supplementary materials


dn2314 scheme

Acta Cryst. (2008). E64, m429    [ doi:10.1107/S1600536808002341 ]

Dichlorido([eta]6-toluene)[tris(4-methoxyphenyl)phosphine]ruthenium(II)

L. Wang, X.-G. Zhou and R.-X. Li

Abstract top

In the title compound, [RuCl2(C7H8)(C21H21O3P)], the RuII atom possesses a pseudo-octahedral geometry and the metrical parameters around the metallic core compare well with those of similar three-legged-piano-stool complexes.

Comment top

Recently, we are interested in the synthesis and catalytic properties of η6-arene-ruthenium complexes bearing phosphines (Zhang et al., 2006). These kind of complexes are potential catalysts for many organic reactions, such as hydrogenation of unsaturated organic compound. The title complex was formed in high yield by reacting [RuCl2(η6-C6H6)]2 with tri(4-methoxyphenyl)phosphine in refluxing toluene. In this reaction, the coordinated benzene in ruthenium was replaced by toluene.

In the title compound, the central Ru atom possesses a pseudo-octahedral geometry and is coordinated by two Cl atoms, one P atom of tri(4-methoxyphenyl)phosphine, and three C=C double bonds of toluene (Fig. 1). The metrical parameters around the metallic core compare well with those of similar three-legged piano-stool [Ru(η6-arene)(PPh3)Cl2] complexes (Elsegood & Tocher, 1995; Hafner et al., 1997; Hansen & Nelson, 2000; Therrien et al., 2004).

Related literature top

For related literature, see: Elsegood & Tocher (1995); Hafner et al. (1997); Hansen & Nelson (2000); Therrien et al. (2004); Eapen & Tamborski (1980); Winkhaus & Singer (1967); Zhang et al. (2006).

Experimental top

Synthetic reaction was performed with standard Schlenk technique under nitrogen atmosphere. Solvents were dried over appropriate drying agents and distilled under nitrogen prior to use. [RuCl2(η6-C6H6)]2 and tri(4-methoxyphenyl)phosphine were prepared with the reported methods (Eapen & Tamborski, 1980; Winkhaus & Singer, 1967). A mixture of [RuCl2(η6-C6H6)]2 (0.100 g, 0.20 mmol) and tri(4-methoxyphenyl)phosphine (0.310 g, 0.88 mmol) was refluxed in toluene (50 ml) for 6 h. During refluxing, the solid substances were slowly dissolved and the color of solution changed to crimson. At the end of reaction, the product was obtained as red powder after solvent removal under vacuum. Red crystals of the tittle complex suitable for X-ray structure analysis were obtained by cooling of a dichloromethane-methanol (1:2) solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93Å (aromatic) or 0.96 Å (methyl) with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom-labelling scheme. Ellipoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Dichlorido(η6-toluene)[tris(4-methoxyphenyl)phosphine]ruthenium(II) top
Crystal data top
[RuCl2(C7H8)(C21H21O3P)]F000 = 1256
Mr = 616.45Dx = 1.531 Mg m3
Orthorhombic, Pna21Mo Kα radiation
λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 9291 reflections
a = 22.1789 (2) Åθ = 2.3–27.4º
b = 8.0564 (1) ŵ = 0.87 mm1
c = 14.9717 (2) ÅT = 296 (2) K
V = 2675.17 (5) Å3Block, red
Z = 40.24 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5872 independent reflections
Radiation source: fine-focus sealed tube4769 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 296(2) Kθmax = 27.4º
φ and ω scansθmin = 1.8º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 25→28
Tmin = 0.786, Tmax = 1.000k = 10→9
20209 measured reflectionsl = 19→16
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032  w = 1/[σ2(Fo2) + (0.0336P)2 + 0.3363P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max = 0.006
S = 1.01Δρmax = 0.31 e Å3
5872 reflectionsΔρmin = 0.38 e Å3
320 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 2694 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (3)
Secondary atom site location: difference Fourier map
Crystal data top
[RuCl2(C7H8)(C21H21O3P)]V = 2675.17 (5) Å3
Mr = 616.45Z = 4
Orthorhombic, Pna21Mo Kα
a = 22.1789 (2) ŵ = 0.87 mm1
b = 8.0564 (1) ÅT = 296 (2) K
c = 14.9717 (2) Å0.24 × 0.18 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5872 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4769 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 1.000Rint = 0.039
20209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.31 e Å3
S = 1.01Δρmin = 0.38 e Å3
5872 reflectionsAbsolute structure: Flack (1983), 2694 Friedel pairs
320 parametersFlack parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.028202 (10)0.41346 (3)0.250174 (17)0.03771 (8)
Cl10.02863 (3)0.66837 (10)0.25738 (10)0.0516 (2)
Cl20.02193 (5)0.39771 (16)0.41065 (7)0.0546 (3)
P10.11610 (3)0.57488 (10)0.26850 (6)0.0369 (2)
O10.33118 (13)0.1364 (5)0.3048 (3)0.0908 (11)
O20.16853 (16)1.0540 (4)0.5626 (2)0.0676 (9)
O30.16755 (16)1.0654 (4)0.0232 (2)0.0697 (10)
C10.03640 (19)0.3238 (5)0.1463 (3)0.0566 (11)
C20.03993 (19)0.2176 (5)0.2200 (3)0.0585 (11)
H20.07690.19540.24680.070*
C30.01204 (19)0.1465 (4)0.2524 (4)0.0659 (10)
H30.00940.07740.30200.079*
C40.0672 (2)0.1728 (6)0.2150 (4)0.0718 (14)
H40.10110.11900.23730.086*
C50.0722 (2)0.2804 (7)0.1433 (4)0.0750 (15)
H50.11010.30230.11930.090*
C60.0214 (2)0.3568 (7)0.1062 (3)0.0583 (13)
H60.02490.42680.05710.070*
C70.0898 (3)0.4094 (7)0.1111 (4)0.0903 (17)
H7A0.10880.34120.06660.135*
H7B0.07790.51300.08480.135*
H7C0.11770.42990.15890.135*
C80.18120 (14)0.4366 (4)0.2741 (2)0.0406 (8)
C90.18462 (16)0.3298 (5)0.3461 (3)0.0538 (10)
H90.15290.32720.38670.065*
C100.23391 (16)0.2258 (5)0.3599 (3)0.0554 (11)
H100.23580.15690.40970.067*
C110.27966 (15)0.2278 (5)0.2982 (3)0.0579 (12)
C120.27647 (17)0.3296 (6)0.2242 (3)0.0660 (13)
H120.30710.32760.18170.079*
C130.22733 (16)0.4352 (5)0.2131 (3)0.0503 (9)
H130.22580.50540.16380.060*
C140.3391 (2)0.0338 (6)0.3805 (4)0.0813 (15)
H14A0.33790.10050.43360.122*
H14B0.37730.02150.37670.122*
H14C0.30740.04730.38260.122*
C150.12828 (16)0.7071 (4)0.3662 (2)0.0375 (8)
C160.18449 (16)0.7142 (5)0.4088 (2)0.0459 (9)
H160.21460.63990.39240.055*
C170.19565 (17)0.8287 (5)0.4743 (3)0.0501 (9)
H170.23300.83050.50240.060*
C180.15195 (19)0.9417 (5)0.4989 (3)0.0478 (10)
C190.0950 (2)0.9340 (5)0.4593 (3)0.0510 (11)
H190.06481.00690.47680.061*
C200.08419 (17)0.8170 (5)0.3939 (3)0.0455 (9)
H200.04620.81190.36780.055*
C210.1238 (3)1.1644 (7)0.5972 (4)0.0848 (16)
H21A0.11071.23840.55080.127*
H21B0.14061.22750.64550.127*
H21C0.09001.10130.61850.127*
C220.13174 (18)0.7223 (5)0.1775 (2)0.0406 (9)
C230.18352 (19)0.8211 (5)0.1782 (3)0.0532 (10)
H230.21090.81220.22500.064*
C240.19421 (19)0.9319 (5)0.1096 (3)0.0576 (10)
H240.22940.99450.10950.069*
C250.1531 (2)0.9506 (5)0.0412 (3)0.0509 (10)
C260.1007 (2)0.8580 (5)0.0417 (3)0.0539 (11)
H260.07200.87210.00310.065*
C270.09122 (18)0.7437 (5)0.1096 (3)0.0461 (10)
H270.05630.67990.10890.055*
C280.1281 (3)1.0834 (7)0.0964 (4)0.0909 (19)
H28A0.12240.97770.12470.136*
H28B0.14511.16020.13850.136*
H28C0.09001.12480.07590.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.03768 (12)0.03808 (13)0.03737 (14)0.00240 (10)0.00388 (15)0.00205 (18)
Cl10.0416 (3)0.0481 (4)0.0652 (6)0.0107 (3)0.0072 (5)0.0108 (6)
Cl20.0603 (7)0.0666 (8)0.0368 (5)0.0049 (5)0.0090 (4)0.0002 (5)
P10.0342 (4)0.0391 (4)0.0374 (6)0.0053 (3)0.0039 (3)0.0028 (4)
O10.0566 (17)0.106 (2)0.110 (3)0.0447 (17)0.0301 (17)0.045 (2)
O20.079 (2)0.068 (2)0.056 (2)0.0084 (17)0.0140 (16)0.0150 (16)
O30.085 (2)0.058 (2)0.066 (2)0.0173 (17)0.0039 (17)0.0198 (17)
C10.066 (3)0.043 (2)0.060 (2)0.003 (2)0.031 (2)0.016 (2)
C20.061 (2)0.049 (2)0.065 (3)0.0174 (19)0.0051 (19)0.006 (2)
C30.098 (3)0.0372 (17)0.062 (2)0.0010 (18)0.013 (4)0.003 (3)
C40.073 (3)0.047 (2)0.095 (4)0.019 (2)0.003 (3)0.026 (3)
C50.067 (3)0.079 (4)0.079 (3)0.003 (3)0.026 (3)0.040 (3)
C60.086 (4)0.050 (3)0.039 (3)0.011 (3)0.002 (2)0.006 (2)
C70.099 (4)0.090 (4)0.081 (4)0.020 (3)0.013 (3)0.001 (3)
C80.0364 (15)0.0409 (18)0.044 (2)0.0012 (13)0.0061 (14)0.0031 (15)
C90.044 (2)0.055 (2)0.062 (3)0.0124 (18)0.0195 (18)0.016 (2)
C100.043 (2)0.053 (2)0.070 (3)0.0092 (18)0.0145 (18)0.022 (2)
C110.042 (2)0.055 (3)0.076 (3)0.0142 (19)0.0112 (18)0.010 (2)
C120.046 (2)0.082 (3)0.070 (3)0.020 (2)0.0230 (19)0.023 (3)
C130.044 (2)0.061 (2)0.046 (2)0.0106 (17)0.0116 (16)0.0108 (18)
C140.057 (3)0.070 (3)0.117 (4)0.024 (2)0.012 (3)0.031 (3)
C150.0349 (18)0.038 (2)0.0401 (19)0.0029 (15)0.0009 (15)0.0029 (16)
C160.0409 (18)0.054 (2)0.043 (2)0.0074 (17)0.0026 (16)0.0038 (18)
C170.043 (2)0.064 (3)0.043 (2)0.0007 (19)0.0061 (16)0.001 (2)
C180.057 (2)0.048 (3)0.038 (2)0.0019 (19)0.0024 (18)0.0016 (18)
C190.054 (2)0.051 (3)0.049 (2)0.014 (2)0.0048 (18)0.006 (2)
C200.0408 (19)0.048 (2)0.048 (2)0.0120 (18)0.0079 (17)0.0041 (19)
C210.111 (4)0.079 (4)0.065 (3)0.027 (4)0.015 (3)0.023 (3)
C220.046 (2)0.037 (2)0.039 (2)0.0029 (17)0.0057 (16)0.0002 (16)
C230.054 (2)0.052 (3)0.054 (2)0.003 (2)0.0089 (18)0.0054 (19)
C240.053 (2)0.055 (2)0.064 (3)0.011 (2)0.004 (2)0.009 (2)
C250.069 (3)0.038 (2)0.045 (2)0.005 (2)0.006 (2)0.0030 (19)
C260.061 (3)0.049 (3)0.052 (2)0.002 (2)0.007 (2)0.006 (2)
C270.045 (2)0.045 (2)0.049 (2)0.0058 (18)0.0004 (17)0.0055 (19)
C280.132 (5)0.080 (4)0.061 (3)0.025 (4)0.023 (3)0.026 (3)
Geometric parameters (Å, °) top
Ru1—C52.160 (4)C9—H90.9300
Ru1—C32.181 (3)C10—C111.372 (5)
Ru1—C42.188 (4)C10—H100.9300
Ru1—C62.208 (5)C11—C121.382 (5)
Ru1—C22.231 (4)C12—C131.392 (5)
Ru1—C12.235 (4)C12—H120.9300
Ru1—P12.3593 (8)C13—H130.9300
Ru1—Cl22.4099 (12)C14—H14A0.9600
Ru1—Cl12.4121 (8)C14—H14B0.9600
P1—C81.826 (3)C14—H14C0.9600
P1—C151.830 (4)C15—C201.382 (5)
P1—C221.841 (4)C15—C161.402 (5)
O1—C111.363 (4)C16—C171.369 (5)
O1—C141.414 (6)C16—H160.9300
O2—C181.365 (5)C17—C181.380 (6)
O2—C211.429 (6)C17—H170.9300
O3—C251.373 (5)C18—C191.396 (6)
O3—C281.410 (6)C19—C201.380 (6)
C1—C21.399 (6)C19—H190.9300
C1—C61.441 (7)C20—H200.9300
C1—C71.469 (6)C21—H21A0.9600
C2—C31.375 (6)C21—H21B0.9600
C2—H20.9300C21—H21C0.9600
C3—C41.362 (6)C22—C271.367 (5)
C3—H30.9300C22—C231.397 (6)
C4—C51.385 (7)C23—C241.381 (6)
C4—H40.9300C23—H230.9300
C5—C61.399 (7)C24—C251.380 (6)
C5—H50.9300C24—H240.9300
C6—H60.9300C25—C261.381 (6)
C7—H7A0.9600C26—C271.388 (6)
C7—H7B0.9600C26—H260.9300
C7—H7C0.9600C27—H270.9300
C8—C131.372 (4)C28—H28A0.9600
C8—C91.381 (5)C28—H28B0.9600
C9—C101.393 (5)C28—H28C0.9600
C5—Ru1—C366.2 (2)Ru1—C6—H6129.8
C5—Ru1—C437.14 (19)C1—C7—H7A109.5
C3—Ru1—C436.33 (18)C1—C7—H7B109.5
C5—Ru1—C637.33 (19)H7A—C7—H7B109.5
C3—Ru1—C678.4 (2)C1—C7—H7C109.5
C4—Ru1—C666.9 (2)H7A—C7—H7C109.5
C5—Ru1—C278.77 (17)H7B—C7—H7C109.5
C3—Ru1—C236.30 (15)C13—C8—C9118.3 (3)
C4—Ru1—C265.93 (17)C13—C8—P1124.4 (3)
C6—Ru1—C267.05 (17)C9—C8—P1117.4 (2)
C5—Ru1—C167.28 (18)C8—C9—C10122.3 (3)
C3—Ru1—C165.56 (18)C8—C9—H9118.9
C4—Ru1—C178.42 (16)C10—C9—H9118.9
C6—Ru1—C137.83 (17)C11—C10—C9118.2 (4)
C2—Ru1—C136.51 (16)C11—C10—H10120.9
C5—Ru1—P189.21 (13)C9—C10—H10120.9
C3—Ru1—P1132.66 (11)O1—C11—C10124.4 (4)
C4—Ru1—P1100.95 (13)O1—C11—C12114.9 (4)
C6—Ru1—P1106.49 (14)C10—C11—C12120.6 (3)
C2—Ru1—P1166.66 (11)C11—C12—C13119.9 (3)
C1—Ru1—P1142.09 (13)C11—C12—H12120.1
C5—Ru1—Cl2137.63 (17)C13—C12—H12120.1
C3—Ru1—Cl285.62 (18)C8—C13—C12120.6 (4)
C4—Ru1—Cl2102.49 (15)C8—C13—H13119.7
C6—Ru1—Cl2163.37 (14)C12—C13—H13119.7
C2—Ru1—Cl297.20 (11)O1—C14—H14A109.5
C1—Ru1—Cl2129.78 (13)O1—C14—H14B109.5
P1—Ru1—Cl287.75 (4)H14A—C14—H14B109.5
C5—Ru1—Cl1133.79 (17)O1—C14—H14C109.5
C3—Ru1—Cl1138.86 (12)H14A—C14—H14C109.5
C4—Ru1—Cl1166.42 (13)H14B—C14—H14C109.5
C6—Ru1—Cl1100.61 (15)C20—C15—C16117.8 (3)
C2—Ru1—Cl1104.91 (11)C20—C15—P1120.5 (3)
C1—Ru1—Cl188.35 (11)C16—C15—P1121.3 (3)
P1—Ru1—Cl187.55 (3)C17—C16—C15120.9 (3)
Cl2—Ru1—Cl188.29 (5)C17—C16—H16119.5
C8—P1—C15101.64 (15)C15—C16—H16119.5
C8—P1—C22106.18 (16)C16—C17—C18120.6 (4)
C15—P1—C22100.85 (16)C16—C17—H17119.7
C8—P1—Ru1108.81 (11)C18—C17—H17119.7
C15—P1—Ru1122.41 (12)O2—C18—C17115.8 (4)
C22—P1—Ru1115.17 (13)O2—C18—C19124.8 (4)
C11—O1—C14118.5 (3)C17—C18—C19119.5 (4)
C18—O2—C21118.6 (4)C20—C19—C18119.3 (4)
C25—O3—C28118.0 (4)C20—C19—H19120.3
C2—C1—C6119.4 (4)C18—C19—H19120.3
C2—C1—C7121.7 (4)C19—C20—C15121.8 (4)
C6—C1—C7118.8 (5)C19—C20—H20119.1
C2—C1—Ru171.6 (2)C15—C20—H20119.1
C6—C1—Ru170.1 (2)O2—C21—H21A109.5
C7—C1—Ru1128.0 (3)O2—C21—H21B109.5
C3—C2—C1119.1 (4)H21A—C21—H21B109.5
C3—C2—Ru169.9 (2)O2—C21—H21C109.5
C1—C2—Ru171.9 (2)H21A—C21—H21C109.5
C3—C2—H2120.5H21B—C21—H21C109.5
C1—C2—H2120.5C27—C22—C23118.3 (4)
Ru1—C2—H2130.2C27—C22—P1120.5 (3)
C4—C3—C2122.9 (5)C23—C22—P1121.1 (3)
C4—C3—Ru172.1 (2)C24—C23—C22120.2 (4)
C2—C3—Ru173.8 (2)C24—C23—H23119.9
C4—C3—H3118.5C22—C23—H23119.9
C2—C3—H3118.5C25—C24—C23120.6 (4)
Ru1—C3—H3127.8C25—C24—H24119.7
C3—C4—C5119.2 (4)C23—C24—H24119.7
C3—C4—Ru171.5 (2)O3—C25—C24116.1 (4)
C5—C4—Ru170.3 (3)O3—C25—C26124.3 (4)
C3—C4—H4120.4C24—C25—C26119.6 (4)
C5—C4—H4120.4C25—C26—C27119.3 (4)
Ru1—C4—H4130.2C25—C26—H26120.3
C4—C5—C6121.2 (4)C27—C26—H26120.3
C4—C5—Ru172.5 (3)C22—C27—C26121.9 (4)
C6—C5—Ru173.2 (3)C22—C27—H27119.0
C4—C5—H5119.4C26—C27—H27119.0
C6—C5—H5119.4O3—C28—H28A109.5
Ru1—C5—H5126.9O3—C28—H28B109.5
C5—C6—C1118.1 (5)H28A—C28—H28B109.5
C5—C6—Ru169.5 (3)O3—C28—H28C109.5
C1—C6—Ru172.1 (3)H28A—C28—H28C109.5
C5—C6—H6120.9H28B—C28—H28C109.5
C1—C6—H6120.9
Acknowledgements top

Any acknowledgements?

references
References top

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII, Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.

Eapen, K. C. & Tamborski, C. (1980). J. Fluorine Chem. 15, 239–243.

Elsegood, M. R. J. & Tocher, D. A. (1995). Polyhedron, 14, 3147–3156.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565–?.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Hafner, A., Mühlebach, A. & van der Schaaf, P. A. (1997). Angew. Chem. 109, 2121–2124.

Hansen, H. D. & Nelson, J. H. (2000). Organometallics, 19, 4740–4755.

Sheldrick, G. M. (1996). SADABS. University of Göttinger, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Therrien, B., Vieille-Petit, L., Jeanneret-Gris, J., Štěpnička, P. & Süss-Fink, G. (2004). J. Organomet. Chem. 689, 2456–2463.

Winkhaus, G. & Singer, H. (1967). J. Organomet. Chem. 7, 487–491.

Zhang, L., Zhang, Y., Zhou, X. G., Li, R. X., Li, X. J., Tin, K. C. & Wong, N. B. (2006). J. Mol. Catal. A Chem. 256, 171–177.