metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-bromido-bis­­({bis­­[2-(2-pyrid­yl)eth­yl]amine}copper(II)) bis­­(perchlorate)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 19 December 2007; accepted 28 December 2007; online 9 January 2008)

Each Cu atom in the dinuclear centrosymmetric title complex, [Cu2Br2(C14H17N3)2](ClO4)2, is ligated in a distorted square-pyramidal geometry (τ = 0.31) by a tridentate bis­[2-(2-pyrid­yl)eth­yl]amine ligand, and by two bridging Br atoms. In addition, the dinuclear species is stabilized by two hydrogen-bonded perchlorate anions.

Related literature

For related literature, see: Chakrabarty et al. (2004[Chakrabarty, S., Poddar, R. K., Poulsen, R. D., Thompson, A. L. & Howard, J. A. K. (2004). Acta Cryst. C60, m628-m630.]); Helis et al. (1977[Helis, H. M., Goodman, W. H., Wilson, R. B., Morgan, J. A. & Hodgson, D. J. (1977). Inorg. Chem. 16, 2412-2416.]); Marsh et al. (1983[Marsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. J. (1983). Inorg. Chem. 22, 511-515.]); Udugala-Ganehenege, et al. (2001[Udugala-Ganehenege, M. Y., Heeg, M. J., Hryhorczuk, L. M., Wenger, L. E. & Endicott, J. F. (2001). Inorg. Chem. 40, 1614-1625.]); Xu et al. (2000[Xu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp.1751-1757.]). For the calculation of the coordination geometry, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Br2(C14H17N3)2](ClO4)2

  • Mr = 940.41

  • Triclinic, [P \overline 1]

  • a = 6.8002 (13) Å

  • b = 11.413 (2) Å

  • c = 12.668 (2) Å

  • α = 67.212 (8)°

  • β = 77.019 (13)°

  • γ = 87.033 (15)°

  • V = 882.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.67 mm−1

  • T = 293 (2) K

  • 0.42 × 0.21 × 0.18 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.569, Tmax = 0.948 (expected range = 0.310–0.516)

  • 3951 measured reflections

  • 3936 independent reflections

  • 2960 reflections with I > 2σ˘I)

  • Rint = 0.018

  • 3 standard reflections every 97 reflections intensity decay: <2%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.095

  • S = 1.04

  • 3936 reflections

  • 255 parameters

  • 50 restraints

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O14A 0.91 2.34 3.205 (12) 159
N—H0A⋯O13B 0.91 2.44 3.089 (18) 129
C6A—H6AB⋯Bri 0.97 2.70 3.588 (4) 153
C6B—H6BC⋯Brii 0.97 2.89 3.706 (4) 142
C6B—H6BB⋯O13Biii 0.97 2.57 3.487 (18) 158
C2A—H2AA⋯O11Aiv 0.93 2.52 3.162 (14) 126
C7A—H7AA⋯O12Av 0.97 2.51 3.322 (16) 141
C7A—H7AA⋯O13B 0.97 2.49 3.179 (15) 128
C3A—H3AA⋯O13Avi 0.93 2.54 3.142 (12) 122
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1; (iii) x+1, y, z; (iv) x+1, y-1, z; (v) -x, -y+2, -z+2; (vi) x, y-1, z.

Data collection: XSCANS (Bruker, 1997[Bruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complex (I), Fig. 1, contains two Cu(II) atoms, each within a distorted square-pyramidal geometry (τ = 0.31, Addison et al., 1984) where one amine-N atom, two pyridine-N atoms and one Br atom constitute the basal plane with Cu—Npyridine = 2.012 (3) and 2.000 (3) Å, Cu—Namine = 2.044 (3) Å and Cu—Br = 2.4542 (7) Å. The axial position is occupied by the second Br atom with Cu—Br = 2.8908 (8) Å, the longer distance being consistent with a Jahn-Teller elongation. Pairs of these square-pyramidal Cu complexes form dimers about a center of inversion, being mutually bridged by the Br atoms. In addition, the dinuclear complex is stabilized by two N—H···O hydrogen bonded ClO4- anions (Table 1) and the crystal packing is consolidated by a variety of hydrogen bonding interactions (Fig. 2 and Table 1).

Related literature top

For related literature, see: Chakrabarty et al. (2004); Helis et al. (1977); Marsh et al. (1983); Udugala-Ganehenege, et al. (2001); Xu et al. (2000). For calculation of coordination geometry, see: Addison et al. (1984).

Experimental top

The title complex was synthesized by reacting Cu(ClO4)2.6H2O (0.37 g, 1 mmol), bis[2-(2-pyridyl)ethyl]amine (0.227 g, 1 mmol) and potassium bromide (0.0297 g, 0.25 mmol) in acetonitrile (15 ml) for 4 h at room temperature. X-ray quality crystals were grown by slow diffusion of diethyl ether into an acetonitrile solution of the complex.

Refinement top

The perchlorate anion is disordered over two conformations with occupancy factors, from refinement, of 0.543 (17) and 0.457 (17). It was constrained to adopt a tetrahedral geometry. The H atoms were idealized with N—H = 0.91 Å and C—H = 0.93 (aromatic C—H), 0.96 (CH3), and 0.97 (CH2) Å, and with Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for the CH3).

Computing details top

Data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: XSCANS (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. Complex (I) showing numbering scheme and displacement ellipsoids at the 20% probabilty level.
[Figure 2] Fig. 2. The packing arrangement viewed down the a axis showing the intramolecular N—H···O and intermolecular C—H···O interactions (dashed bonds).
Di-µ-bromido-bis({bis[2-(2-pyridyl)ethyl]amine}copper(II)) bis(perchlorate) top
Crystal data top
[Cu2Br2(C14H17N3)2](ClO4)2Z = 1
Mr = 940.41F(000) = 470
Triclinic, P1Dx = 1.769 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8002 (13) ÅCell parameters from 49 reflections
b = 11.413 (2) Åθ = 2.1–12.5°
c = 12.668 (2) ŵ = 3.68 mm1
α = 67.212 (8)°T = 293 K
β = 77.019 (13)°Thick needle, blue
γ = 87.033 (15)°0.42 × 0.21 × 0.18 mm
V = 882.6 (3) Å3
Data collection top
Bruker P4
diffractometer
2960 reflections with I > 2σ˘I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ω scansh = 80
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.569, Tmax = 0.948l = 1616
3951 measured reflections3 standard reflections every 97 reflections
3936 independent reflections intensity decay: <2
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.6582P]
where P = (Fo2 + 2Fc2)/3
3936 reflections(Δ/σ)max < 0.001
255 parametersΔρmax = 0.50 e Å3
50 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2Br2(C14H17N3)2](ClO4)2γ = 87.033 (15)°
Mr = 940.41V = 882.6 (3) Å3
Triclinic, P1Z = 1
a = 6.8002 (13) ÅMo Kα radiation
b = 11.413 (2) ŵ = 3.68 mm1
c = 12.668 (2) ÅT = 293 K
α = 67.212 (8)°0.42 × 0.21 × 0.18 mm
β = 77.019 (13)°
Data collection top
Bruker P4
diffractometer
2960 reflections with I > 2σ˘I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.569, Tmax = 0.9483 standard reflections every 97 reflections
3951 measured reflections intensity decay: <2
3936 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04250 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.50 e Å3
3936 reflectionsΔρmin = 0.36 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.60810 (7)0.98360 (4)0.63720 (4)0.03731 (14)
Br0.76316 (6)0.97756 (4)0.44483 (3)0.03934 (12)
Cl0.19832 (18)1.27274 (11)0.86706 (12)0.0588 (3)
O11A0.062 (3)1.3663 (19)0.856 (2)0.149 (8)0.543 (17)
O12A0.117 (3)1.1516 (12)0.9388 (14)0.094 (5)0.543 (17)
O13A0.372 (2)1.2975 (11)0.8979 (15)0.110 (4)0.543 (17)
O14A0.2714 (18)1.2648 (13)0.7496 (8)0.101 (4)0.543 (17)
O11B0.010 (2)1.332 (2)0.8582 (19)0.100 (5)0.457 (17)
O12B0.346 (3)1.3175 (18)0.7719 (15)0.155 (7)0.457 (17)
O13B0.155 (3)1.1399 (11)0.9066 (16)0.072 (4)0.457 (17)
O14B0.256 (3)1.2875 (13)0.9664 (14)0.110 (5)0.457 (17)
N0.4740 (5)0.9948 (3)0.7943 (3)0.0424 (8)
H0A0.39201.06190.77550.051*
N1A0.6270 (5)0.7958 (3)0.7201 (3)0.0391 (7)
N1B0.6733 (5)1.1709 (3)0.5811 (3)0.0380 (7)
C1A0.8000 (7)0.7390 (4)0.6945 (4)0.0495 (10)
H1AA0.90930.78910.63980.059*
C2A0.8210 (9)0.6113 (5)0.7456 (5)0.0666 (14)
H2AA0.94330.57510.72790.080*
C3A0.6575 (9)0.5370 (5)0.8238 (5)0.0730 (16)
H3AA0.66620.44920.85720.088*
C4A0.4811 (8)0.5932 (4)0.8524 (4)0.0581 (12)
H4AA0.37020.54360.90580.070*
C5A0.4694 (6)0.7240 (4)0.8012 (3)0.0412 (9)
C6A0.2871 (6)0.7913 (4)0.8353 (4)0.0487 (10)
H6AA0.18590.72930.89420.058*
H6AB0.23040.83590.76720.058*
C7A0.3377 (8)0.8864 (4)0.8842 (4)0.0609 (13)
H7AA0.21340.91980.91440.073*
H7AB0.40220.84240.94920.073*
C1B0.6256 (7)1.2605 (4)0.4855 (4)0.0488 (10)
H1BA0.56191.23500.43970.059*
C2B0.6661 (8)1.3874 (4)0.4520 (5)0.0609 (13)
H2BA0.63391.44700.38420.073*
C3B0.7563 (8)1.4244 (5)0.5220 (6)0.0681 (15)
H3BA0.78191.51030.50310.082*
C4B0.8084 (7)1.3342 (5)0.6198 (5)0.0623 (14)
H4BA0.87251.35840.66620.075*
C5B0.7646 (6)1.2071 (4)0.6483 (4)0.0435 (10)
C6B0.8117 (7)1.1013 (5)0.7541 (4)0.0544 (12)
H6BB0.89241.13590.79020.065*
H6BC0.89171.04010.72900.065*
C7B0.6244 (7)1.0334 (5)0.8450 (4)0.0546 (12)
H7BB0.66420.95820.90430.065*
H7BC0.56131.08890.88350.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0479 (3)0.0350 (3)0.0253 (2)0.0001 (2)0.0020 (2)0.01082 (19)
Br0.0328 (2)0.0541 (3)0.0300 (2)0.00276 (17)0.00239 (15)0.01773 (18)
Cl0.0517 (7)0.0459 (6)0.0707 (8)0.0054 (5)0.0143 (6)0.0138 (6)
O11A0.161 (13)0.099 (11)0.191 (11)0.081 (10)0.070 (10)0.051 (9)
O12A0.097 (8)0.071 (7)0.085 (8)0.005 (6)0.011 (6)0.013 (5)
O13A0.106 (8)0.093 (6)0.145 (10)0.012 (6)0.050 (7)0.047 (7)
O14A0.080 (7)0.125 (9)0.080 (6)0.007 (6)0.004 (5)0.035 (5)
O11B0.098 (8)0.102 (11)0.128 (9)0.067 (8)0.054 (7)0.065 (8)
O12B0.120 (10)0.146 (11)0.119 (10)0.020 (8)0.044 (9)0.000 (9)
O13B0.066 (7)0.050 (5)0.109 (11)0.007 (5)0.025 (7)0.037 (6)
O14B0.146 (13)0.105 (8)0.104 (10)0.010 (9)0.058 (9)0.048 (8)
N0.049 (2)0.0437 (19)0.0311 (17)0.0068 (16)0.0029 (15)0.0148 (15)
N1A0.047 (2)0.0372 (17)0.0296 (16)0.0006 (15)0.0069 (14)0.0102 (14)
N1B0.0389 (18)0.0410 (18)0.0323 (17)0.0025 (14)0.0032 (14)0.0143 (14)
C1A0.049 (3)0.051 (3)0.044 (2)0.007 (2)0.008 (2)0.016 (2)
C2A0.074 (4)0.052 (3)0.062 (3)0.018 (3)0.007 (3)0.015 (3)
C3A0.097 (4)0.037 (3)0.069 (3)0.009 (3)0.009 (3)0.010 (2)
C4A0.071 (3)0.043 (3)0.045 (3)0.006 (2)0.001 (2)0.007 (2)
C5A0.050 (2)0.042 (2)0.0287 (19)0.0002 (18)0.0094 (17)0.0101 (17)
C6A0.044 (2)0.046 (2)0.041 (2)0.0035 (19)0.0038 (19)0.0031 (19)
C7A0.074 (3)0.052 (3)0.042 (2)0.002 (2)0.012 (2)0.016 (2)
C1B0.055 (3)0.046 (2)0.045 (2)0.002 (2)0.012 (2)0.016 (2)
C2B0.059 (3)0.044 (3)0.063 (3)0.003 (2)0.004 (2)0.007 (2)
C3B0.058 (3)0.043 (3)0.097 (4)0.011 (2)0.006 (3)0.032 (3)
C4B0.049 (3)0.073 (3)0.079 (4)0.015 (2)0.004 (3)0.047 (3)
C5B0.037 (2)0.057 (3)0.042 (2)0.0043 (19)0.0035 (18)0.026 (2)
C6B0.045 (2)0.083 (3)0.045 (3)0.012 (2)0.015 (2)0.033 (2)
C7B0.060 (3)0.074 (3)0.032 (2)0.011 (2)0.014 (2)0.021 (2)
Geometric parameters (Å, º) top
Cu—N1A2.000 (3)C3A—C4A1.373 (7)
Cu—N1B2.012 (3)C3A—H3AA0.9300
Cu—N2.044 (3)C4A—C5A1.385 (6)
Cu—Br2.4542 (7)C4A—H4AA0.9300
Cu—Bri2.8908 (8)C5A—C6A1.494 (6)
Br—Cui2.8908 (8)C6A—C7A1.528 (7)
Cl—O12B1.326 (11)C6A—H6AA0.9700
Cl—O11A1.361 (11)C6A—H6AB0.9700
Cl—O12A1.388 (11)C7A—H7AA0.9700
Cl—O13A1.397 (9)C7A—H7AB0.9700
Cl—O13B1.424 (11)C1B—C2B1.366 (6)
Cl—O11B1.424 (11)C1B—H1BA0.9300
Cl—O14B1.469 (10)C2B—C3B1.379 (8)
Cl—O14A1.495 (9)C2B—H2BA0.9300
N—C7B1.488 (6)C3B—C4B1.375 (8)
N—C7A1.496 (5)C3B—H3BA0.9300
N—H0A0.9100C4B—C5B1.384 (6)
N1A—C5A1.349 (5)C4B—H4BA0.9300
N1A—C1A1.350 (5)C5B—C6B1.502 (6)
N1B—C1B1.342 (5)C6B—C7B1.517 (6)
N1B—C5B1.349 (5)C6B—H6BB0.9700
C1A—C2A1.361 (6)C6B—H6BC0.9700
C1A—H1AA0.9300C7B—H7BB0.9700
C2A—C3A1.374 (7)C7B—H7BC0.9700
C2A—H2AA0.9300
N1A—Cu—N1B159.15 (14)C5A—C4A—H4AA120.2
N1A—Cu—N89.40 (13)N1A—C5A—C4A120.4 (4)
N1B—Cu—N85.66 (13)N1A—C5A—C6A117.6 (4)
N1A—Cu—Br92.56 (9)C4A—C5A—C6A122.0 (4)
N1B—Cu—Br92.79 (9)C5A—C6A—C7A111.7 (4)
N—Cu—Br177.86 (10)C5A—C6A—H6AA109.3
N1A—Cu—Bri106.74 (10)C7A—C6A—H6AA109.3
N1B—Cu—Bri93.79 (10)C5A—C6A—H6AB109.3
N—Cu—Bri93.61 (10)C7A—C6A—H6AB109.3
Br—Cu—Bri85.00 (2)H6AA—C6A—H6AB107.9
Cu—Br—Cui95.00 (2)N—C7A—C6A112.9 (3)
O11A—Cl—O13A113.7 (9)N—C7A—H7AA109.0
O12A—Cl—O13A111.2 (9)C6A—C7A—H7AA109.0
O12B—Cl—O11B115.9 (11)N—C7A—H7AB109.0
O13B—Cl—O11B105.7 (9)C6A—C7A—H7AB109.0
O12B—Cl—O14B110.1 (9)H7AA—C7A—H7AB107.8
O13B—Cl—O14B104.4 (8)N1B—C1B—C2B123.3 (4)
O11B—Cl—O14B106.0 (9)N1B—C1B—H1BA118.4
O11A—Cl—O14A108.1 (10)C2B—C1B—H1BA118.4
O12A—Cl—O14A103.5 (7)C1B—C2B—C3B117.9 (5)
O13A—Cl—O14A105.2 (6)C1B—C2B—H2BA121.1
C7B—N—C7A112.0 (3)C3B—C2B—H2BA121.1
C7B—N—Cu110.9 (3)C4B—C3B—C2B119.9 (5)
C7A—N—Cu118.5 (3)C4B—C3B—H3BA120.0
C7B—N—H0A104.7C2B—C3B—H3BA120.0
C7A—N—H0A104.7C3B—C4B—C5B119.3 (5)
Cu—N—H0A104.7C3B—C4B—H4BA120.4
C5A—N1A—C1A119.0 (4)C5B—C4B—H4BA120.4
C5A—N1A—Cu121.3 (3)N1B—C5B—C4B120.9 (4)
C1A—N1A—Cu119.8 (3)N1B—C5B—C6B115.5 (4)
C1B—N1B—C5B118.7 (4)C4B—C5B—C6B123.6 (4)
C1B—N1B—Cu124.8 (3)C5B—C6B—C7B113.2 (4)
C5B—N1B—Cu116.4 (3)C5B—C6B—H6BB108.9
N1A—C1A—C2A122.7 (4)C7B—C6B—H6BB108.9
N1A—C1A—H1AA118.7C5B—C6B—H6BC108.9
C2A—C1A—H1AA118.7C7B—C6B—H6BC108.9
C1A—C2A—C3A118.5 (5)H6BB—C6B—H6BC107.8
C1A—C2A—H2AA120.7N—C7B—C6B113.2 (3)
C3A—C2A—H2AA120.7N—C7B—H7BB108.9
C4A—C3A—C2A119.7 (5)C6B—C7B—H7BB108.9
C4A—C3A—H3AA120.1N—C7B—H7BC108.9
C2A—C3A—H3AA120.1C6B—C7B—H7BC108.9
C3A—C4A—C5A119.6 (4)H7BB—C7B—H7BC107.7
C3A—C4A—H4AA120.2
N1A—Cu—Br—Cui106.59 (10)N1A—C1A—C2A—C3A1.8 (8)
N1B—Cu—Br—Cui93.56 (10)C1A—C2A—C3A—C4A2.8 (9)
N—Cu—Br—Cui50 (3)C2A—C3A—C4A—C5A0.6 (8)
Bri—Cu—Br—Cui0.0C1A—N1A—C5A—C4A3.7 (6)
N1A—Cu—N—C7B97.3 (3)Cu—N1A—C5A—C4A176.0 (3)
N1B—Cu—N—C7B62.4 (3)C1A—N1A—C5A—C6A174.5 (4)
Br—Cu—N—C7B106 (3)Cu—N1A—C5A—C6A5.8 (5)
Bri—Cu—N—C7B155.9 (3)C3A—C4A—C5A—N1A2.7 (7)
N1A—Cu—N—C7A34.3 (3)C3A—C4A—C5A—C6A175.4 (5)
N1B—Cu—N—C7A166.0 (3)N1A—C5A—C6A—C7A58.6 (5)
Br—Cu—N—C7A122 (3)C4A—C5A—C6A—C7A119.6 (5)
Bri—Cu—N—C7A72.5 (3)C7B—N—C7A—C6A142.0 (4)
N1B—Cu—N1A—C5A121.2 (4)Cu—N—C7A—C6A10.9 (5)
N—Cu—N1A—C5A45.1 (3)C5A—C6A—C7A—N65.9 (5)
Br—Cu—N1A—C5A134.1 (3)C5B—N1B—C1B—C2B0.4 (7)
Bri—Cu—N1A—C5A48.5 (3)Cu—N1B—C1B—C2B177.7 (4)
N1B—Cu—N1A—C1A59.1 (5)N1B—C1B—C2B—C3B1.5 (7)
N—Cu—N1A—C1A135.2 (3)C1B—C2B—C3B—C4B2.1 (8)
Br—Cu—N1A—C1A45.6 (3)C2B—C3B—C4B—C5B1.7 (8)
Bri—Cu—N1A—C1A131.2 (3)C1B—N1B—C5B—C4B0.1 (6)
N1A—Cu—N1B—C1B157.2 (4)Cu—N1B—C5B—C4B177.4 (3)
N—Cu—N1B—C1B126.0 (3)C1B—N1B—C5B—C6B179.6 (4)
Br—Cu—N1B—C1B52.5 (3)Cu—N1B—C5B—C6B2.1 (4)
Bri—Cu—N1B—C1B32.6 (3)C3B—C4B—C5B—N1B0.6 (7)
N1A—Cu—N1B—C5B25.4 (5)C3B—C4B—C5B—C6B178.9 (4)
N—Cu—N1B—C5B51.3 (3)N1B—C5B—C6B—C7B66.2 (5)
Br—Cu—N1B—C5B130.2 (3)C4B—C5B—C6B—C7B113.3 (5)
Bri—Cu—N1B—C5B144.7 (3)C7A—N—C7B—C6B156.6 (4)
C5A—N1A—C1A—C2A1.4 (7)Cu—N—C7B—C6B21.7 (5)
Cu—N1A—C1A—C2A178.3 (4)C5B—C6B—C7B—N49.4 (5)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O14A0.912.343.205 (12)159
N—H0A···O13B0.912.443.089 (18)129
C6A—H6AB···Bri0.972.703.588 (4)153
C6B—H6BC···Brii0.972.893.706 (4)142
C6B—H6BB···O13Biii0.972.573.487 (18)158
C2A—H2AA···O11Aiv0.932.523.162 (14)126
C7A—H7AA···O12Av0.972.513.322 (16)141
C7A—H7AA···O13B0.972.493.179 (15)128
C3A—H3AA···O13Avi0.932.543.142 (12)122
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y+2, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu2Br2(C14H17N3)2](ClO4)2
Mr940.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.8002 (13), 11.413 (2), 12.668 (2)
α, β, γ (°)67.212 (8), 77.019 (13), 87.033 (15)
V3)882.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)3.68
Crystal size (mm)0.42 × 0.21 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.569, 0.948
No. of measured, independent and
observed [I > 2σ˘I)] reflections
3951, 3936, 2960
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.095, 1.04
No. of reflections3936
No. of parameters255
No. of restraints50
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.36

Computer programs: XSCANS (Bruker, 1997), XSCANS (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O14A0.912.343.205 (12)159
N—H0A···O13B0.912.443.089 (18)129
C6A—H6AB···Bri0.972.703.588 (4)153
C6B—H6BC···Brii0.972.893.706 (4)142
C6B—H6BB···O13Biii0.972.573.487 (18)158
C2A—H2AA···O11Aiv0.932.523.162 (14)126
C7A—H7AA···O12Av0.972.513.322 (16)141
C7A—H7AA···O13B0.972.493.179 (15)128
C3A—H3AA···O13Avi0.932.543.142 (12)122
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1; (iii) x+1, y, z; (iv) x+1, y1, z; (v) x, y+2, z+2; (vi) x, y1, z.
 

Acknowledgements

RJB acknowledges the DoD for funds to upgrade the diffractometer.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). XSCANS. Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakrabarty, S., Poddar, R. K., Poulsen, R. D., Thompson, A. L. & Howard, J. A. K. (2004). Acta Cryst. C60, m628–m630.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHelis, H. M., Goodman, W. H., Wilson, R. B., Morgan, J. A. & Hodgson, D. J. (1977). Inorg. Chem. 16, 2412–2416.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarsh, W. E., Patel, K. C., Hatfield, W. E. & Hodgson, D. J. (1983). Inorg. Chem. 22, 511–515.  CSD CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUdugala-Ganehenege, M. Y., Heeg, M. J., Hryhorczuk, L. M., Wenger, L. E. & Endicott, J. F. (2001). Inorg. Chem. 40, 1614–1625.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationXu, Z., White, S., Thompson, L. K., Miller, D. O., Ohba, M., Okawa, H., Wilson, C. & Howard, J. A. K. (2000). J. Chem. Soc. Dalton Trans. pp.1751–1757.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds