organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-2,2,6,6-tetra­methyl­piperidinium tri­chloro­acetate

aSchool of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, People's Republic of China, bDepartment of Pharmaceutics, Medical College of Chinese People's Armed Police Force, Tianjin 300162, People's Republic of China, and cDarentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co. Ltd, Tianjin 300457, People's Republic of China
*Correspondence e-mail: zpw0803@gmail.com

(Received 19 February 2008; accepted 26 February 2008; online 29 February 2008)

In the crystal structure of the title compound, C9H20NO+·Cl3CCOO, the cations and anions are connected via O—H⋯O, N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonding. The six-membered ring adopts a chair conformation with the hydroxyl group in an equatorial position.

Related literature

For related literature, see: Borzatta & Carrozza (1991[Borzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.]).

[Scheme 1]

Experimental

Crystal data
  • C9H20NO+·C2Cl3O2

  • Mr = 320.63

  • Monoclinic, P 21

  • a = 6.3468 (13) Å

  • b = 14.450 (3) Å

  • c = 8.2175 (16) Å

  • β = 95.19 (3)°

  • V = 750.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 113 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.930, Tmax = 0.953

  • 5459 measured reflections

  • 2858 independent reflections

  • 2636 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.06

  • 2858 reflections

  • 179 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 996 Friedel pairs

  • Flack parameter: 0.04 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.89 (3) 1.99 (3) 2.8095 (18) 152 (3)
O1—H1⋯Cl1i 0.89 (3) 2.92 (3) 3.6201 (16) 136 (2)
N1—H1A⋯O3ii 0.95 (3) 1.87 (3) 2.8085 (19) 170 (2)
N1—H1B⋯O2iii 0.94 (2) 1.87 (2) 2.796 (2) 165.1 (19)
N1—H1B⋯Cl2iii 0.94 (2) 2.94 (2) 3.5647 (16) 124.5 (16)
Symmetry codes: (i) x+1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+1]; (iii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was obtained as a byproduct in the synthesis of hindered amine light stabilizers preventing the degradation of polyolefins in sunlight, in which 2,2,6,6-tetramethylpiperidin-4-ol is a very important intermediate (Borzatta & Carrozza,1991). We report here the crystal structure 4-hydroxy-2,2,6,6-tetramethylpiperidinium trichloroacetate (Fig. 1). Intermolecular O—H···O, N—H···O, O—H···Cl, N—H···Cl hydrogen bonds are observed which help to establish the crystal packing. The piperidine ring adopts a chair conformation.

Related literature top

For related literature, see: Borzatta & Carrozza (1991).

Experimental top

0.25 g (1.6 mmol) of 2,2,6,6-tetramethylpiperidin-4-ol was dissolved in 3.2 ml of trichloroacetate acid solution (1.6 mmol, 0.26 g). Colorless crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement top

All H atoms bound to C atoms were constrained; positioned geometrically (C—H = 0.96–0.98 Å) and refined as riding with Uiso(H)=1.2Ueq(carrier) or 1.5eq(methyl groups). H atoms of O—H and N—H were located from difference maps and then refined freely.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with atom labeling and displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
4-Hydroxy-2,2,6,6-tetramethylpiperidinium trichloroacetate top
Crystal data top
C9H20NO+·C2Cl3O2F(000) = 336
Mr = 320.63Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2559 reflections
a = 6.3468 (13) Åθ = 1.4–27.9°
b = 14.450 (3) ŵ = 0.61 mm1
c = 8.2175 (16) ÅT = 113 K
β = 95.19 (3)°Block, colorless
V = 750.5 (3) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Rigaku Saturn
diffractometer
2858 independent reflections
Radiation source: rotating anode2636 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.028
ω and ϕ scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 88
Tmin = 0.930, Tmax = 0.953k = 1519
5459 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0324P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2858 reflectionsΔρmax = 0.21 e Å3
179 parametersΔρmin = 0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 996 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
C9H20NO+·C2Cl3O2V = 750.5 (3) Å3
Mr = 320.63Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.3468 (13) ŵ = 0.61 mm1
b = 14.450 (3) ÅT = 113 K
c = 8.2175 (16) Å0.12 × 0.10 × 0.08 mm
β = 95.19 (3)°
Data collection top
Rigaku Saturn
diffractometer
2858 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2636 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.953Rint = 0.028
5459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.23 e Å3
2858 reflectionsAbsolute structure: Flack (1983), 996 Friedel pairs
179 parametersAbsolute structure parameter: 0.04 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04464 (7)0.51471 (3)0.10942 (5)0.01980 (10)
Cl20.34863 (6)0.41431 (3)0.12885 (6)0.02203 (11)
Cl30.00077 (8)0.35637 (3)0.09864 (5)0.02572 (11)
O10.7973 (2)0.47566 (9)0.51619 (17)0.0227 (3)
H10.798 (4)0.453 (2)0.415 (4)0.063 (10)*
O20.1032 (2)0.27147 (9)0.27469 (18)0.0247 (3)
O30.20242 (18)0.34925 (9)0.25644 (15)0.0169 (3)
N10.4803 (2)0.71305 (9)0.64562 (18)0.0111 (3)
C10.4608 (3)0.62855 (12)0.75507 (19)0.0129 (3)
C20.6286 (3)0.55858 (11)0.7135 (2)0.0139 (3)
H2A0.77010.58320.75150.017*
H2B0.60800.50050.77390.017*
C30.6235 (3)0.53661 (11)0.5324 (2)0.0159 (4)
H30.48760.50510.49450.019*
C40.6475 (3)0.62493 (13)0.4346 (2)0.0164 (3)
H4A0.63710.60900.31700.020*
H4B0.79050.65060.46380.020*
C50.4836 (3)0.69993 (12)0.46158 (19)0.0135 (3)
C60.2366 (3)0.58770 (13)0.7353 (2)0.0198 (4)
H6A0.13270.63770.73790.030*
H6B0.21910.54430.82480.030*
H6C0.21490.55500.63060.030*
C70.5076 (3)0.66393 (13)0.9293 (2)0.0189 (4)
H7A0.64950.69120.94190.028*
H7B0.50030.61241.00610.028*
H7C0.40290.71100.95190.028*
C80.2629 (3)0.67658 (13)0.3825 (2)0.0198 (4)
H8A0.15950.71930.42280.030*
H8B0.22660.61300.41040.030*
H8C0.26090.68250.26360.030*
C90.5521 (3)0.79290 (13)0.3950 (2)0.0213 (4)
H9A0.44500.83990.41230.032*
H9B0.56760.78710.27790.032*
H9C0.68780.81130.45230.032*
C100.0700 (3)0.40324 (12)0.09850 (19)0.0130 (3)
C110.0172 (3)0.33454 (11)0.2249 (2)0.0133 (3)
H1A0.373 (4)0.7546 (18)0.674 (3)0.037 (7)*
H1B0.610 (4)0.7410 (15)0.683 (3)0.025 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0227 (2)0.01408 (19)0.0232 (2)0.00440 (16)0.00505 (17)0.00388 (16)
Cl20.01100 (19)0.0235 (2)0.0318 (3)0.00221 (15)0.00291 (17)0.00920 (19)
Cl30.0321 (3)0.0304 (3)0.0149 (2)0.0025 (2)0.00289 (18)0.00596 (17)
O10.0249 (7)0.0194 (7)0.0241 (7)0.0108 (5)0.0033 (6)0.0052 (6)
O20.0147 (6)0.0220 (7)0.0377 (8)0.0023 (5)0.0044 (6)0.0151 (6)
O30.0125 (6)0.0160 (6)0.0230 (7)0.0007 (5)0.0056 (5)0.0007 (5)
N10.0114 (7)0.0098 (7)0.0124 (7)0.0007 (5)0.0033 (6)0.0002 (5)
C10.0127 (8)0.0130 (8)0.0133 (8)0.0010 (6)0.0032 (6)0.0029 (6)
C20.0137 (8)0.0124 (8)0.0156 (9)0.0027 (6)0.0014 (7)0.0001 (6)
C30.0152 (8)0.0131 (8)0.0193 (9)0.0035 (6)0.0010 (7)0.0028 (6)
C40.0164 (9)0.0187 (8)0.0149 (8)0.0020 (6)0.0049 (7)0.0023 (7)
C50.0167 (8)0.0153 (8)0.0089 (7)0.0010 (6)0.0031 (6)0.0010 (6)
C60.0152 (9)0.0174 (9)0.0276 (10)0.0007 (7)0.0059 (8)0.0059 (7)
C70.0228 (9)0.0215 (10)0.0127 (8)0.0047 (7)0.0028 (7)0.0000 (7)
C80.0196 (9)0.0215 (9)0.0176 (9)0.0002 (7)0.0023 (7)0.0013 (7)
C90.0272 (11)0.0164 (9)0.0214 (10)0.0001 (7)0.0090 (8)0.0043 (7)
C100.0118 (8)0.0134 (8)0.0141 (8)0.0009 (6)0.0021 (6)0.0010 (6)
C110.0124 (8)0.0145 (8)0.0130 (8)0.0019 (6)0.0010 (6)0.0006 (6)
Geometric parameters (Å, º) top
Cl1—C101.7729 (17)C4—C51.532 (2)
Cl2—C101.7710 (17)C4—H4A0.9900
Cl3—C101.7756 (17)C4—H4B0.9900
O1—C31.427 (2)C5—C81.528 (2)
O1—H10.89 (3)C5—C91.529 (3)
O2—C111.235 (2)C6—H6A0.9800
O3—C111.245 (2)C6—H6B0.9800
N1—C51.526 (2)C6—H6C0.9800
N1—C11.528 (2)C7—H7A0.9800
N1—H1A0.95 (3)C7—H7B0.9800
N1—H1B0.94 (2)C7—H7C0.9800
C1—C71.524 (2)C8—H8A0.9800
C1—C21.529 (2)C8—H8B0.9800
C1—C61.535 (2)C8—H8C0.9800
C2—C31.519 (2)C9—H9A0.9800
C2—H2A0.9900C9—H9B0.9800
C2—H2B0.9900C9—H9C0.9800
C3—C41.523 (2)C10—C111.573 (2)
C3—H31.0000
C3—O1—H1112.3 (19)C8—C5—C4113.00 (15)
C5—N1—C1119.53 (13)C9—C5—C4110.55 (15)
C5—N1—H1A113.1 (15)C1—C6—H6A109.5
C1—N1—H1A105.4 (15)C1—C6—H6B109.5
C5—N1—H1B106.5 (14)H6A—C6—H6B109.5
C1—N1—H1B105.4 (13)C1—C6—H6C109.5
H1A—N1—H1B106 (2)H6A—C6—H6C109.5
C7—C1—N1105.40 (13)H6B—C6—H6C109.5
C7—C1—C2110.56 (14)C1—C7—H7A109.5
N1—C1—C2107.56 (13)C1—C7—H7B109.5
C7—C1—C6109.16 (14)H7A—C7—H7B109.5
N1—C1—C6111.62 (14)C1—C7—H7C109.5
C2—C1—C6112.31 (14)H7A—C7—H7C109.5
C3—C2—C1113.80 (14)H7B—C7—H7C109.5
C3—C2—H2A108.8C5—C8—H8A109.5
C1—C2—H2A108.8C5—C8—H8B109.5
C3—C2—H2B108.8H8A—C8—H8B109.5
C1—C2—H2B108.8C5—C8—H8C109.5
H2A—C2—H2B107.7H8A—C8—H8C109.5
O1—C3—C2105.80 (14)H8B—C8—H8C109.5
O1—C3—C4110.67 (14)C5—C9—H9A109.5
C2—C3—C4110.33 (14)C5—C9—H9B109.5
O1—C3—H3110.0H9A—C9—H9B109.5
C2—C3—H3110.0C5—C9—H9C109.5
C4—C3—H3110.0H9A—C9—H9C109.5
C3—C4—C5114.51 (14)H9B—C9—H9C109.5
C3—C4—H4A108.6C11—C10—Cl2111.74 (11)
C5—C4—H4A108.6C11—C10—Cl1111.69 (11)
C3—C4—H4B108.6Cl2—C10—Cl1108.65 (9)
C5—C4—H4B108.6C11—C10—Cl3106.67 (11)
H4A—C4—H4B107.6Cl2—C10—Cl3109.25 (9)
N1—C5—C8110.77 (14)Cl1—C10—Cl3108.77 (9)
N1—C5—C9105.97 (14)O2—C11—O3128.65 (16)
C8—C5—C9108.77 (14)O2—C11—C10116.15 (14)
N1—C5—C4107.55 (13)O3—C11—C10115.14 (14)
C5—N1—C1—C7168.77 (14)C1—N1—C5—C9167.95 (14)
C5—N1—C1—C250.78 (19)C1—N1—C5—C449.69 (19)
C5—N1—C1—C672.85 (19)C3—C4—C5—N150.25 (19)
C7—C1—C2—C3166.72 (14)C3—C4—C5—C872.32 (19)
N1—C1—C2—C352.12 (18)C3—C4—C5—C9165.51 (16)
C6—C1—C2—C371.08 (18)Cl2—C10—C11—O229.86 (19)
C1—C2—C3—O1176.40 (14)Cl1—C10—C11—O2151.81 (14)
C1—C2—C3—C456.67 (19)Cl3—C10—C11—O289.47 (17)
O1—C3—C4—C5172.59 (14)Cl2—C10—C11—O3152.80 (13)
C2—C3—C4—C555.84 (19)Cl1—C10—C11—O330.85 (18)
C1—N1—C5—C874.25 (18)Cl3—C10—C11—O387.87 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.89 (3)1.99 (3)2.8095 (18)152 (3)
O1—H1···Cl1i0.89 (3)2.92 (3)3.6201 (16)136 (2)
N1—H1A···O3ii0.95 (3)1.87 (3)2.8085 (19)170 (2)
N1—H1B···O2iii0.94 (2)1.87 (2)2.796 (2)165.1 (19)
N1—H1B···Cl2iii0.94 (2)2.94 (2)3.5647 (16)124.5 (16)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H20NO+·C2Cl3O2
Mr320.63
Crystal system, space groupMonoclinic, P21
Temperature (K)113
a, b, c (Å)6.3468 (13), 14.450 (3), 8.2175 (16)
β (°) 95.19 (3)
V3)750.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.930, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
5459, 2858, 2636
Rint0.028
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.06
No. of reflections2858
No. of parameters179
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.23
Absolute structureFlack (1983), 996 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.89 (3)1.99 (3)2.8095 (18)152 (3)
O1—H1···Cl1i0.89 (3)2.92 (3)3.6201 (16)136 (2)
N1—H1A···O3ii0.95 (3)1.87 (3)2.8085 (19)170 (2)
N1—H1B···O2iii0.94 (2)1.87 (2)2.796 (2)165.1 (19)
N1—H1B···Cl2iii0.94 (2)2.94 (2)3.5647 (16)124.5 (16)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1; (iii) x+1, y+1/2, z+1.
 

References

First citationBorzatta, V. & Carrozza, P. (1991). European Patent EP 0 462 069.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds