supplementary materials


sj2494 scheme

Acta Cryst. (2008). E64, o1042-o1043    [ doi:10.1107/S1600536808013354 ]

Benzyl 3-[(E,E)-3-phenylprop-2-enylidene]dithiocarbazate

M. T. H. Tarafder, K. A. Crouse, M. T. Islam, S. Chantrapromma and H.-K. Fun

Abstract top

The title compound, C17H16N2S2, a dithiocarbazate derivative, adopts an EE configuration with respect to the C=C and C=N double bonds of the propenylidine group. The 3-phenylprop-2-enylidene and dithiocarbazate fragments lie essentially in the same plane, with a maximum deviation from that plane of 0.074 (2) Å, while the dihedral angle between the 3-phenylprop-2-enylidene and the benzyl group is 77.78 (7)°. In the crystal structure, molecules are linked by an N-H...S hydrogen bond and a weak C-H...S interaction involving the terminal thione S atom, forming dimers that are arranged into sheets parallel to the bc plane. The crystal structure is also stabilized by C-H...[pi] interactions.

Comment top

There has been immense interest in nitrogen-sulfur donor ligands since our report on S-benzyldithiocarbazate (SBDTC) (Ali & Tarafder, 1977). There have also been a number of reports of Schiff bases derived from SBDTC (Ali et al., 2001, 2002, 2008; Chan et al., 2008; Chew et al., 2004; Tarafder et al., 1978, 1981, 2001; Raj et al., 2000). The intriguing coordination chemistry and increasingly important biomedical properties of ligands derived from SBDTC have also received much attention (Ali et al., 2001, 2002; Crouse et al., 2004; Tarafder et al., 2001, 2008). The synthesis and structure of SBDTC have been reported previously (Ali & Tarafder (1977); Shanmuga Sundara Raj et al., 2000). In continuation of our research, the title compound (I), a ligand with both N and S donor atoms, was synthesized and its crystal structure is reported here. (I) is likely to have biomedical properties similar to other nitrogen-sulfur donor ligands studied by our group.

In the title compound (Fig. 1), the 3-phenylprop-2-enylidene amide (N2/C9–C17) and benzyl groups (C1–C7) adopt trans and cis positions with respect to the terminal thione S2 atom about the C8-N1 and C8-S1 bonds, respectively. The 3-phenylprop-2-enylidene (C9–C17) and the dithiocarbazate (N1/N2/S1/S2/C8) fragments is essentially planar with maximum deviation 0.074 (2) Å for C11, while the dihedral angle between the 3-phenylprop-2-enylidene and the benzyl group is 77.78 (7)°. The bond lengths and angles are in normal ranges (Allen et al., 1987). However the CS distance of 1.7466 (17) Å is longer than the typical value of dithiocarbazate derivatives (Crouse et al., 2004; Fun et al., 2008; Shanmuga Sundara Raj et al., 2000) but being intermediate between the values of 1.82 Å for a C—S single bond and 1.56 Å for a CS double bond (Suton, 1965). The C9–N2 distance of 1.285 (2) Å indicates a double bond charactor. The bond angles S1–C8–S2 [124.67 (10)°] and N1–C8–S1 [113.76 (13)°] also agree with those observed in trans-cis S-benzyl dithiocarbazate (Shanmuga Sundara Raj et al., 2004).

In the crystal packing (Fig. 2), the molecules are linked by an N1—H1···S2i hydrogen bond (symmetry code: i = -x, 1-y, 1-z) (Table 1) and a weak C9—H9A···S2i interaction involving the terminal thione-S atom forming dimers that are arranged into sheets parallel to the bc plane. The crystal is also stabilized by C—H···π interactions (Table 1) involving the C1–C6 phenyl ring (centroid Cg1).

Related literature top

For information on values of bond lengths and angles, see Allen et al. (1987); Suton (1965). For related structures of dithiocarbazate derivatives, see, for example: Crouse et al. (2004); Fun et al. (2008); Shanmuga Sundara Raj et al. (2000). For applications and bioactivities of dithiocarbazate derivatives, see, for example: Ali & Tarafder (1977); Ali et al. (2001, 2002, 2008); Chan et al. (2008); Chew et al. (2004); Crouse et al. (2004); Tarafder et al. (1978, 1981, 2001, 2008). Cg1is the centroid of the C1–C6 phenyl ring.

Experimental top

The title compound was synthesized by adding cinnamaldehyde (1.34 g, 10 mmol) to a solution of S-benzyldithiocarbazate (SBDTC) (1.98 g, 10 mmol) in absolute ethanol (60 ml) and the mixture was refluxed for 40 min. The yellow precipitate, which formed was separated and dried in vacuo over anhydrous CaCl2 (Yield: 2.1 g, 63%). Yellow needle shaped single crystals of (I) were obtained after recrystallization from absolute ethanol over 15 days; M.p 454 K.

Refinement top

The H1N1 hydrogen atom was located from a difference Fourier map and refined freely with isotropic displacement parameters. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, for CH and aromatic, 0.97 Å, for CH2 and Uiso = 1.2Ueq(C). The highest residual electron density peak is located at 0.96 Å from S1 and the deepest hole is located at 0.72 Å from S1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
Benzyl 3-[(E,E)-3-phenylprop-2-enylidene]dithiocarbazate top
Crystal data top
C17H16N2S2Z = 2
Mr = 312.44F000 = 328
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Melting point: 454 K
a = 5.4350 (3) ÅMo Kα radiation
λ = 0.71073 Å
b = 11.6333 (7) ÅCell parameters from 3570 reflections
c = 13.6289 (8) Åθ = 1.9–27.5º
α = 66.869 (4)ºµ = 0.33 mm1
β = 82.723 (4)ºT = 100.0 (1) K
γ = 87.520 (4)ºNeedle, yellow
V = 786.04 (8) Å30.58 × 0.19 × 0.05 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3570 independent reflections
Radiation source: fine-focus sealed tube2870 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.044
Detector resolution: 8.33 pixels mm-1θmax = 27.5º
T = 100.0(1) Kθmin = 1.9º
ω scansh = 7→7
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 14→15
Tmin = 0.829, Tmax = 0.982l = 17→17
16100 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.093  w = 1/[σ2(Fo2) + (0.0368P)2 + 0.3179P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3570 reflectionsΔρmax = 0.29 e Å3
194 parametersΔρmin = 0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
C17H16N2S2γ = 87.520 (4)º
Mr = 312.44V = 786.04 (8) Å3
Triclinic, P1Z = 2
a = 5.4350 (3) ÅMo Kα
b = 11.6333 (7) ŵ = 0.33 mm1
c = 13.6289 (8) ÅT = 100.0 (1) K
α = 66.869 (4)º0.58 × 0.19 × 0.05 mm
β = 82.723 (4)º
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3570 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2870 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.982Rint = 0.044
16100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035194 parameters
wR(F2) = 0.093H atoms treated by a mixture of
independent and constrained refinement
S = 1.07Δρmax = 0.29 e Å3
3570 reflectionsΔρmin = 0.27 e Å3
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13630 (8)0.74106 (4)0.65560 (3)0.02137 (13)
S20.23454 (8)0.66804 (4)0.47403 (4)0.02329 (13)
N10.1010 (3)0.56987 (15)0.60587 (12)0.0209 (3)
N20.2180 (3)0.55500 (14)0.69440 (11)0.0212 (3)
C10.2508 (3)1.02812 (17)0.63242 (14)0.0241 (4)
H1A0.11331.04040.58120.029*
C20.2838 (3)1.10363 (18)0.68983 (15)0.0270 (4)
H2A0.16901.16640.67710.032*
C30.4872 (3)1.08611 (18)0.76620 (15)0.0265 (4)
H3A0.50871.13640.80540.032*
C40.6584 (3)0.99380 (18)0.78414 (15)0.0261 (4)
H4A0.79640.98240.83500.031*
C50.6253 (3)0.91803 (17)0.72668 (15)0.0230 (4)
H5A0.74130.85580.73930.028*
C60.4207 (3)0.93393 (16)0.65043 (14)0.0203 (4)
C70.3781 (3)0.84724 (17)0.59218 (14)0.0222 (4)
H7A0.32500.89380.51640.027*
H7B0.52870.80140.59930.027*
C80.0802 (3)0.65301 (16)0.57678 (14)0.0199 (4)
C90.3953 (3)0.47537 (16)0.71089 (14)0.0205 (4)
H9A0.43710.43690.66280.025*
C100.5303 (3)0.44442 (16)0.80163 (14)0.0207 (4)
H10A0.48960.48290.84970.025*
C110.7138 (3)0.36108 (16)0.81818 (14)0.0209 (4)
H11A0.75060.32770.76620.025*
C120.8636 (3)0.31572 (16)0.90742 (14)0.0202 (4)
C130.8492 (3)0.36609 (17)0.98578 (15)0.0254 (4)
H13A0.73750.42980.98300.030*
C140.9991 (4)0.32206 (18)1.06702 (15)0.0285 (4)
H14A0.98890.35701.11820.034*
C151.1645 (4)0.22635 (19)1.07320 (15)0.0298 (4)
H15A1.26540.19721.12820.036*
C161.1791 (3)0.17447 (19)0.99739 (15)0.0306 (5)
H16A1.28900.10961.00160.037*
C171.0301 (3)0.21890 (18)0.91488 (15)0.0257 (4)
H17A1.04150.18360.86390.031*
H1N10.129 (4)0.519 (2)0.5733 (18)0.038 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0237 (2)0.0250 (2)0.0198 (2)0.00424 (18)0.00880 (17)0.01190 (19)
S20.0242 (2)0.0305 (3)0.0194 (2)0.00284 (19)0.00832 (17)0.0129 (2)
N10.0221 (8)0.0265 (8)0.0190 (8)0.0024 (6)0.0071 (6)0.0128 (7)
N20.0218 (8)0.0265 (8)0.0165 (7)0.0001 (6)0.0052 (6)0.0090 (6)
C10.0193 (9)0.0296 (10)0.0230 (9)0.0001 (8)0.0002 (7)0.0106 (8)
C20.0238 (10)0.0256 (10)0.0316 (11)0.0046 (8)0.0010 (8)0.0114 (9)
C30.0255 (10)0.0279 (10)0.0311 (10)0.0026 (8)0.0030 (8)0.0172 (9)
C40.0193 (9)0.0321 (11)0.0279 (10)0.0005 (8)0.0007 (7)0.0136 (9)
C50.0182 (9)0.0250 (10)0.0260 (10)0.0033 (7)0.0041 (7)0.0094 (8)
C60.0189 (9)0.0223 (9)0.0195 (9)0.0031 (7)0.0076 (7)0.0067 (7)
C70.0212 (9)0.0258 (10)0.0211 (9)0.0027 (7)0.0081 (7)0.0095 (8)
C80.0197 (9)0.0225 (9)0.0174 (9)0.0025 (7)0.0018 (7)0.0076 (7)
C90.0199 (9)0.0229 (9)0.0212 (9)0.0018 (7)0.0027 (7)0.0109 (8)
C100.0230 (9)0.0233 (9)0.0185 (9)0.0023 (7)0.0039 (7)0.0102 (7)
C110.0226 (9)0.0217 (9)0.0207 (9)0.0029 (7)0.0034 (7)0.0103 (7)
C120.0179 (9)0.0206 (9)0.0209 (9)0.0033 (7)0.0032 (7)0.0063 (7)
C130.0279 (10)0.0239 (10)0.0245 (10)0.0001 (8)0.0067 (8)0.0085 (8)
C140.0361 (11)0.0285 (10)0.0214 (10)0.0048 (8)0.0084 (8)0.0083 (8)
C150.0236 (10)0.0373 (11)0.0217 (10)0.0033 (8)0.0074 (8)0.0025 (9)
C160.0227 (10)0.0351 (11)0.0276 (10)0.0061 (8)0.0033 (8)0.0058 (9)
C170.0243 (10)0.0293 (10)0.0229 (10)0.0024 (8)0.0017 (7)0.0100 (8)
Geometric parameters (Å, °) top
S1—C81.7466 (17)C7—H7A0.9700
S1—C71.8187 (17)C7—H7B0.9700
S2—C81.6696 (18)C9—C101.433 (2)
N1—C81.334 (2)C9—H9A0.9300
N1—N21.382 (2)C10—C111.337 (2)
N1—H1N10.87 (2)C10—H10A0.9300
N2—C91.285 (2)C11—C121.460 (2)
C1—C21.381 (3)C11—H11A0.9300
C1—C61.390 (3)C12—C171.394 (2)
C1—H1A0.9300C12—C131.399 (3)
C2—C31.381 (3)C13—C141.378 (3)
C2—H2A0.9300C13—H13A0.9300
C3—C41.379 (3)C14—C151.384 (3)
C3—H3A0.9300C14—H14A0.9300
C4—C51.384 (3)C15—C161.380 (3)
C4—H4A0.9300C15—H15A0.9300
C5—C61.387 (2)C16—C171.387 (3)
C5—H5A0.9300C16—H16A0.9300
C6—C71.504 (2)C17—H17A0.9300
C8—S1—C7102.56 (8)N1—C8—S1113.76 (13)
C8—N1—N2120.49 (15)S2—C8—S1124.67 (10)
C8—N1—H1N1118.0 (15)N2—C9—C10121.56 (16)
N2—N1—H1N1120.9 (15)N2—C9—H9A119.2
C9—N2—N1114.00 (14)C10—C9—H9A119.2
C2—C1—C6120.70 (17)C11—C10—C9121.02 (16)
C2—C1—H1A119.6C11—C10—H10A119.5
C6—C1—H1A119.6C9—C10—H10A119.5
C1—C2—C3120.11 (18)C10—C11—C12128.25 (16)
C1—C2—H2A119.9C10—C11—H11A115.9
C3—C2—H2A119.9C12—C11—H11A115.9
C4—C3—C2119.76 (17)C17—C12—C13118.27 (16)
C4—C3—H3A120.1C17—C12—C11118.96 (16)
C2—C3—H3A120.1C13—C12—C11122.77 (16)
C3—C4—C5120.16 (17)C14—C13—C12120.56 (17)
C3—C4—H4A119.9C14—C13—H13A119.7
C5—C4—H4A119.9C12—C13—H13A119.7
C4—C5—C6120.65 (17)C13—C14—C15120.60 (18)
C4—C5—H5A119.7C13—C14—H14A119.7
C6—C5—H5A119.7C15—C14—H14A119.7
C5—C6—C1118.61 (16)C16—C15—C14119.64 (17)
C5—C6—C7120.57 (17)C16—C15—H15A120.2
C1—C6—C7120.76 (16)C14—C15—H15A120.2
C6—C7—S1105.49 (12)C15—C16—C17120.11 (18)
C6—C7—H7A110.6C15—C16—H16A119.9
S1—C7—H7A110.6C17—C16—H16A119.9
C6—C7—H7B110.6C16—C17—C12120.81 (18)
S1—C7—H7B110.6C16—C17—H17A119.6
H7A—C7—H7B108.8C12—C17—H17A119.6
N1—C8—S2121.57 (13)
C8—N1—N2—C9177.45 (16)C7—S1—C8—S22.52 (14)
C6—C1—C2—C30.1 (3)N1—N2—C9—C10177.41 (16)
C1—C2—C3—C40.6 (3)N2—C9—C10—C11179.74 (17)
C2—C3—C4—C50.7 (3)C9—C10—C11—C12177.74 (17)
C3—C4—C5—C60.1 (3)C10—C11—C12—C17173.65 (18)
C4—C5—C6—C10.5 (3)C10—C11—C12—C136.9 (3)
C4—C5—C6—C7176.79 (16)C17—C12—C13—C141.0 (3)
C2—C1—C6—C50.5 (3)C11—C12—C13—C14178.40 (17)
C2—C1—C6—C7176.74 (17)C12—C13—C14—C150.7 (3)
C5—C6—C7—S1102.64 (16)C13—C14—C15—C160.1 (3)
C1—C6—C7—S174.54 (18)C14—C15—C16—C170.6 (3)
C8—S1—C7—C6175.27 (12)C15—C16—C17—C120.2 (3)
N2—N1—C8—S2176.88 (13)C13—C12—C17—C160.6 (3)
N2—N1—C8—S13.0 (2)C11—C12—C17—C16178.89 (17)
C7—S1—C8—N1177.58 (14)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S2i0.87 (2)2.53 (2)3.3714 (19)165 (2)
C9—H9A···S2i0.932.933.7264 (18)144
C15—H15A···Cg1ii0.932.833.649 (2)148
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···S2i0.87 (2)2.53 (2)3.3714 (19)165 (2)
C9—H9A···S2i0.932.933.7264 (18)144
C15—H15A···Cg1ii0.932.833.649 (2)148
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.
Acknowledgements top

KAC thanks Universiti Putra Malaysia for financial help. MTHT thanks the University of Rajshahi for the provision of laboratory facilities. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

references
References top

Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron. 27, 71–79.

Ali, M. A., Mieza, A. H., Butcher, R. J, Tarafder, M. T. H. & Ali, Manaf A. (2001). Inorg. Chim. Acta, 320, 1–6.

Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, Manaf, A. (2002). J. Inorg. Biochem. 92, 141–148.

Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1791.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.

Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron. 23, 1385–1392.

Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron. 23, 161–168.

Fun, H.-K., Chantrapromma, S., Tarafder, M. T. H., Islam, M. T., Zakaria, C. M. & Islam, M. A. A. A. A. (2008). Acta Cryst. E64, m518–m519.

Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Suton, L. E. (1965). Table of Interatomic Distance and Conformation in Molecules and Ions, Special Publication No. 18. London: The Chemical Society.

Tarafder, M. T. H. & Ali, M. A. (1978). Can. J. Chem. 56, 2000–2002.

Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.

Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron. 20, 2363–2370.

Tarafder, M. T. H., Miah, M. A. J., Bose, R. N. & Ali, M. A. (1981). J. Inorg. Nucl. Chem. 39, 3151–3157.