metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­[6-(3,5-di­methyl-1H-pyrazol-1-yl)picolinato-κ3N,N′,O](nitrato-κ2O,O′)lanthanum(III) monohydrate

aCollege of Chemistry and Ecological Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China
*Correspondence e-mail: yxhphd@163.com

(Received 4 January 2008; accepted 18 January 2008; online 25 January 2008)

In the title complex, [La(C11H10N3O2)2(NO3)(H2O)2]·H2O, the La atom is coordinated by four N atoms and six O atoms derived from two 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands, one nitrate anion and two water mol­ecules. The mol­ecules are linked together via hydrogen bonds involving the water mol­ecules, forming a three-dimensional network.

Related literature

For related literature, see: Zhao et al. (2007[Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.]); Yin et al. (2007[Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.]).

[Scheme 1]

Experimental

Crystal data
  • [La(C11H10N3O2)2(NO3)(H2O)2]·H2O

  • Mr = 687.41

  • Monoclinic, P 21 /c

  • a = 17.396 (2) Å

  • b = 15.0270 (18) Å

  • c = 10.1607 (13) Å

  • β = 94.737 (2)°

  • V = 2647.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.68 mm−1

  • T = 298 (2) K

  • 0.46 × 0.45 × 0.40 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.512, Tmax = 0.553 (expected range = 0.473–0.510)

  • 13524 measured reflections

  • 4656 independent reflections

  • 3941 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.076

  • S = 1.01

  • 4656 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8B⋯O10i 0.85 2.13 2.918 (5) 154
O8—H8C⋯O4ii 0.85 1.91 2.713 (4) 158
O9—H9B⋯O2iii 0.85 1.96 2.731 (4) 151
O9—H9B⋯N1 0.85 2.46 2.878 (4) 112
O10—H10C⋯N6iv 0.85 2.49 3.156 (5) 136
O10—H10D⋯O9v 0.85 2.24 2.977 (5) 146
O10—H10D⋯O1iv 0.85 2.46 2.913 (4) 114
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate (Yin et al., 2007) and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5- hydrate (Zhao et al., 2007). As a continuation of these investigations, we report in this paper the crystal structure of Nitrato-diaqua-bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)) picolinato)lanthanum(III) monohydrate.

The asymmetric unit of the title structure consists of the central mononuclear lanthanum(III) complex and one uncoordinated water molecule. The La atom is ten-coordinated by four N atoms and six O atoms derived from two 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate ligands (DPP), one bidentate nitrate anion and two water molecules that define a pseudotricapped trigonal environment for the lanthanum atom. The angles around La(III) atom range from 47.99 (8) to 144.42 (10)°, the La—O distances range from 2.452 (2) to 2.676 (3) Å, the La—N distances range is from 2.688 (3) to 2.811 (3) Å.

In the crystal structure, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving the water molecules; three water molecules and three DDP O atoms form a rings via intermolecular H—O···H hydrogen bonds. A great number of hydrogen contacts link the complex into a three-dimensional network. (Fig. 2; for symmetry codes see Table 2).

Related literature top

For related literature, see: Zhao et al. (2007); Yin et al. (2007).

Experimental top

6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid, and La(NO3)3. 6H2O were available commercially and were used without further purification. Equimolar 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (1 mmol, 217 mg) was dissolved in anhydrous ethyl alcohol (AR,99.9%) (15 ml). The mixture was stirred to give a clear solution, To this solution was added La(NO3)3. 6H2O (0.33 mmol, 144 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, colorless blocks of the title complex were formed. The crystals were isolated, washed with alcohol three times (Yield 75%). Elemental analysis: found: C, 38.24; H, 3.91; N, 14.16%; calc. for C22H26LaN7O10: C, 38.44; H, 3.81; N, 14.26%.

Refinement top

H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.96Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps and the O—H distances were constrained 0.85 Å, with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.
Diaquabis[6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato- κ3N,N',O](nitrato-κ2O,O')lanthanum(III) monohydrate top
Crystal data top
[La(C11H10N3O2)2(NO3)(H2O)2]·H2OF(000) = 1376
Mr = 687.41Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8663 reflections
a = 17.396 (2) Åθ = 2.4–28.3°
b = 15.0270 (18) ŵ = 1.68 mm1
c = 10.1607 (13) ÅT = 298 K
β = 94.737 (2)°Block, colorless
V = 2647.0 (6) Å30.46 × 0.45 × 0.40 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
4656 independent reflections
Radiation source: fine-focus sealed tube3941 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1920
Tmin = 0.512, Tmax = 0.553k = 1713
13524 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0425P)2 + 3.0256P]
where P = (Fo2 + 2Fc2)/3
4656 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[La(C11H10N3O2)2(NO3)(H2O)2]·H2OV = 2647.0 (6) Å3
Mr = 687.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.396 (2) ŵ = 1.68 mm1
b = 15.0270 (18) ÅT = 298 K
c = 10.1607 (13) Å0.46 × 0.45 × 0.40 mm
β = 94.737 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4656 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3941 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.553Rint = 0.022
13524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.01Δρmax = 0.68 e Å3
4656 reflectionsΔρmin = 0.55 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.725615 (10)0.033374 (12)0.360394 (18)0.02756 (8)
N10.86114 (15)0.10885 (18)0.4512 (3)0.0267 (6)
N20.88283 (16)0.0047 (2)0.6034 (3)0.0325 (6)
N30.82454 (16)0.05236 (19)0.5339 (3)0.0342 (7)
N40.59938 (17)0.0651 (2)0.2758 (3)0.0353 (7)
N50.6301 (2)0.0557 (2)0.0593 (3)0.0460 (8)
N60.6814 (2)0.0130 (3)0.0897 (3)0.0489 (9)
N70.83143 (19)0.0967 (2)0.2242 (4)0.0497 (9)
O10.75996 (14)0.17799 (17)0.2701 (3)0.0428 (6)
O20.83910 (15)0.28912 (17)0.2271 (3)0.0442 (6)
O30.64201 (14)0.02652 (17)0.5260 (3)0.0391 (6)
O40.53914 (16)0.0940 (2)0.5969 (3)0.0562 (8)
O50.76750 (16)0.12248 (19)0.2609 (3)0.0500 (7)
O60.84704 (16)0.01423 (19)0.2392 (3)0.0479 (7)
O70.87668 (19)0.1474 (3)0.1778 (5)0.0911 (14)
O80.60430 (15)0.13605 (19)0.3366 (3)0.0529 (8)
H8B0.59580.15490.25780.064*
H8C0.56450.10900.35900.064*
O90.72302 (15)0.12026 (18)0.5879 (3)0.0466 (7)
H9B0.76840.13520.61670.056*
H9C0.69570.16700.57730.056*
O100.6289 (2)0.7859 (2)0.0804 (4)0.0771 (10)
H10C0.63330.83330.12600.093*
H10D0.66850.75440.10170.093*
C10.8231 (2)0.2207 (2)0.2862 (3)0.0329 (8)
C20.88316 (19)0.1827 (2)0.3894 (3)0.0303 (7)
C30.9541 (2)0.2219 (3)0.4173 (4)0.0423 (9)
H30.96770.27310.37330.051*
C41.0046 (2)0.1830 (2)0.5129 (4)0.0458 (10)
H41.05280.20820.53400.055*
C50.9835 (2)0.1071 (3)0.5771 (4)0.0394 (9)
H51.01720.07980.64060.047*
C60.91020 (18)0.0727 (2)0.5436 (3)0.0293 (7)
C70.9641 (3)0.0119 (4)0.8243 (5)0.0706 (15)
H7A1.01500.02090.79710.106*
H7B0.95540.05050.83670.106*
H7C0.95900.04280.90580.106*
C80.9060 (2)0.0469 (3)0.7204 (4)0.0434 (9)
C90.8629 (2)0.1226 (3)0.7219 (4)0.0497 (10)
H90.86570.16540.78820.060*
C100.8133 (2)0.1242 (3)0.6055 (4)0.0401 (9)
C110.7556 (3)0.1936 (3)0.5615 (5)0.0584 (12)
H11A0.73760.18340.47090.088*
H11B0.77920.25130.56990.088*
H11C0.71290.19090.61540.088*
C120.5787 (2)0.0682 (3)0.5086 (4)0.0376 (8)
C130.5506 (2)0.0867 (2)0.3666 (4)0.0387 (9)
C140.4786 (2)0.1229 (3)0.3322 (5)0.0543 (11)
H140.44700.14010.39710.065*
C150.4546 (3)0.1331 (3)0.2014 (5)0.0624 (13)
H150.40580.15580.17660.075*
C160.5029 (2)0.1095 (3)0.1070 (5)0.0558 (11)
H160.48710.11430.01750.067*
C170.5761 (2)0.0784 (3)0.1492 (4)0.0417 (9)
C180.6004 (3)0.1738 (3)0.1168 (5)0.0749 (16)
H18A0.63310.20460.17330.112*
H18B0.58840.21240.04600.112*
H18C0.55360.15640.16680.112*
C190.6413 (3)0.0926 (3)0.0609 (4)0.0540 (11)
C200.6981 (3)0.0444 (3)0.1085 (5)0.0657 (14)
H200.71790.05260.18980.079*
C210.7219 (3)0.0198 (3)0.0151 (4)0.0567 (12)
C220.7836 (3)0.0884 (4)0.0240 (5)0.0836 (17)
H22A0.82610.07520.03940.125*
H22B0.80100.08790.11120.125*
H22C0.76330.14610.00580.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02153 (12)0.03166 (13)0.02925 (12)0.00294 (8)0.00059 (8)0.00108 (8)
N10.0216 (14)0.0310 (15)0.0276 (14)0.0017 (11)0.0031 (11)0.0041 (12)
N20.0269 (15)0.0347 (15)0.0346 (16)0.0006 (12)0.0041 (12)0.0010 (13)
N30.0275 (15)0.0330 (16)0.0408 (17)0.0017 (12)0.0058 (13)0.0021 (13)
N40.0287 (16)0.0377 (16)0.0386 (17)0.0042 (13)0.0018 (13)0.0012 (13)
N50.046 (2)0.057 (2)0.0322 (17)0.0051 (16)0.0084 (15)0.0046 (15)
N60.046 (2)0.068 (2)0.0322 (17)0.0118 (17)0.0012 (15)0.0004 (16)
N70.0322 (18)0.055 (2)0.060 (2)0.0042 (16)0.0058 (16)0.0234 (18)
O10.0303 (14)0.0451 (16)0.0511 (16)0.0081 (11)0.0078 (11)0.0149 (12)
O20.0428 (15)0.0388 (15)0.0513 (16)0.0042 (12)0.0063 (12)0.0164 (13)
O30.0309 (14)0.0502 (16)0.0362 (14)0.0111 (11)0.0028 (11)0.0030 (11)
O40.0382 (16)0.074 (2)0.0579 (18)0.0116 (14)0.0128 (14)0.0184 (16)
O50.0420 (16)0.0489 (17)0.0589 (18)0.0097 (13)0.0025 (13)0.0137 (14)
O60.0377 (15)0.0482 (18)0.0587 (18)0.0069 (12)0.0092 (13)0.0159 (14)
O70.0435 (19)0.080 (3)0.150 (4)0.0069 (18)0.011 (2)0.064 (3)
O80.0298 (14)0.0544 (18)0.076 (2)0.0034 (12)0.0101 (13)0.0254 (15)
O90.0365 (15)0.0539 (17)0.0491 (16)0.0021 (12)0.0020 (12)0.0141 (13)
O100.071 (2)0.065 (2)0.092 (3)0.0011 (18)0.013 (2)0.0078 (19)
C10.0314 (19)0.035 (2)0.0331 (19)0.0008 (15)0.0071 (15)0.0003 (16)
C20.0265 (17)0.0276 (18)0.0375 (19)0.0006 (13)0.0066 (14)0.0032 (14)
C30.031 (2)0.037 (2)0.058 (3)0.0095 (16)0.0051 (18)0.0014 (18)
C40.0286 (19)0.044 (2)0.064 (3)0.0105 (17)0.0001 (18)0.005 (2)
C50.0275 (18)0.043 (2)0.047 (2)0.0014 (16)0.0042 (16)0.0060 (17)
C60.0243 (17)0.0311 (18)0.0324 (18)0.0037 (14)0.0020 (14)0.0044 (14)
C70.058 (3)0.110 (4)0.040 (2)0.013 (3)0.016 (2)0.010 (3)
C80.034 (2)0.061 (3)0.035 (2)0.0005 (18)0.0042 (16)0.0093 (18)
C90.044 (2)0.058 (3)0.046 (2)0.002 (2)0.0007 (19)0.025 (2)
C100.034 (2)0.039 (2)0.047 (2)0.0022 (16)0.0020 (17)0.0086 (17)
C110.055 (3)0.041 (2)0.077 (3)0.009 (2)0.006 (2)0.021 (2)
C120.030 (2)0.037 (2)0.046 (2)0.0014 (16)0.0061 (17)0.0076 (17)
C130.0272 (18)0.036 (2)0.052 (2)0.0031 (15)0.0005 (16)0.0022 (17)
C140.035 (2)0.056 (3)0.072 (3)0.0158 (19)0.004 (2)0.004 (2)
C150.034 (2)0.071 (3)0.080 (3)0.019 (2)0.010 (2)0.015 (3)
C160.044 (2)0.064 (3)0.055 (3)0.008 (2)0.017 (2)0.012 (2)
C170.038 (2)0.044 (2)0.042 (2)0.0004 (17)0.0060 (17)0.0018 (17)
C180.101 (4)0.068 (3)0.052 (3)0.006 (3)0.013 (3)0.016 (3)
C190.066 (3)0.060 (3)0.034 (2)0.008 (2)0.005 (2)0.000 (2)
C200.086 (4)0.078 (4)0.034 (2)0.013 (3)0.007 (2)0.002 (2)
C210.063 (3)0.071 (3)0.037 (2)0.003 (2)0.009 (2)0.012 (2)
C220.087 (4)0.107 (5)0.061 (3)0.023 (4)0.028 (3)0.005 (3)
Geometric parameters (Å, º) top
La1—O12.452 (2)C3—C41.384 (5)
La1—O32.482 (2)C3—H30.9300
La1—O82.609 (3)C4—C51.379 (5)
La1—O62.630 (3)C4—H40.9300
La1—O92.659 (3)C5—C61.392 (5)
La1—O52.676 (3)C5—H50.9300
La1—N32.688 (3)C7—C81.495 (6)
La1—N12.709 (3)C7—H7A0.9600
La1—N42.727 (3)C7—H7B0.9600
La1—N62.811 (3)C7—H7C0.9600
N1—C61.331 (4)C8—C91.363 (6)
N1—C21.347 (4)C9—C101.405 (5)
N2—C81.378 (5)C9—H90.9300
N2—N31.386 (4)C10—C111.491 (6)
N2—C61.413 (5)C11—H11A0.9600
N3—C101.325 (5)C11—H11B0.9600
N4—C171.331 (5)C11—H11C0.9600
N4—C131.344 (5)C12—C131.510 (5)
N5—C191.369 (5)C13—C141.383 (5)
N5—N61.382 (5)C14—C151.369 (7)
N5—C171.406 (5)C14—H140.9300
N6—C211.329 (6)C15—C161.373 (7)
N7—O71.218 (4)C15—H150.9300
N7—O51.263 (4)C16—C171.392 (5)
N7—O61.275 (4)C16—H160.9300
O1—C11.271 (4)C18—C191.501 (7)
O2—C11.234 (4)C18—H18A0.9600
O3—C121.266 (4)C18—H18B0.9600
O4—C121.238 (4)C18—H18C0.9600
O8—H8B0.8499C19—C201.346 (7)
O8—H8C0.8500C20—C211.393 (7)
O9—H9B0.8500C20—H200.9300
O9—H9C0.8499C21—C221.496 (7)
O10—H10C0.8501C22—H22A0.9600
O10—H10D0.8499C22—H22B0.9600
C1—C21.528 (5)C22—H22C0.9600
C2—C31.375 (5)
O1—La1—O3138.56 (9)O2—C1—C2118.4 (3)
O1—La1—O870.21 (8)O1—C1—C2115.8 (3)
O3—La1—O876.27 (9)N1—C2—C3122.8 (3)
O1—La1—O680.56 (9)N1—C2—C1115.0 (3)
O3—La1—O6139.19 (9)C3—C2—C1122.2 (3)
O8—La1—O6142.37 (9)C2—C3—C4118.1 (4)
O1—La1—O984.97 (9)C2—C3—H3121.0
O3—La1—O962.33 (8)C4—C3—H3121.0
O8—La1—O973.66 (9)C5—C4—C3120.3 (3)
O6—La1—O9127.78 (8)C5—C4—H4119.9
O1—La1—O5123.50 (10)C3—C4—H4119.9
O3—La1—O597.58 (9)C4—C5—C6117.7 (3)
O8—La1—O5136.54 (9)C4—C5—H5121.1
O6—La1—O547.99 (8)C6—C5—H5121.1
O9—La1—O5141.55 (9)N1—C6—C5122.8 (3)
O1—La1—N3120.50 (8)N1—C6—N2114.8 (3)
O3—La1—N376.17 (9)C5—C6—N2122.3 (3)
O8—La1—N3144.42 (10)C8—C7—H7A109.5
O6—La1—N371.41 (10)C8—C7—H7B109.5
O9—La1—N373.81 (9)H7A—C7—H7B109.5
O5—La1—N369.44 (9)C8—C7—H7C109.5
O1—La1—N161.59 (8)H7A—C7—H7C109.5
O3—La1—N1117.58 (8)H7B—C7—H7C109.5
O8—La1—N1117.29 (9)C9—C8—N2105.7 (3)
O6—La1—N164.12 (8)C9—C8—C7128.8 (4)
O9—La1—N164.84 (8)N2—C8—C7125.4 (4)
O5—La1—N1103.81 (8)C8—C9—C10107.8 (3)
N3—La1—N159.02 (8)C8—C9—H9126.1
O1—La1—N4125.28 (8)C10—C9—H9126.1
O3—La1—N461.02 (9)N3—C10—C9109.9 (3)
O8—La1—N470.58 (9)N3—C10—C11122.1 (3)
O6—La1—N4111.20 (9)C9—C10—C11128.0 (4)
O9—La1—N4118.00 (9)C10—C11—H11A109.5
O5—La1—N469.10 (9)C10—C11—H11B109.5
N3—La1—N4113.69 (9)H11A—C11—H11B109.5
N1—La1—N4171.90 (9)C10—C11—H11C109.5
O1—La1—N677.64 (10)H11A—C11—H11C109.5
O3—La1—N6119.69 (9)H11B—C11—H11C109.5
O8—La1—N679.60 (11)O4—C12—O3125.6 (4)
O6—La1—N671.22 (10)O4—C12—C13118.7 (3)
O9—La1—N6151.80 (10)O3—C12—C13115.7 (3)
O5—La1—N666.17 (10)N4—C13—C14122.1 (4)
N3—La1—N6134.28 (10)N4—C13—C12116.0 (3)
N1—La1—N6122.64 (9)C14—C13—C12121.9 (4)
N4—La1—N658.94 (9)C15—C14—C13119.1 (4)
C6—N1—C2118.3 (3)C15—C14—H14120.4
C6—N1—La1124.0 (2)C13—C14—H14120.4
C2—N1—La1117.3 (2)C14—C15—C16119.6 (4)
C8—N2—N3110.6 (3)C14—C15—H15120.2
C8—N2—C6131.7 (3)C16—C15—H15120.2
N3—N2—C6117.7 (3)C15—C16—C17118.0 (4)
C10—N3—N2106.0 (3)C15—C16—H16121.0
C10—N3—La1129.4 (2)C17—C16—H16121.0
N2—N3—La1119.2 (2)N4—C17—C16123.1 (4)
C17—N4—C13117.9 (3)N4—C17—N5115.2 (3)
C17—N4—La1124.0 (2)C16—C17—N5121.7 (4)
C13—N4—La1116.9 (2)C19—C18—H18A109.5
C19—N5—N6111.5 (4)C19—C18—H18B109.5
C19—N5—C17129.2 (4)H18A—C18—H18B109.5
N6—N5—C17119.3 (3)C19—C18—H18C109.5
C21—N6—N5104.7 (3)H18A—C18—H18C109.5
C21—N6—La1130.9 (3)H18B—C18—H18C109.5
N5—N6—La1114.8 (2)C20—C19—N5105.4 (4)
O7—N7—O5122.4 (4)C20—C19—C18129.8 (4)
O7—N7—O6121.1 (4)N5—C19—C18124.7 (4)
O5—N7—O6116.5 (3)C19—C20—C21108.3 (4)
C1—O1—La1129.3 (2)C19—C20—H20125.9
C12—O3—La1129.5 (2)C21—C20—H20125.9
N7—O5—La196.7 (2)N6—C21—C20110.2 (4)
N7—O6—La198.6 (2)N6—C21—C22122.2 (4)
La1—O8—H8B111.1C20—C21—C22127.7 (5)
La1—O8—H8C111.3C21—C22—H22A109.5
H8B—O8—H8C109.2C21—C22—H22B109.5
La1—O9—H9B110.3H22A—C22—H22B109.5
La1—O9—H9C110.2C21—C22—H22C109.5
H9B—O9—H9C108.6H22A—C22—H22C109.5
H10C—O10—H10D107.0H22B—C22—H22C109.5
O2—C1—O1125.8 (3)
O1—La1—N1—C6179.1 (3)N4—La1—O3—C125.2 (3)
O3—La1—N1—C646.4 (3)N6—La1—O3—C120.6 (3)
O8—La1—N1—C6134.5 (2)O7—N7—O5—La1175.3 (4)
O6—La1—N1—C687.7 (3)O6—N7—O5—La14.1 (3)
O9—La1—N1—C680.9 (2)O1—La1—O5—N733.0 (3)
O5—La1—N1—C660.0 (3)O3—La1—O5—N7152.8 (2)
N3—La1—N1—C64.7 (2)O8—La1—O5—N7129.2 (2)
N4—La1—N1—C631.5 (7)O6—La1—O5—N72.4 (2)
N6—La1—N1—C6130.3 (2)O9—La1—O5—N798.7 (2)
O1—La1—N1—C27.7 (2)N3—La1—O5—N780.7 (2)
O3—La1—N1—C2140.5 (2)N1—La1—O5—N731.9 (2)
O8—La1—N1—C252.3 (2)N4—La1—O5—N7152.2 (2)
O6—La1—N1—C285.4 (2)N6—La1—O5—N788.0 (2)
O9—La1—N1—C2106.0 (2)O7—N7—O6—La1175.2 (4)
O5—La1—N1—C2113.1 (2)O5—N7—O6—La14.2 (4)
N3—La1—N1—C2168.4 (3)O1—La1—O6—N7156.9 (2)
N4—La1—N1—C2141.6 (6)O3—La1—O6—N737.2 (3)
N6—La1—N1—C242.8 (3)O8—La1—O6—N7117.9 (2)
C8—N2—N3—C101.6 (4)O9—La1—O6—N7127.1 (2)
C6—N2—N3—C10175.5 (3)O5—La1—O6—N72.4 (2)
C8—N2—N3—La1155.0 (3)N3—La1—O6—N776.3 (2)
C6—N2—N3—La127.9 (4)N1—La1—O6—N7140.2 (2)
O1—La1—N3—C10170.6 (3)N4—La1—O6—N732.6 (2)
O3—La1—N3—C1031.9 (3)N6—La1—O6—N776.8 (2)
O8—La1—N3—C1072.1 (4)La1—O1—C1—O2172.2 (3)
O6—La1—N3—C10122.9 (3)La1—O1—C1—C28.3 (5)
O9—La1—N3—C1096.7 (3)C6—N1—C2—C30.3 (5)
O5—La1—N3—C1071.8 (3)La1—N1—C2—C3173.2 (3)
N1—La1—N3—C10166.7 (4)C6—N1—C2—C1179.2 (3)
N4—La1—N3—C1017.3 (3)La1—N1—C2—C17.3 (4)
N6—La1—N3—C1086.3 (3)O2—C1—C2—N1179.0 (3)
O1—La1—N3—N220.2 (3)O1—C1—C2—N10.6 (4)
O3—La1—N3—N2118.4 (3)O2—C1—C2—C30.4 (5)
O8—La1—N3—N278.3 (3)O1—C1—C2—C3180.0 (3)
O6—La1—N3—N286.7 (2)N1—C2—C3—C40.2 (6)
O9—La1—N3—N253.7 (2)C1—C2—C3—C4179.6 (3)
O5—La1—N3—N2137.8 (3)C2—C3—C4—C50.2 (6)
N1—La1—N3—N216.3 (2)C3—C4—C5—C61.0 (6)
N4—La1—N3—N2167.7 (2)C2—N1—C6—C51.2 (5)
N6—La1—N3—N2123.4 (2)La1—N1—C6—C5171.9 (3)
O1—La1—N4—C1744.0 (3)C2—N1—C6—N2179.8 (3)
O3—La1—N4—C17175.1 (3)La1—N1—C6—N26.8 (4)
O8—La1—N4—C1790.4 (3)C4—C5—C6—N11.5 (5)
O6—La1—N4—C1749.4 (3)C4—C5—C6—N2179.9 (3)
O9—La1—N4—C17148.8 (3)C8—N2—C6—N1161.2 (4)
O5—La1—N4—C1773.0 (3)N3—N2—C6—N122.4 (4)
N3—La1—N4—C17127.6 (3)C8—N2—C6—C520.2 (6)
N1—La1—N4—C17102.6 (6)N3—N2—C6—C5156.2 (3)
N6—La1—N4—C171.1 (3)N3—N2—C8—C91.4 (4)
O1—La1—N4—C13123.1 (3)C6—N2—C8—C9175.2 (4)
O3—La1—N4—C138.1 (2)N3—N2—C8—C7175.9 (4)
O8—La1—N4—C1376.6 (3)C6—N2—C8—C77.5 (7)
O6—La1—N4—C13143.6 (3)N2—C8—C9—C100.7 (5)
O9—La1—N4—C1318.3 (3)C7—C8—C9—C10176.5 (5)
O5—La1—N4—C13120.0 (3)N2—N3—C10—C91.1 (4)
N3—La1—N4—C1365.3 (3)La1—N3—C10—C9152.2 (3)
N1—La1—N4—C1390.3 (6)N2—N3—C10—C11178.7 (4)
N6—La1—N4—C13166.0 (3)La1—N3—C10—C1128.0 (6)
C19—N5—N6—C212.3 (5)C8—C9—C10—N30.3 (5)
C17—N5—N6—C21177.8 (4)C8—C9—C10—C11179.5 (4)
C19—N5—N6—La1147.9 (3)La1—O3—C12—O4177.9 (3)
C17—N5—N6—La132.0 (4)La1—O3—C12—C131.9 (5)
O1—La1—N6—C2158.1 (4)C17—N4—C13—C140.9 (6)
O3—La1—N6—C21162.6 (4)La1—N4—C13—C14168.8 (3)
O8—La1—N6—C21129.9 (4)C17—N4—C13—C12178.5 (3)
O6—La1—N6—C2126.0 (4)La1—N4—C13—C1210.6 (4)
O9—La1—N6—C21111.3 (4)O4—C12—C13—N4173.7 (4)
O5—La1—N6—C2177.5 (4)O3—C12—C13—N46.5 (5)
N3—La1—N6—C2162.7 (4)O4—C12—C13—C147.0 (6)
N1—La1—N6—C2114.1 (5)O3—C12—C13—C14172.9 (4)
N4—La1—N6—C21156.6 (4)N4—C13—C14—C153.3 (7)
O1—La1—N6—N5161.5 (3)C12—C13—C14—C15176.0 (4)
O3—La1—N6—N522.2 (3)C13—C14—C15—C161.8 (7)
O8—La1—N6—N589.7 (3)C14—C15—C16—C171.9 (7)
O6—La1—N6—N5114.4 (3)C13—N4—C17—C163.1 (6)
O9—La1—N6—N5108.3 (3)La1—N4—C17—C16163.9 (3)
O5—La1—N6—N562.9 (3)C13—N4—C17—N5179.1 (3)
N3—La1—N6—N577.7 (3)La1—N4—C17—N513.9 (5)
N1—La1—N6—N5154.5 (2)C15—C16—C17—N44.5 (7)
N4—La1—N6—N516.2 (3)C15—C16—C17—N5177.9 (4)
O3—La1—O1—C1109.3 (3)C19—N5—C17—N4148.7 (4)
O8—La1—O1—C1147.2 (3)N6—N5—C17—N431.1 (5)
O6—La1—O1—C156.9 (3)C19—N5—C17—C1633.4 (7)
O9—La1—O1—C172.8 (3)N6—N5—C17—C16146.7 (4)
O5—La1—O1—C179.4 (3)N6—N5—C19—C202.3 (5)
N3—La1—O1—C14.9 (3)C17—N5—C19—C20177.8 (4)
N1—La1—O1—C18.7 (3)N6—N5—C19—C18173.9 (4)
N4—La1—O1—C1166.2 (3)C17—N5—C19—C186.0 (7)
N6—La1—O1—C1129.6 (3)N5—C19—C20—C211.4 (5)
O1—La1—O3—C12106.5 (3)C18—C19—C20—C21174.5 (5)
O8—La1—O3—C1270.0 (3)N5—N6—C21—C201.3 (5)
O6—La1—O3—C1294.7 (3)La1—N6—C21—C20141.9 (4)
O9—La1—O3—C12148.5 (3)N5—N6—C21—C22178.8 (5)
O5—La1—O3—C1266.2 (3)La1—N6—C21—C2237.9 (7)
N3—La1—O3—C12132.8 (3)C19—C20—C21—N60.0 (6)
N1—La1—O3—C12176.2 (3)C19—C20—C21—C22179.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O10i0.852.132.918 (5)154
O8—H8C···O4ii0.851.912.713 (4)158
O9—H9B···O2iii0.851.962.731 (4)151
O9—H9B···N10.852.462.878 (4)112
O10—H10C···N6iv0.852.493.156 (5)136
O10—H10D···O9v0.852.242.977 (5)146
O10—H10D···O1iv0.852.462.913 (4)114
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[La(C11H10N3O2)2(NO3)(H2O)2]·H2O
Mr687.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)17.396 (2), 15.0270 (18), 10.1607 (13)
β (°) 94.737 (2)
V3)2647.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.68
Crystal size (mm)0.46 × 0.45 × 0.40
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.512, 0.553
No. of measured, independent and
observed [I > 2σ(I)] reflections
13524, 4656, 3941
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.077, 1.01
No. of reflections4656
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.55

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O10i0.852.132.918 (5)153.7
O8—H8C···O4ii0.851.912.713 (4)157.9
O9—H9B···O2iii0.851.962.731 (4)150.8
O9—H9B···N10.852.462.878 (4)111.5
O10—H10C···N6iv0.852.493.156 (5)135.5
O10—H10D···O9v0.852.242.977 (5)145.6
O10—H10D···O1iv0.852.462.913 (4)114.3
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x, y1/2, z+1/2; (iv) x, y+1, z; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was sponsored by the Fund of the Talented Highland Research Programme of Guangxi University (grant No. 205121), the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Ministry of Education, Science and Technology Key Projects (grant No. 205121), the Development Foundation of Guangxi Research Institute of Chemical Industry, and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012, 0509ZD047), People's Republic of China.

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds