143 (4)C11—H110.9500
O22—N211.399 (3)C13—H130.9500
O22—N221.402 (2)C14—H140.9500
O23—N231.213 (3)C21—C221.421 (3)
O24—N231.216 (3)C21—C291.464 (3)
O25—N241.220 (3)C22—C231.471 (3)
O26—N241.223 (3)C23—C241.391 (3)
N1—C11.318 (3)C23—C281.394 (3)
N2—C21.318 (3)C24—C251.376 (3)
N3—C61.465 (3)C25—C261.381 (3)
N4—C121.468 (3)C26—C271.376 (3)
N21—C211.320 (3)C27—C281.370 (3)
N22—C221.314 (3)C29—C301.394 (3)
N23—C261.463 (3)C29—C341.387 (3)
N24—C321.466 (3)C30—C311.375 (3)
C1—C91.468 (3)C31—C321.374 (3)
C1—C21.424 (3)C32—C331.375 (3)
C2—C31.467 (3)C33—C341.380 (3)
C3—C81.391 (3)C24—H240.9500
C3—C41.393 (3)C25—H250.9500
C4—C51.379 (3)C27—H270.9500
C5—C61.375 (3)C28—H280.9500
C6—C71.379 (3)C30—H300.9500
C7—C81.376 (3)C31—H310.9500
C9—C101.392 (3)C33—H330.9500
C9—C141.387 (3)C34—H340.9500
N1—O2—N2107.55 (16)C6—C5—H5121.00
N21—O22—N22107.40 (16)C8—C7—H7121.00
O1A—N1—O2110.9 (2)C6—C7—H7121.00
O2—N1—C1107.59 (17)C7—C8—H8120.00
O1A—N1—C1141.5 (3)C3—C8—H8120.00
O2—N2—C2107.76 (18)C11—C10—H10120.00
O1B—N2—O2114.4 (2)C9—C10—H10120.00
O1B—N2—C2137.8 (3)C10—C11—H11121.00
O3—N3—O4123.86 (18)C12—C11—H11121.00
O3—N3—C6118.05 (17)C14—C13—H13121.00
O4—N3—C6118.09 (18)C12—C13—H13121.00
O5—N4—C12117.3 (2)C13—C14—H14120.00
O6—N4—C12118.49 (18)C9—C14—H14120.00
O5—N4—O6124.2 (2)N21—C21—C22108.40 (19)
O22—N21—C21107.74 (17)N21—C21—C29119.80 (18)
O21A—N21—O22110.7 (2)C22—C21—C29131.73 (18)
O21A—N21—C21141.6 (3)N22—C22—C21108.67 (18)
O21B—N22—C22136.8 (2)N22—C22—C23118.87 (19)
O22—N22—C22107.77 (17)C21—C22—C23132.43 (19)
O21B—N22—O22115.5 (2)C22—C23—C24120.81 (17)
O23—N23—O24122.91 (19)C22—C23—C28119.36 (18)
O23—N23—C26118.45 (18)C24—C23—C28119.80 (18)
O24—N23—C26118.64 (18)C23—C24—C25120.27 (18)
O25—N24—O26124.0 (2)C24—C25—C26118.37 (19)
O26—N24—C32118.17 (18)N23—C26—C25119.00 (19)
O25—N24—C32117.85 (18)N23—C26—C27118.45 (18)
N1—C1—C9120.10 (18)C25—C26—C27122.55 (19)
C2—C1—C9131.46 (18)C26—C27—C28118.70 (19)
N1—C1—C2108.35 (19)C23—C28—C27120.30 (19)
N2—C2—C3118.68 (19)C21—C29—C30119.99 (18)
C1—C2—C3132.49 (19)C21—C29—C34120.66 (18)
N2—C2—C1108.73 (18)C30—C29—C34119.3 (2)
C4—C3—C8119.90 (18)C29—C30—C31120.4 (2)
C2—C3—C4120.76 (18)C30—C31—C32118.8 (2)
C2—C3—C8119.28 (18)N24—C32—C31118.67 (19)
C3—C4—C5119.83 (19)N24—C32—C33118.98 (19)
C4—C5—C6118.94 (19)C31—C32—C33122.3 (2)
N3—C6—C5119.18 (19)C32—C33—C34118.50 (19)
N3—C6—C7118.37 (18)C29—C34—C33120.61 (18)
C5—C6—C7122.45 (19)C23—C24—H24120.00
C6—C7—C8118.45 (19)C25—C24—H24120.00
C3—C8—C7120.4 (2)C24—C25—H25121.00
C1—C9—C10119.91 (18)C26—C25—H25121.00
C1—C9—C14120.30 (18)C26—C27—H27121.00
C10—C9—C14119.7 (2)C28—C27—H27121.00
C9—C10—C11120.1 (2)C23—C28—H28120.00
C10—C11—C12118.7 (2)C27—C28—H28120.00
C11—C12—C13122.5 (2)C29—C30—H30120.00
N4—C12—C13118.45 (19)C31—C30—H30120.00
N4—C12—C11119.03 (19)C30—C31—H31121.00
C12—C13—C14118.47 (19)C32—C31—H31121.00
C9—C14—C13120.40 (18)C32—C33—H33121.00
C3—C4—H4120.00C34—C33—H33121.00
C5—C4—H4120.00C29—C34—H34120.00
C4—C5—H5121.00C33—C34—H34120.00
N2—O2—N1—O1A178.8 (2)C4—C3—C8—C70.1 (3)
N2—O2—N1—C10.7 (2)C2—C3—C4—C5177.6 (2)
N1—O2—N2—C21.4 (2)C3—C4—C5—C60.8 (3)
N22—O22—N21—O21A179.3 (2)C4—C5—C6—C70.5 (3)
N22—O22—N21—C210.7 (2)C4—C5—C6—N3179.06 (19)
N21—O22—N22—O21B178.0 (2)C5—C6—C7—C80.0 (3)
N21—O22—N22—C221.5 (2)N3—C6—C7—C8179.54 (19)
O2—N1—C1—C9176.89 (17)C6—C7—C8—C30.2 (3)
O1A—N1—C1—C2179.5 (4)C14—C9—C10—C111.1 (3)
O1A—N1—C1—C92.4 (5)C1—C9—C14—C13178.11 (19)
O2—N1—C1—C20.1 (2)C1—C9—C10—C11176.3 (2)
O2—N2—C2—C3175.41 (17)C10—C9—C14—C130.7 (3)
O2—N2—C2—C11.4 (2)C9—C10—C11—C121.1 (3)
O3—N3—C6—C58.3 (3)C10—C11—C12—N4177.74 (19)
O3—N3—C6—C7172.13 (19)C10—C11—C12—C130.7 (3)
O4—N3—C6—C5171.6 (2)C11—C12—C13—C142.4 (3)
O4—N3—C6—C78.0 (3)N4—C12—C13—C14175.99 (18)
O5—N4—C12—C1116.0 (3)C12—C13—C14—C92.4 (3)
O6—N4—C12—C11164.9 (2)N21—C21—C22—N221.4 (2)
O6—N4—C12—C1316.7 (3)N21—C21—C22—C23176.5 (2)
O5—N4—C12—C13162.5 (2)C29—C21—C22—N22175.4 (2)
O22—N21—C21—C220.4 (2)C29—C21—C22—C236.8 (4)
O21A—N21—C21—C22177.6 (4)N21—C21—C29—C3023.0 (3)
O21A—N21—C21—C295.2 (5)N21—C21—C29—C34154.8 (2)
O22—N21—C21—C29176.84 (17)C22—C21—C29—C30160.6 (2)
O21B—N22—C22—C234.2 (4)C22—C21—C29—C3421.6 (3)
O21B—N22—C22—C21177.6 (3)N22—C22—C23—C24135.9 (2)
O22—N22—C22—C211.7 (2)N22—C22—C23—C2842.3 (3)
O22—N22—C22—C23176.42 (17)C21—C22—C23—C2441.7 (3)
O24—N23—C26—C256.9 (3)C21—C22—C23—C28140.1 (2)
O23—N23—C26—C25173.5 (2)C22—C23—C24—C25179.0 (2)
O23—N23—C26—C276.6 (3)C28—C23—C24—C250.8 (3)
O24—N23—C26—C27173.0 (2)C22—C23—C28—C27178.5 (2)
O25—N24—C32—C33162.4 (2)C24—C23—C28—C270.2 (3)
O25—N24—C32—C3115.3 (3)C23—C24—C25—C260.7 (3)
O26—N24—C32—C31165.6 (2)C24—C25—C26—N23179.92 (19)
O26—N24—C32—C3316.7 (3)C24—C25—C26—C270.2 (3)
N1—C1—C2—N21.0 (2)N23—C26—C27—C28179.59 (19)
N1—C1—C9—C14152.1 (2)C25—C26—C27—C280.3 (3)
C2—C1—C9—C10158.6 (2)C26—C27—C28—C230.3 (3)
C2—C1—C9—C1424.1 (3)C21—C29—C30—C31176.6 (2)
C9—C1—C2—C38.2 (4)C34—C29—C30—C311.2 (3)
N1—C1—C2—C3175.2 (2)C21—C29—C34—C33178.61 (19)
C9—C1—C2—N2175.6 (2)C30—C29—C34—C330.8 (3)
N1—C1—C9—C1025.2 (3)C29—C30—C31—C321.7 (3)
N2—C2—C3—C4135.9 (2)C30—C31—C32—N24177.95 (19)
N2—C2—C3—C841.2 (3)C30—C31—C32—C330.3 (3)
C1—C2—C3—C440.1 (3)N24—C32—C33—C34175.98 (19)
C1—C2—C3—C8142.9 (2)C31—C32—C33—C341.7 (3)
C8—C3—C4—C50.6 (3)C32—C33—C34—C292.2 (3)
C2—C3—C8—C7177.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5i0.952.593.283 (3)130
C7—H7···O21A0.952.323.218 (4)157
C10—H10···O1A0.952.402.955 (4)117
C14—H14···O23ii0.952.463.244 (3)139
C25—H25···O25iii0.952.573.358 (3)141
C27—H27···O1Aiv0.952.363.254 (4)156
C28—H28···O21B0.952.542.951 (4)106
C30—H30···O21A0.952.342.929 (4)119
C31—H31···O5v0.952.523.261 (3)135
C34—H34···O4ii0.952.503.284 (3)140
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H8N4O6
Mr328.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)17.3977 (11), 7.2813 (4), 21.5341 (13)
β (°) 91.667 (5)
V3)2726.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29047, 7339, 5558
Rint0.054
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.133, 1.15
No. of reflections7339
No. of parameters452
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: X-AREA (Stoe & Cie, 2006), X-RED32 (Stoe & Cie, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5i0.952.593.283 (3)130
C14—H14···O23ii0.952.463.244 (3)139
C25—H25···O25iii0.952.573.358 (3)141
C27—H27···O1Aiv0.952.363.254 (4)156
C31—H31···O5v0.952.523.261 (3)135
C34—H34···O4ii0.952.503.284 (3)140
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Ministry of Education of the Kingdom of Morocco (Projet Globale de Recherche of the Université Mohamed Premier, grant PGR-BH-2005).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaker, K. W. J., March, A. R., Parsons, S., Paton, R. M. & Stewart, G. W. (2002). Tetrahedron, 58, 8505–8513.  Web of Science CSD CrossRef CAS Google Scholar
First citationEaston, C. J., Hughes, C. M., Tiekink, E. R. T., Savage, G. P. & Simpson, G. W. (1995). Z. Kristallogr. 210, 625–626.  CrossRef CAS Web of Science Google Scholar
First citationHowe, R. K. & Shelton, B. R. (1990). J. Org. Chem. 55, 4603–4607.  CrossRef CAS Web of Science Google Scholar
First citationKerbal, A., Tshiamala, K., Cerutti, E., Laude, B. & Vebrel, J. (1990). Bull. Soc. Chim. Fr. 127, 252–257.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSillitoe, A. K. & Harding, M. M. (1978). Acta Cryst. B34, 2021–2022.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSmietana, M., Gouverneur, V. & Mioskowski, C. (1999). Tetrahedron Lett. 40, 1291–1294.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2006). X-AREA (Version 1.35) and X-RED32 (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds