metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m466-m467

Guanidinium (aqua-2κO)(4-hydr­­oxy-6-carb­oxy­pyridine-2-carboxyl­ato-2κ3O2,N,O6)(μ-4-hy­droxy­pyridine-2,6-di­carboxyl­ato-1:2κ4O2,N,O6:O2)(4-hy­droxy­pyridine-2,6-di­carboxyl­ato-1κ3O2,N,O6)dizincate(II) dihydrate

aFaculty of Chemistry, Tarbiat Moallem University, 49 Mofateh Ave., 15614 Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, cDepartment of Chemistry, Faculty of Science, Payame Noor University, Qom Center, Qom, Iran, dDepartment of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, and eFaculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 17 January 2008; accepted 6 February 2008; online 13 February 2008)

The title compound, (CH6N3)[Zn2(C7H3NO5)2(C7H4NO5)(H2O)]·2H2O, has an anionic binuclear complex of ZnII balanced with a guanidinium cation. There are two uncoord­inated water mol­ecules in the structure. The asymmetric unit of the compound has two different coordination types (the coordination of Zn1 is distorted trigonal-bipyramidal, while that of Zn2 is distorted octahedral) of ZnII in the crystal structure that are bridged to each other via one hypydc2− group (hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid). A variety of inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds involving water mol­ecules, cations and anions, and also a weak ππ inter­action [3.798 (1) Å], are responsible for extending the structure into a three-dimensional network.

Related literature

For related literature, see: Moghimi, Aghabozorg, Sheshmani, et al. (2005[Moghimi, A., Aghabozorg, H., Sheshmani, S. & Soleimannejad, J. (2005). Anal. Sci. 21, x71-x72.]); Moghimi, Aghabozorg, Soleimannejad et al. (2005[Moghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005). Acta Cryst. E61, o442-o444.]); Aghabozorg et al. (2008[Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144.]); Ranjbar et al. (2002[Ranjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci. 18, x219-x220.]); Sharif et al. (2007[Sharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599-m1601.]).

[Scheme 1]

Experimental

Crystal data
  • (CH6N3)[Zn2(C7H3NO5)2(C7H4NO5)(H2O)]·2H2O

  • Mr = 789.20

  • Triclinic, [P \overline 1]

  • a = 9.1077 (12) Å

  • b = 9.2900 (12) Å

  • c = 16.347 (3) Å

  • α = 96.018 (4)°

  • β = 99.229 (4)°

  • γ = 91.760 (7)°

  • V = 1356.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 100 (2) K

  • 0.21 × 0.15 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.807

  • 19615 measured reflections

  • 8987 independent reflections

  • 6765 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.089

  • S = 1.00

  • 8987 reflections

  • 433 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—O13 1.9541 (14)
Zn1—O1W 1.9599 (14)
Zn1—N1 2.0157 (17)
Zn1—O1 2.0955 (14)
Zn1—O3 2.4440 (15)
Zn2—N2 1.9965 (17)
Zn2—N3 2.0143 (17)
Zn2—O11 2.0715 (14)
Zn2—O8 2.2311 (15)
Zn2—O6 2.2320 (15)
Zn2—O13 2.3857 (14)
O13—Zn1—O1 101.14 (6)
O1—Zn1—O3 151.36 (5)
N2—Zn2—N3 162.44 (7)
O11—Zn2—O6 90.99 (6)
O8—Zn2—O6 152.06 (5)
O11—Zn2—O13 151.16 (5)
O8—Zn2—O13 86.07 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O6i 0.88 2.17 2.894 (2) 139
N4—H4B⋯O14ii 0.88 1.95 2.810 (2) 164
N5—H5A⋯O1Wii 0.88 2.29 3.074 (2) 149
N5—H5B⋯O12iii 0.88 2.18 2.949 (2) 146
N6—H6A⋯O3 0.88 2.08 2.901 (2) 156
N6—H6B⋯O12iii 0.88 2.09 2.882 (2) 150
O4—H4C⋯O3W 0.84 1.75 2.586 (2) 170
O5—H5C⋯O9iv 0.84 1.78 2.596 (2) 163
O10—H10A⋯O2v 0.84 1.78 2.615 (2) 171
O15—H15⋯O1vi 0.84 1.87 2.637 (2) 152
O1W—H1⋯O2Wvii 0.85 1.79 2.642 (2) 175
O1W—H2⋯O7i 0.85 1.76 2.609 (2) 178
O2W—H3⋯O8 0.85 2.07 2.912 (2) 171
O2W—H4⋯O3W 0.85 2.02 2.827 (2) 158
O3W—H5⋯O11i 0.85 1.78 2.622 (2) 170
O3W—H6⋯O10iv 0.85 2.59 3.344 (2) 148
C4—H4D⋯O9iv 0.95 2.30 2.993 (2) 129
C9—H9A⋯O2v 0.95 2.37 3.046 (3) 128
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1; (vii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

After the synthesis of proton transfer ion pairs with the formulae of (GH)(hypydcH) (Moghimi, Aghabozorg, Soleimannejad et al., 2005) and (GH)(hypydcH).H2O (Moghimi, Aghabozorg, Sheshmani et al., 2005), the first metallic compound related to them formulated as (GH)2[Ni(hypydc)2] .2H2O was synthesized (Aghabozorg, Motyeian et al., 2008). Slightly different, the title compound is another metallic compound related to the mentioned ion pairs.

The molecular structure of the compound is shown in Fig. 1. A s it can be observed, the anionic complex involves two ZnII atoms with different coordination modes including penta and hexa-coordination. One ZnII is coordinated to two (hypydc)2- groups, one of which is bridged to the second ZnII which is also coordinated to an (hypydcH)- group and a water molecule. The coordination polyhedron around Zn1 is a distorted trigonal bipyramid, while that of Zn2 is a distorted octahedron (Fig. 2). It is notable that the –COOH of the (hypydcH)-group is coordinated to Zn1 via its carbonyl O3 atom, while the –COO- group is coordinated to Zn1 through its O1 atom, as usual. This is shown by essentially different C7–O3 (1.229 (2) Å) and C6–O1 (1.273 (2) Å) bond lengths. Moreover, (GH)+ as counter ion and two uncoordinated water molecules are incorporated in the structure. Investigating the angles of (GH)+ shows that the sum of all three angles around C22 (120.63 (19), 120.05 (19) and 119.30 (19)°) confirms the coplanarity of the three bonds. In addition, since the three bonds of (GH)+ are almost the same (N4–C22, 1.325 (3); N5–C22, 1.328 (3) and N6–C22, 1.327 (3) Å), it can be concluded that the positive charge is delocalized on the counter ion.

By comparison, the bond length of Zn1–O1 (2.0955 (14) Å) is obviously shorter than Zn1–O3 (2.4440 (15) Å). This is due to that O3 is of unprotonated –COOH group, but O1 is belonged to the deprotonated carboxylate group. Thus, Zn1–O3 is longer than the Zn1–O1 bond. This resembles to (pydaH)[Zn(pydc)(pydcH)]. 3H2O (pyda: pyridine-2,6-diamine, pydcH2: pyridine-2,6-dicarboxylic acid) complex in which the carbonyl oxygen atom of –COOH group forms a longer bond to metallic center (Ranjbar et al., 2002). Also, the length of Zn2–O13 is longer than Zn2–O11, i.e. the bridge O13 atom lies further to Zn2, this is similar to polymeric (GH)[Bi(pydc)(H2O)] complex in which the bridge oxygen atom forms a longer bond to BiIII atom (Sharif et al., 2007). Moreover, the lengths of Zn1–O13 (1.9541 (14) Å) and Zn2–O13 (2.3857 (14) Å) are significantly different. As the O13–Zn2–O8–C14 (-83.49 (14)°) and O13–Zn2–O6–C13 (86.01 (14)°) torsion angles and O6–Zn2–O11 (90.99 (6)°) and O8–Zn2–O13 (86.07 (5)°) bond angles show, the two (hypydc)2- rings coordinated to Zn2 are almost perpendicular.

The bond angles of Zn2 to four oxygen atoms of carboxylate groups show that they are oriented on a flattened tetrahedral arrangement around the metallic center (Table 1).

As shown in Fig. 3, there are plenty of hydrogen bonds of type O–H···O and N–H···O ranging from 2.586 (2) to 3.344 (2) Å, and C–H···O bonds with 2.993 (2) and 3.046 (3) Å lengths between the fragments (Table 2). Also, there is a weak π-π interaction with distance of 3.798 (1) Å between the aromatic rings (Fig. 4). The crystal packing of the compoud is shown in Fig. 5. A s illustrated in Fig. 6, there are a type of channels produced by aromatic rings of the structure with the distance of ~3.3 Å.

Related literature top

For related literature, see: Moghimi, Aghabozorg, Sheshmani, et al. (2005); Moghimi, Aghabozorg, Soleimannejad et al. (2005); Aghabozorg et al. (2008); Ranjbar et al. (2002); Sharif et al. (2007).

Experimental top

An aqueous solution of 200 mg guanidine hydrochloride (2 mmol) with 80 mg sodium hydroxide (2 mmol) was prepared. After stirring the obtained suspension, an aqueous solution of 291 mg ZnSO4.7H2O (1 mmol) and 360 mg 4-hydroxypyridine-2,6-dicarboxylic acid (2 mmol) was added to it. The mixture with the volume of 50 ml was heated and boiled for 2 h. Colorless crystals were obtained by slow cooling during three days.

Refinement top

The positions of hydrogen atoms on amino and hydroxo groups and water molecules were located from the difference Fourier syntheses and normalized to 0.88, 0.84 and 0.85%A distances, respectively. All hydrogen atom positions were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2(N) for amino, 1.2Ueq(O) for hydroxo groups, to 1.2Ueq(C) for all carbon atoms and to 1.5Ueq(O) for water molecules where Ueq(C) and Ueq(O) are the equivalent thermal parameters of the atoms to which corresponding H atoms are bonded.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Coordination polyhedron around two metallic centers in the asymmetric unit.
[Figure 3] Fig. 3. Hydrogen bondings in the title compound are shown with dashed lines. Symmetry codes to generate equivalent atoms are A: x, y - 1, z; B: -x + 1, -y, -z + 1; C: -x, -y + 1, -z + 1; D: -x, -y, -z; E: -x + 1, -y + 1, -z; F: -x + 1, -y + 1, -z + 1; G: x + 1, y, z.
[Figure 4] Fig. 4. The two C–H···O bond lengths with symmetry codes of (-x, -y, -z) and (-x + 1, -y + 1, -z), and π-π distances between N1/C1—C5 and N2/C8—C12 rings of the asymmetric unit.
[Figure 5] Fig. 5. The crystal packing of the compound as viewed down a. Hydrogen bonds are shown as dashed lines.
[Figure 6] Fig. 6. The packing of compound shows a type of channels between the layers of (hypydc)2- rings with the distance of ~3.3 Å.
Guanidinium (aqua-2κO)(4-hydroxy-6-carboxypyridine-2-carboxylato- 2κ3O2,N,O6)(µ-4-hydroxypyridine-2,6-dicarboxylato- 1:2κ4O2,N,O6:O2)(4-hydroxypyridine-2,6-dicarboxylato- 1κ3O2,N,O6)dizinc(II) dihydrate top
Crystal data top
(CH6N3)[Zn2(C7H3NO5)2(C7H4NO5)(H2O)]·2H2OZ = 2
Mr = 789.20F(000) = 800
Triclinic, P1Dx = 1.933 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1077 (12) ÅCell parameters from 540 reflections
b = 9.2900 (12) Åθ = 2.8–27.2°
c = 16.347 (3) ŵ = 1.87 mm1
α = 96.018 (4)°T = 100 K
β = 99.229 (4)°Prism, colourless
γ = 91.760 (7)°0.21 × 0.15 × 0.12 mm
V = 1356.1 (3) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8987 independent reflections
Radiation source: fine-focus sealed tube6765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 31.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.695, Tmax = 0.807k = 1313
19615 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.089H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
8987 reflections(Δ/σ)max = 0.001
433 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
(CH6N3)[Zn2(C7H3NO5)2(C7H4NO5)(H2O)]·2H2Oγ = 91.760 (7)°
Mr = 789.20V = 1356.1 (3) Å3
Triclinic, P1Z = 2
a = 9.1077 (12) ÅMo Kα radiation
b = 9.2900 (12) ŵ = 1.87 mm1
c = 16.347 (3) ÅT = 100 K
α = 96.018 (4)°0.21 × 0.15 × 0.12 mm
β = 99.229 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8987 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6765 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.807Rint = 0.036
19615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
8987 reflectionsΔρmin = 0.56 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.43557 (3)0.16470 (2)0.258415 (14)0.01093 (6)
Zn20.18238 (3)0.50031 (2)0.310910 (14)0.01149 (6)
N10.36197 (18)0.12238 (18)0.13492 (10)0.0107 (3)
N20.18759 (19)0.47854 (18)0.18862 (10)0.0110 (3)
N30.23352 (18)0.48751 (17)0.43438 (10)0.0099 (3)
N40.3338 (2)0.10238 (19)0.43263 (11)0.0157 (4)
H4A0.32740.12840.37880.019*
H4B0.39920.14140.46840.019*
N50.2568 (2)0.03721 (19)0.54093 (11)0.0156 (4)
H5A0.32350.00040.57670.019*
H5B0.19780.10230.55890.019*
N60.1460 (2)0.0554 (2)0.40657 (11)0.0148 (4)
H6A0.13870.03000.35260.018*
H6B0.08750.12050.42520.018*
O10.59008 (16)0.29141 (15)0.21141 (9)0.0137 (3)
O20.63792 (18)0.36048 (18)0.09069 (9)0.0215 (3)
O30.21305 (16)0.00289 (16)0.23874 (9)0.0145 (3)
O40.07106 (17)0.13769 (16)0.13266 (9)0.0153 (3)
H4C0.01490.14910.16780.018*
O50.27628 (16)0.02110 (16)0.11860 (9)0.0143 (3)
H5C0.21730.05200.13150.017*
O60.34222 (17)0.67780 (16)0.29445 (9)0.0146 (3)
O70.44783 (17)0.76832 (16)0.19381 (9)0.0172 (3)
O80.00950 (16)0.32407 (16)0.26076 (9)0.0143 (3)
O90.05698 (17)0.17203 (16)0.14388 (9)0.0159 (3)
O100.19172 (17)0.42385 (16)0.06347 (9)0.0171 (3)
H10A0.24270.49070.07790.021*
O110.04286 (16)0.64962 (15)0.35657 (9)0.0135 (3)
O120.01195 (16)0.76190 (15)0.47515 (9)0.0147 (3)
O130.35192 (16)0.31130 (15)0.32996 (9)0.0129 (3)
O140.49768 (17)0.21787 (16)0.43224 (9)0.0166 (3)
O150.31816 (17)0.47150 (16)0.68773 (9)0.0160 (3)
H150.31660.55320.71500.019*
C10.4418 (2)0.1863 (2)0.08551 (12)0.0107 (4)
C20.4131 (2)0.1565 (2)0.00030 (12)0.0122 (4)
H2A0.46960.20480.03420.015*
C30.2999 (2)0.0541 (2)0.03617 (12)0.0110 (4)
C40.2169 (2)0.0136 (2)0.01602 (12)0.0115 (4)
H4D0.13860.08350.00650.014*
C50.2529 (2)0.0247 (2)0.10110 (12)0.0112 (4)
C60.5679 (2)0.2891 (2)0.13240 (13)0.0127 (4)
C70.1755 (2)0.0385 (2)0.16419 (12)0.0118 (4)
C80.2775 (2)0.5651 (2)0.15616 (12)0.0116 (4)
C90.2842 (2)0.5519 (2)0.07219 (13)0.0136 (4)
H9A0.34920.61460.05060.016*
C100.1938 (2)0.4448 (2)0.01905 (12)0.0127 (4)
C110.1009 (2)0.3538 (2)0.05356 (12)0.0127 (4)
H11A0.03910.27940.01930.015*
C120.1010 (2)0.3745 (2)0.13860 (12)0.0109 (4)
C130.3656 (2)0.6799 (2)0.22034 (13)0.0124 (4)
C140.0089 (2)0.2824 (2)0.18459 (12)0.0118 (4)
C150.1664 (2)0.5794 (2)0.48423 (12)0.0109 (4)
C160.1924 (2)0.5833 (2)0.57028 (12)0.0123 (4)
H16A0.14550.65090.60410.015*
C170.2895 (2)0.4848 (2)0.60600 (12)0.0123 (4)
C180.3603 (2)0.3900 (2)0.55377 (12)0.0116 (4)
H18A0.42790.32300.57640.014*
C190.3294 (2)0.3963 (2)0.46898 (12)0.0107 (4)
C200.0565 (2)0.6734 (2)0.43629 (12)0.0114 (4)
C210.4003 (2)0.2998 (2)0.40786 (12)0.0106 (4)
C220.2451 (2)0.0043 (2)0.45983 (13)0.0125 (4)
O1W0.55695 (16)0.00217 (15)0.28937 (9)0.0130 (3)
H10.64770.02870.29130.020*
H20.52270.07550.25930.020*
O2W0.15742 (16)0.07809 (17)0.30343 (9)0.0166 (3)
H30.11510.14880.28590.025*
H40.11590.00520.28300.025*
O3W0.09191 (17)0.20352 (17)0.24040 (9)0.0180 (3)
H50.04810.24230.28190.027*
H60.14430.26970.20770.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01283 (12)0.01187 (11)0.00817 (11)0.00039 (9)0.00278 (8)0.00002 (8)
Zn20.01472 (12)0.01176 (11)0.00832 (11)0.00042 (9)0.00333 (9)0.00050 (8)
N10.0103 (8)0.0110 (8)0.0105 (8)0.0004 (6)0.0018 (6)0.0002 (6)
N20.0132 (8)0.0094 (7)0.0110 (8)0.0014 (6)0.0041 (6)0.0017 (6)
N30.0107 (8)0.0092 (7)0.0098 (8)0.0002 (6)0.0029 (6)0.0007 (6)
N40.0170 (9)0.0171 (9)0.0126 (8)0.0048 (7)0.0011 (7)0.0004 (7)
N50.0209 (9)0.0180 (9)0.0080 (8)0.0026 (7)0.0023 (7)0.0011 (6)
N60.0148 (8)0.0211 (9)0.0095 (8)0.0057 (7)0.0033 (6)0.0023 (7)
O10.0154 (7)0.0155 (7)0.0095 (7)0.0029 (6)0.0019 (5)0.0003 (5)
O20.0243 (9)0.0271 (9)0.0127 (7)0.0133 (7)0.0042 (6)0.0033 (6)
O30.0164 (7)0.0181 (7)0.0085 (7)0.0015 (6)0.0024 (5)0.0003 (5)
O40.0176 (7)0.0176 (7)0.0111 (7)0.0068 (6)0.0056 (6)0.0004 (6)
O50.0154 (7)0.0182 (7)0.0081 (7)0.0071 (6)0.0014 (5)0.0012 (5)
O60.0199 (8)0.0138 (7)0.0102 (7)0.0022 (6)0.0049 (6)0.0000 (5)
O70.0232 (8)0.0137 (7)0.0148 (7)0.0068 (6)0.0065 (6)0.0011 (6)
O80.0166 (7)0.0168 (7)0.0100 (7)0.0036 (6)0.0050 (6)0.0004 (5)
O90.0170 (7)0.0162 (7)0.0138 (7)0.0068 (6)0.0031 (6)0.0002 (6)
O100.0250 (8)0.0169 (7)0.0093 (7)0.0083 (6)0.0050 (6)0.0002 (6)
O110.0155 (7)0.0145 (7)0.0111 (7)0.0023 (6)0.0035 (5)0.0018 (5)
O120.0151 (7)0.0136 (7)0.0162 (7)0.0032 (6)0.0059 (6)0.0002 (6)
O130.0159 (7)0.0131 (7)0.0101 (7)0.0018 (6)0.0043 (5)0.0002 (5)
O140.0179 (8)0.0169 (7)0.0158 (7)0.0067 (6)0.0047 (6)0.0009 (6)
O150.0227 (8)0.0160 (7)0.0081 (7)0.0024 (6)0.0005 (6)0.0016 (5)
C10.0109 (9)0.0095 (8)0.0120 (9)0.0006 (7)0.0032 (7)0.0007 (7)
C20.0126 (9)0.0133 (9)0.0114 (9)0.0010 (7)0.0031 (7)0.0029 (7)
C30.0131 (9)0.0115 (9)0.0084 (9)0.0020 (7)0.0015 (7)0.0010 (7)
C40.0117 (9)0.0112 (9)0.0113 (9)0.0028 (7)0.0012 (7)0.0012 (7)
C50.0110 (9)0.0122 (9)0.0110 (9)0.0000 (7)0.0036 (7)0.0014 (7)
C60.0136 (9)0.0135 (9)0.0110 (9)0.0022 (7)0.0032 (7)0.0000 (7)
C70.0116 (9)0.0124 (9)0.0124 (9)0.0010 (7)0.0039 (7)0.0022 (7)
C80.0143 (9)0.0091 (9)0.0116 (9)0.0008 (7)0.0031 (7)0.0005 (7)
C90.0163 (10)0.0125 (9)0.0122 (9)0.0027 (8)0.0033 (8)0.0017 (7)
C100.0160 (10)0.0124 (9)0.0101 (9)0.0010 (8)0.0032 (7)0.0014 (7)
C110.0145 (9)0.0121 (9)0.0113 (9)0.0012 (7)0.0016 (7)0.0010 (7)
C120.0110 (9)0.0091 (8)0.0123 (9)0.0012 (7)0.0017 (7)0.0005 (7)
C130.0156 (10)0.0090 (8)0.0125 (9)0.0011 (7)0.0024 (7)0.0003 (7)
C140.0105 (9)0.0129 (9)0.0122 (9)0.0000 (7)0.0018 (7)0.0027 (7)
C150.0112 (9)0.0089 (8)0.0127 (9)0.0016 (7)0.0035 (7)0.0002 (7)
C160.0136 (9)0.0120 (9)0.0111 (9)0.0016 (7)0.0041 (7)0.0016 (7)
C170.0122 (9)0.0125 (9)0.0116 (9)0.0033 (7)0.0024 (7)0.0006 (7)
C180.0121 (9)0.0109 (9)0.0115 (9)0.0014 (7)0.0013 (7)0.0003 (7)
C190.0116 (9)0.0094 (8)0.0112 (9)0.0014 (7)0.0036 (7)0.0002 (7)
C200.0110 (9)0.0101 (9)0.0136 (9)0.0025 (7)0.0032 (7)0.0024 (7)
C210.0095 (9)0.0106 (9)0.0121 (9)0.0022 (7)0.0044 (7)0.0001 (7)
C220.0124 (9)0.0128 (9)0.0125 (9)0.0026 (7)0.0029 (7)0.0018 (7)
O1W0.0127 (7)0.0121 (7)0.0132 (7)0.0014 (5)0.0010 (5)0.0009 (5)
O2W0.0159 (7)0.0188 (8)0.0158 (7)0.0018 (6)0.0040 (6)0.0032 (6)
O3W0.0200 (8)0.0199 (8)0.0151 (7)0.0022 (6)0.0030 (6)0.0069 (6)
Geometric parameters (Å, º) top
Zn1—O131.9541 (14)O10—H10A0.8400
Zn1—O1W1.9599 (14)O11—C201.284 (2)
Zn1—N12.0157 (17)O12—C201.231 (2)
Zn1—O12.0955 (14)O13—C211.296 (2)
Zn1—O32.4440 (15)O14—C211.232 (2)
Zn2—N21.9965 (17)O15—C171.339 (2)
Zn2—N32.0143 (17)O15—H150.8400
Zn2—O112.0715 (14)C1—C21.382 (3)
Zn2—O82.2311 (15)C1—C61.522 (3)
Zn2—O62.2320 (15)C2—C31.393 (3)
Zn2—O132.3857 (14)C2—H2A0.9500
N1—C51.334 (3)C3—C41.409 (3)
N1—C11.340 (3)C4—C51.383 (3)
N2—C81.337 (3)C4—H4D0.9500
N2—C121.344 (2)C5—C71.497 (3)
N3—C191.337 (3)C8—C91.377 (3)
N3—C151.346 (2)C8—C131.524 (3)
N4—C221.325 (3)C9—C101.401 (3)
N4—H4A0.8800C9—H9A0.9500
N4—H4B0.8800C10—C111.399 (3)
N5—C221.328 (3)C11—C121.383 (3)
N5—H5A0.8800C11—H11A0.9500
N5—H5B0.8800C12—C141.515 (3)
N6—C221.327 (3)C15—C161.385 (3)
N6—H6A0.8800C15—C201.525 (3)
N6—H6B0.8800C16—C171.399 (3)
O1—C61.273 (2)C16—H16A0.9500
O2—C61.233 (2)C17—C181.405 (3)
O3—C71.229 (2)C18—C191.377 (3)
O4—C71.307 (2)C18—H18A0.9500
O4—H4C0.8400C19—C211.507 (3)
O5—C31.331 (2)O1W—H10.8500
O5—H5C0.8400O1W—H20.8500
O6—C131.265 (2)O2W—H30.8501
O7—C131.251 (2)O2W—H40.8499
O8—C141.264 (2)O3W—H50.8499
O9—C141.243 (2)O3W—H60.8500
O10—C101.340 (2)
O13—Zn1—O1W129.21 (6)C2—C3—C4119.01 (18)
O13—Zn1—N1123.11 (6)C5—C4—C3117.96 (18)
O1W—Zn1—N1105.76 (6)C5—C4—H4D121.0
O13—Zn1—O1101.14 (6)C3—C4—H4D121.0
O1W—Zn1—O1100.48 (6)N1—C5—C4122.62 (18)
N1—Zn1—O179.40 (6)N1—C5—C7113.35 (17)
O13—Zn1—O393.10 (6)C4—C5—C7124.03 (18)
O1W—Zn1—O389.12 (6)O2—C6—O1126.81 (19)
N1—Zn1—O372.01 (6)O2—C6—C1117.40 (18)
O1—Zn1—O3151.36 (5)O1—C6—C1115.79 (17)
N2—Zn2—N3162.44 (7)O3—C7—O4125.56 (18)
N2—Zn2—O11118.12 (6)O3—C7—C5119.99 (18)
N3—Zn2—O1178.99 (6)O4—C7—C5114.45 (17)
N2—Zn2—O876.65 (6)N2—C8—C9122.00 (18)
N3—Zn2—O8106.40 (6)N2—C8—C13113.48 (17)
O11—Zn2—O897.59 (6)C9—C8—C13124.49 (18)
N2—Zn2—O675.85 (6)C8—C9—C10119.03 (19)
N3—Zn2—O6101.32 (6)C8—C9—H9A120.5
O11—Zn2—O690.99 (6)C10—C9—H9A120.5
O8—Zn2—O6152.06 (5)O10—C10—C11117.85 (18)
N2—Zn2—O1390.61 (6)O10—C10—C9123.52 (18)
N3—Zn2—O1372.57 (6)C11—C10—C9118.63 (18)
O11—Zn2—O13151.16 (5)C12—C11—C10118.62 (18)
O8—Zn2—O1386.07 (5)C12—C11—H11A120.7
O6—Zn2—O1399.08 (5)C10—C11—H11A120.7
C5—N1—C1119.59 (17)N2—C12—C11122.00 (18)
C5—N1—Zn1124.22 (13)N2—C12—C14113.65 (17)
C1—N1—Zn1115.71 (13)C11—C12—C14124.34 (17)
C8—N2—C12119.71 (17)O7—C13—O6127.34 (19)
C8—N2—Zn2120.75 (13)O7—C13—C8116.96 (18)
C12—N2—Zn2119.54 (13)O6—C13—C8115.64 (17)
C19—N3—C15118.98 (17)O9—C14—O8126.80 (19)
C19—N3—Zn2124.50 (13)O9—C14—C12116.56 (18)
C15—N3—Zn2116.52 (13)O8—C14—C12116.62 (17)
C22—N4—H4A120.0N3—C15—C16122.62 (19)
C22—N4—H4B120.0N3—C15—C20113.29 (17)
H4A—N4—H4B120.0C16—C15—C20124.07 (18)
C22—N5—H5A120.0C15—C16—C17118.16 (18)
C22—N5—H5B120.0C15—C16—H16A120.9
H5A—N5—H5B120.0C17—C16—H16A120.9
C22—N6—H6A120.0O15—C17—C16124.33 (18)
C22—N6—H6B120.0O15—C17—C18116.65 (18)
H6A—N6—H6B120.0C16—C17—C18119.00 (18)
C6—O1—Zn1114.71 (12)C19—C18—C17118.50 (19)
C7—O3—Zn1109.54 (13)C19—C18—H18A120.7
C7—O4—H4C109.5C17—C18—H18A120.8
C3—O5—H5C109.5N3—C19—C18122.71 (18)
C13—O6—Zn2114.20 (12)N3—C19—C21114.77 (17)
C14—O8—Zn2112.58 (12)C18—C19—C21122.52 (18)
C10—O10—H10A109.5O12—C20—O11125.77 (19)
C20—O11—Zn2116.08 (13)O12—C20—C15119.31 (18)
C21—O13—Zn1110.63 (12)O11—C20—C15114.91 (17)
C21—O13—Zn2112.70 (12)O14—C21—O13123.87 (18)
Zn1—O13—Zn2136.65 (7)O14—C21—C19120.94 (18)
C17—O15—H15109.5O13—C21—C19115.19 (17)
N1—C1—C2122.10 (18)N4—C22—N6120.63 (19)
N1—C1—C6114.11 (17)N4—C22—N5120.05 (19)
C2—C1—C6123.76 (18)N6—C22—N5119.30 (19)
C1—C2—C3118.71 (18)Zn1—O1W—H1107.7
C1—C2—H2A120.6Zn1—O1W—H2110.3
C3—C2—H2A120.6H1—O1W—H2118.8
O5—C3—C2118.70 (18)H3—O2W—H4103.0
O5—C3—C4122.27 (18)H5—O3W—H6107.7
O13—Zn1—N1—C589.84 (17)C2—C3—C4—C50.4 (3)
O1W—Zn1—N1—C575.66 (17)C1—N1—C5—C40.5 (3)
O1—Zn1—N1—C5173.68 (17)Zn1—N1—C5—C4172.25 (15)
O3—Zn1—N1—C58.11 (15)C1—N1—C5—C7179.16 (17)
O13—Zn1—N1—C198.09 (15)Zn1—N1—C5—C77.4 (2)
O1W—Zn1—N1—C196.40 (14)C3—C4—C5—N10.0 (3)
O1—Zn1—N1—C11.62 (14)C3—C4—C5—C7179.55 (18)
O3—Zn1—N1—C1179.83 (15)Zn1—O1—C6—O2175.64 (18)
N3—Zn2—N2—C880.4 (3)Zn1—O1—C6—C14.7 (2)
O11—Zn2—N2—C885.88 (16)N1—C1—C6—O2174.20 (18)
O8—Zn2—N2—C8177.43 (16)C2—C1—C6—O27.8 (3)
O6—Zn2—N2—C82.45 (15)N1—C1—C6—O16.1 (3)
O13—Zn2—N2—C896.76 (15)C2—C1—C6—O1171.92 (19)
N3—Zn2—N2—C1298.9 (3)Zn1—O3—C7—O4172.31 (16)
O11—Zn2—N2—C1294.91 (15)Zn1—O3—C7—C57.0 (2)
O8—Zn2—N2—C123.36 (14)N1—C5—C7—O31.3 (3)
O6—Zn2—N2—C12178.34 (16)C4—C5—C7—O3179.03 (19)
O13—Zn2—N2—C1282.45 (15)N1—C5—C7—O4178.08 (17)
N2—Zn2—N3—C1915.1 (3)C4—C5—C7—O41.5 (3)
O11—Zn2—N3—C19177.21 (16)C12—N2—C8—C90.3 (3)
O8—Zn2—N3—C1982.45 (16)Zn2—N2—C8—C9179.54 (15)
O6—Zn2—N3—C1993.99 (16)C12—N2—C8—C13178.52 (17)
O13—Zn2—N3—C192.08 (15)Zn2—N2—C8—C132.3 (2)
N2—Zn2—N3—C15164.06 (19)N2—C8—C9—C100.2 (3)
O11—Zn2—N3—C153.60 (14)C13—C8—C9—C10177.83 (19)
O8—Zn2—N3—C1598.36 (14)C8—C9—C10—O10179.67 (19)
O6—Zn2—N3—C1585.20 (14)C8—C9—C10—C110.7 (3)
O13—Zn2—N3—C15178.73 (15)O10—C10—C11—C12179.61 (18)
O13—Zn1—O1—C6120.04 (14)C9—C10—C11—C120.7 (3)
O1W—Zn1—O1—C6106.20 (14)C8—N2—C12—C110.3 (3)
N1—Zn1—O1—C61.94 (14)Zn2—N2—C12—C11179.50 (15)
O3—Zn1—O1—C61.6 (2)C8—N2—C12—C14178.22 (17)
O13—Zn1—O3—C7131.73 (14)Zn2—N2—C12—C141.0 (2)
O1W—Zn1—O3—C799.05 (14)C10—C11—C12—N20.2 (3)
N1—Zn1—O3—C77.85 (13)C10—C11—C12—C14178.59 (18)
O1—Zn1—O3—C711.5 (2)Zn2—O6—C13—O7178.91 (18)
N2—Zn2—O6—C132.32 (14)Zn2—O6—C13—C81.9 (2)
N3—Zn2—O6—C13159.91 (14)N2—C8—C13—O7177.34 (18)
O11—Zn2—O6—C13121.12 (14)C9—C8—C13—O70.8 (3)
O8—Zn2—O6—C1312.8 (2)N2—C8—C13—O60.0 (3)
O13—Zn2—O6—C1386.01 (14)C9—C8—C13—O6178.2 (2)
N2—Zn2—O8—C148.08 (14)Zn2—O8—C14—O9167.49 (17)
N3—Zn2—O8—C14154.02 (14)Zn2—O8—C14—C1211.0 (2)
O11—Zn2—O8—C14125.28 (14)N2—C12—C14—O9170.05 (18)
O6—Zn2—O8—C1418.5 (2)C11—C12—C14—O98.4 (3)
O13—Zn2—O8—C1483.49 (14)N2—C12—C14—O88.6 (3)
N2—Zn2—O11—C20171.55 (13)C11—C12—C14—O8172.96 (19)
N3—Zn2—O11—C204.25 (14)C19—N3—C15—C160.1 (3)
O8—Zn2—O11—C20109.57 (14)Zn2—N3—C15—C16179.36 (15)
O6—Zn2—O11—C2097.09 (14)C19—N3—C15—C20178.17 (17)
O13—Zn2—O11—C2013.9 (2)Zn2—N3—C15—C202.6 (2)
O1W—Zn1—O13—C217.05 (16)N3—C15—C16—C171.7 (3)
N1—Zn1—O13—C21168.94 (12)C20—C15—C16—C17176.16 (18)
O1—Zn1—O13—C21106.53 (13)C15—C16—C17—O15176.19 (18)
O3—Zn1—O13—C2198.44 (13)C15—C16—C17—C182.1 (3)
O1W—Zn1—O13—Zn2171.49 (8)O15—C17—C18—C19177.56 (18)
N1—Zn1—O13—Zn29.60 (14)C16—C17—C18—C190.9 (3)
O1—Zn1—O13—Zn274.93 (11)C15—N3—C19—C181.5 (3)
O3—Zn1—O13—Zn280.10 (10)Zn2—N3—C19—C18179.35 (14)
N2—Zn2—O13—C21170.56 (13)C15—N3—C19—C21179.06 (17)
N3—Zn2—O13—C214.31 (13)Zn2—N3—C19—C210.1 (2)
O11—Zn2—O13—C2114.27 (19)C17—C18—C19—N30.9 (3)
O8—Zn2—O13—C21112.87 (13)C17—C18—C19—C21179.63 (17)
O6—Zn2—O13—C2194.79 (13)Zn2—O11—C20—O12177.04 (16)
N2—Zn2—O13—Zn110.92 (11)Zn2—O11—C20—C154.1 (2)
N3—Zn2—O13—Zn1174.20 (12)N3—C15—C20—O12179.99 (18)
O11—Zn2—O13—Zn1164.25 (9)C16—C15—C20—O122.0 (3)
O8—Zn2—O13—Zn165.65 (10)N3—C15—C20—O111.0 (2)
O6—Zn2—O13—Zn186.69 (11)C16—C15—C20—O11176.98 (18)
C5—N1—C1—C21.2 (3)Zn1—O13—C21—O147.2 (2)
Zn1—N1—C1—C2173.70 (15)Zn2—O13—C21—O14173.85 (16)
C5—N1—C1—C6176.84 (17)Zn1—O13—C21—C19173.27 (12)
Zn1—N1—C1—C64.4 (2)Zn2—O13—C21—C195.6 (2)
N1—C1—C2—C31.5 (3)N3—C19—C21—O14175.23 (18)
C6—C1—C2—C3176.35 (18)C18—C19—C21—O145.3 (3)
C1—C2—C3—O5177.33 (18)N3—C19—C21—O134.3 (2)
C1—C2—C3—C41.1 (3)C18—C19—C21—O13175.18 (18)
O5—C3—C4—C5177.99 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O6i0.882.172.894 (2)139
N4—H4B···O14ii0.881.952.810 (2)164
N5—H5A···O1Wii0.882.293.074 (2)149
N5—H5B···O12iii0.882.182.949 (2)146
N6—H6A···O30.882.082.901 (2)156
N6—H6B···O12iii0.882.092.882 (2)150
O4—H4C···O3W0.841.762.586 (2)170
O5—H5C···O9iv0.841.782.596 (2)163
O10—H10A···O2v0.841.782.615 (2)171
O15—H15···O1vi0.841.872.637 (2)152
O1W—H1···O2Wvii0.851.792.642 (2)175
O1W—H2···O7i0.851.762.609 (2)178
O2W—H3···O80.852.072.912 (2)171
O2W—H4···O3W0.852.022.827 (2)158
O3W—H5···O11i0.851.782.622 (2)170
O3W—H6···O10iv0.852.593.344 (2)148
C4—H4D···O9iv0.952.302.993 (2)129
C9—H9A···O2v0.952.373.046 (3)128
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x, y, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(CH6N3)[Zn2(C7H3NO5)2(C7H4NO5)(H2O)]·2H2O
Mr789.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.1077 (12), 9.2900 (12), 16.347 (3)
α, β, γ (°)96.018 (4), 99.229 (4), 91.760 (7)
V3)1356.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.21 × 0.15 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.695, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
19615, 8987, 6765
Rint0.036
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.089, 1.00
No. of reflections8987
No. of parameters433
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.56

Computer programs: APEX2 (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Zn1—O131.9541 (14)Zn2—N32.0143 (17)
Zn1—O1W1.9599 (14)Zn2—O112.0715 (14)
Zn1—N12.0157 (17)Zn2—O82.2311 (15)
Zn1—O12.0955 (14)Zn2—O62.2320 (15)
Zn1—O32.4440 (15)Zn2—O132.3857 (14)
Zn2—N21.9965 (17)
O13—Zn1—O1101.14 (6)O8—Zn2—O6152.06 (5)
O1—Zn1—O3151.36 (5)O11—Zn2—O13151.16 (5)
N2—Zn2—N3162.44 (7)O8—Zn2—O1386.07 (5)
O11—Zn2—O690.99 (6)
O13—Zn2—O6—C1386.01 (14)O13—Zn2—O8—C1483.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O6i0.882.1712.894 (2)139.09
N4—H4B···O14ii0.881.9542.810 (2)163.93
N5—H5A···O1Wii0.882.2863.074 (2)149.02
N5—H5B···O12iii0.882.1782.949 (2)145.99
N6—H6A···O30.882.0752.901 (2)155.97
N6—H6B···O12iii0.882.0872.882 (2)149.87
O4—H4C···O3W0.841.7552.586 (2)170.15
O5—H5C···O9iv0.841.7822.596 (2)162.80
O10—H10A···O2v0.841.7832.615 (2)170.55
O15—H15···O1vi0.841.8682.637 (2)151.53
O1W—H1···O2Wvii0.851.7942.642 (2)175.18
O1W—H2···O7i0.851.7592.609 (2)177.51
O2W—H3···O80.852.0692.912 (2)171.16
O2W—H4···O3W0.852.0212.827 (2)157.98
O3W—H5···O11i0.851.7802.622 (2)170.26
O3W—H6···O10iv0.852.5933.344 (2)148.01
C4—H4D···O9iv0.952.3002.993 (2)129.00
C9—H9A···O2v0.952.3703.046 (3)128.00
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x, y+1, z+1; (iv) x, y, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z.
 

References

First citationAghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008). Acta Cryst. E64, m144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMoghimi, A., Aghabozorg, H., Sheshmani, S. & Soleimannejad, J. (2005). Anal. Sci. 21, x71–x72.  CSD CrossRef CAS Google Scholar
First citationMoghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005). Acta Cryst. E61, o442–o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRanjbar, M., Moghimi, A., Aghabozorg, H. & Yap, G. P. A. (2002). Anal. Sci. 18, x219–x220.  Web of Science CSD CrossRef Google Scholar
First citationSharif, M. A., Aghabozorg, H. & Moghimi, A. (2007). Acta Cryst. E63, m1599–m1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m466-m467
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds