organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1,5-Di­benzyl-3-tert-butyl­imidazol­idin-4-one

aDepartment of Chemistry, Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: zjf485@xmu.edu.cn

(Received 11 June 2008; accepted 18 June 2008; online 25 June 2008)

The title compound, C21H26N2O, was obtained as an unexpected by-product when attempting to prepare (S)-2-benzyl-N-tert-butyl-1,2,3,4-tetra­hydro­isoquinoline-3-carboxamide from (S)-2-benzyl­amino-N-tert-butyl-3-phenyl­propanamide and dimethoxy­methane. The mol­ecules are linked by weak C—H⋯O hydrogen bonds, generating linear chains parallel to the b axis. C—H⋯π inter­actions provide further stability for the crystal structure. The planes of the two phenyl rings make a dihedral angle of 84.1 (1)°. The absolute configuration was known from the starting material.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Pavel et al. (1993[Pavel, H., Heinrich, L. S. & Edward, W. S. (1993). J. Am. Chem. Soc. 116, 3500-3506.]); Jin et al. 2005[Jin, L. R., Huang, S. J. & Zhang, F. J. (2005). China Patent 1 562 974.].

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O

  • Mr = 322.44

  • Orthorhombic, P 21 21 21

  • a = 9.4112 (6) Å

  • b = 11.4713 (7) Å

  • c = 17.0556 (11) Å

  • V = 1841.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 173 (2) K

  • 0.62 × 0.45 × 0.23 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.984

  • 8034 measured reflections

  • 2047 independent reflections

  • 1824 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.00

  • 2047 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O4i 0.99 2.48 3.439 (4) 164
C17—H17⋯Cgii 0.95 2.68 3.621 (4) 169
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]. Cg is the centroid of the C7–C12 phenyl ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In our studies on the synthesis of (S)—N-tert-butyl-tetrahydroisoquinoline- 3-carboxamide, a key intermediate for the synthesis of Nelfinavir and Saquinavir, two of the most clinically efficacious anti-AIDS drugs, we attempted to prepare (S)-2-benzyl-N-tert-butyl-1,2,3,4-tetrahydroisoquinoline- 3-carboxamide from (S)-2-(benzylamino)-N-tert-butyl-3 -phenylpropanamide and dimethoxymethane. During this experiment, the title compound, (I), was isolated unexpectedly.

The two planes of phenyl rings make a dihedral angle of 84.1 (1)° (Fig. 1). The absolute configuration (S) of the stereocentre C5 remains unchanged during the synthetic procedure. An X-ray crystal structure determination of the molecular structure of compound (I) was carried out to determine its conformation. The bond lengths are within normal ranges (Allen et al., 1987).

The packing is shown in Fig. 2. The occurrence of weak C—H···O hydrogen bond interactions leads to the formation of linear chains parallel to the b axis. The packing is further stabilized by C—H···π interactions (Fig. 2) with typical geometry (Pavel et al., 1993).

Related literature top

For related literature, see: Allen et al. (1987); Pavel et al. (1993); Jin et al. 2005.Cg is the centroid of the C7–C12 phenyl ring.

Experimental top

The title compound was prepared by a method based on one described by Jin et al. (2005). To a solution of (S)-2-(benzylamino)-N-tert-butyl- 3-phenylpropanamide (11.8 g, 38.1 mmol) in dichloromethane (400 ml) was added dropwise boron trifluoride etherate (13.5 ml, 79.6 mmol) and dimethoxymethane (6.02 g, 79.1 mmol). The mixture was heated to reflux for 48 h. The reaction was quenched by addition of water (90 ml). The solution was adjusted to pH 8 with a 27% aqueous ammonia solution. The organic layer was separated, and the aqueous phase was extracted with dichloromethane. The combined organic phases were washed with brine and dried over Na2SO4. After filtration and evaporation of the solvents under reduced pressure, the residue was flash chromatographic purification on silica gel (ethyl acetate / petroleum ether = 1 / 4) yielded the product as a white solid. Single crystals were obtained by slow evaporation of a mixture of petroleum ether / dichloromethane solution.

Refinement top

In the absence of anomalous scatterers, Friedel pairs were merged. The absolute configuration was known from the starting material. The hydrogen atoms were positioned geometrically (C—H = 0.93, 0.98, 0.97 or 0.96Å for phenyl, tertiary, methylene or methyl H atoms respectively) and were included in the refinement in the riding model approximation. The displacement parameters of methyl H atoms were set to 1.5Ueq(C), while those of other H atoms were set to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labeling scheme, showing 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the molecules, viewed down the a axis. C—H···π and hydrogen bonds interactions are shown as dashed lines. Cg is the centroid of the C7 / C12 phenyl ring.
(S)-1,5-Dibenzyl-3-tert-butylimidazolidin-4-one top
Crystal data top
C21H26N2OF(000) = 696
Mr = 322.44Dx = 1.163 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5367 reflections
a = 9.4112 (6) Åθ = 2.8–32.4°
b = 11.4713 (7) ŵ = 0.07 mm1
c = 17.0556 (11) ÅT = 173 K
V = 1841.3 (2) Å3Block, colorless
Z = 40.62 × 0.45 × 0.23 mm
Data collection top
Bruker APEX CCD
diffractometer
2047 independent reflections
Radiation source: fine-focus sealed tube1824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1903 pixels mm-1θmax = 26.0°, θmin = 2.8°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1114
Tmin = 0.957, Tmax = 0.984l = 2021
8034 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0673P)2 + 0.3582P]
where P = (Fo2 + 2Fc2)/3
2047 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H26N2OV = 1841.3 (2) Å3
Mr = 322.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.4112 (6) ŵ = 0.07 mm1
b = 11.4713 (7) ÅT = 173 K
c = 17.0556 (11) Å0.62 × 0.45 × 0.23 mm
Data collection top
Bruker APEX CCD
diffractometer
2047 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1824 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.984Rint = 0.023
8034 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
2047 reflectionsΔρmin = 0.18 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3052 (2)0.09221 (18)0.72137 (12)0.0250 (5)
C20.3096 (3)0.0518 (2)0.80219 (15)0.0286 (6)
H2A0.34270.03000.80540.034*
H2B0.21520.05810.82740.034*
N30.4114 (2)0.1312 (2)0.83816 (13)0.0310 (5)
O40.6042 (2)0.2352 (2)0.79357 (14)0.0554 (7)
C40.4998 (3)0.1736 (2)0.78380 (18)0.0343 (6)
C50.4499 (3)0.1293 (2)0.70449 (16)0.0296 (6)
H50.50770.05960.68960.036*
C60.2517 (3)0.0043 (2)0.66686 (16)0.0302 (6)
H6A0.30940.06740.67190.036*
H6B0.26200.03340.61250.036*
C70.0978 (3)0.0245 (2)0.68211 (14)0.0273 (6)
C80.0523 (3)0.1392 (2)0.68251 (17)0.0337 (6)
H80.11880.20040.67450.040*
C90.0903 (3)0.1651 (3)0.69453 (19)0.0424 (7)
H90.12080.24410.69400.051*
C100.1867 (3)0.0786 (3)0.7070 (2)0.0443 (8)
H100.28400.09710.71530.053*
C110.1422 (3)0.0367 (3)0.7075 (2)0.0458 (8)
H110.20870.09750.71660.055*
C120.0008 (3)0.0628 (2)0.69456 (18)0.0362 (7)
H120.02910.14190.69420.043*
C130.4632 (4)0.2208 (3)0.64056 (17)0.0399 (7)
H13A0.38220.27530.64570.048*
H13B0.55100.26600.65040.048*
C140.4673 (3)0.1777 (2)0.55702 (17)0.0326 (6)
C150.3770 (4)0.2246 (3)0.5011 (2)0.0469 (8)
H150.30860.28130.51610.056*
C160.3856 (4)0.1894 (3)0.4231 (2)0.0553 (10)
H160.32380.22290.38530.066*
C170.4815 (4)0.1078 (3)0.40063 (19)0.0508 (9)
H170.48820.08520.34720.061*
C180.5691 (3)0.0578 (3)0.45596 (19)0.0476 (8)
H180.63430.00130.44090.057*
C190.5622 (3)0.0934 (3)0.53324 (18)0.0399 (7)
H190.62420.05910.57070.048*
C200.4334 (3)0.1408 (3)0.92442 (17)0.0382 (7)
C210.5676 (6)0.0773 (5)0.9454 (3)0.0904 (15)
H21A0.55910.00480.93010.109*
H21B0.58350.08251.00200.109*
H21C0.64780.11270.91760.109*
C220.3043 (5)0.0931 (5)0.9661 (2)0.0855 (14)
H22A0.29310.01020.95350.103*
H22B0.21970.13590.94900.103*
H22C0.31630.10221.02290.103*
C230.4439 (5)0.2670 (3)0.9470 (2)0.0604 (10)
H23A0.52710.30190.92160.091*
H23B0.45360.27351.00400.091*
H23C0.35790.30810.93000.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0249 (10)0.0266 (10)0.0235 (11)0.0031 (9)0.0000 (9)0.0017 (9)
C20.0307 (13)0.0274 (12)0.0277 (13)0.0071 (11)0.0031 (11)0.0001 (11)
N30.0279 (11)0.0358 (12)0.0293 (12)0.0077 (10)0.0043 (9)0.0024 (10)
O40.0406 (12)0.0721 (16)0.0535 (14)0.0296 (12)0.0094 (11)0.0233 (12)
C40.0277 (12)0.0354 (14)0.0397 (15)0.0057 (12)0.0037 (13)0.0089 (12)
C50.0281 (13)0.0283 (12)0.0324 (14)0.0034 (11)0.0060 (12)0.0057 (11)
C60.0331 (13)0.0300 (13)0.0275 (13)0.0049 (12)0.0008 (11)0.0073 (11)
C70.0325 (14)0.0295 (12)0.0198 (11)0.0056 (11)0.0042 (11)0.0003 (10)
C80.0406 (15)0.0293 (13)0.0314 (14)0.0049 (12)0.0028 (12)0.0004 (12)
C90.0476 (17)0.0374 (15)0.0422 (17)0.0168 (14)0.0120 (14)0.0079 (13)
C100.0304 (14)0.0547 (19)0.0479 (18)0.0117 (14)0.0080 (14)0.0090 (15)
C110.0316 (15)0.0472 (18)0.059 (2)0.0009 (13)0.0099 (15)0.0036 (16)
C120.0336 (14)0.0299 (13)0.0450 (16)0.0025 (12)0.0067 (13)0.0008 (13)
C130.0526 (18)0.0293 (13)0.0378 (17)0.0078 (14)0.0140 (14)0.0011 (12)
C140.0351 (14)0.0285 (13)0.0342 (15)0.0089 (12)0.0063 (12)0.0038 (11)
C150.0500 (19)0.0334 (16)0.057 (2)0.0005 (15)0.0022 (16)0.0135 (16)
C160.059 (2)0.060 (2)0.047 (2)0.0115 (19)0.0159 (18)0.0226 (17)
C170.052 (2)0.067 (2)0.0334 (16)0.0305 (19)0.0027 (15)0.0044 (15)
C180.0399 (17)0.061 (2)0.0414 (17)0.0065 (16)0.0117 (15)0.0079 (16)
C190.0341 (15)0.0501 (17)0.0355 (16)0.0011 (14)0.0020 (13)0.0011 (14)
C200.0396 (15)0.0439 (17)0.0311 (15)0.0076 (14)0.0108 (12)0.0003 (13)
C210.103 (3)0.095 (3)0.073 (3)0.036 (3)0.038 (2)0.012 (2)
C220.098 (3)0.120 (3)0.0391 (18)0.052 (3)0.003 (2)0.001 (2)
C230.084 (3)0.058 (2)0.0385 (19)0.011 (2)0.003 (2)0.0113 (16)
Geometric parameters (Å, º) top
N1—C21.455 (3)C13—C141.508 (4)
N1—C51.455 (3)C13—H13A0.9900
N1—C61.461 (3)C13—H13B0.9900
C2—N31.457 (3)C14—C191.378 (4)
C2—H2A0.9900C14—C151.387 (4)
C2—H2B0.9900C15—C161.392 (5)
N3—C41.336 (4)C15—H150.9500
N3—C201.490 (4)C16—C171.355 (5)
O4—C41.222 (3)C16—H160.9500
C4—C51.519 (4)C17—C181.378 (5)
C5—C131.519 (4)C17—H170.9500
C5—H51.0000C18—C191.381 (5)
C6—C71.508 (4)C18—H180.9500
C6—H6A0.9900C19—H190.9500
C6—H6B0.9900C20—C211.501 (5)
C7—C121.381 (4)C20—C231.502 (5)
C7—C81.384 (4)C20—C221.510 (5)
C8—C91.390 (4)C21—H21A0.9800
C8—H80.9500C21—H21B0.9800
C9—C101.362 (4)C21—H21C0.9800
C9—H90.9500C22—H22A0.9800
C10—C111.388 (5)C22—H22B0.9800
C10—H100.9500C22—H22C0.9800
C11—C121.382 (4)C23—H23A0.9800
C11—H110.9500C23—H23B0.9800
C12—H120.9500C23—H23C0.9800
C2—N1—C5104.7 (2)C5—C13—H13A108.0
C2—N1—C6113.1 (2)C14—C13—H13B108.0
C5—N1—C6113.5 (2)C5—C13—H13B108.0
N1—C2—N3102.62 (19)H13A—C13—H13B107.3
N1—C2—H2A111.2C19—C14—C15117.9 (3)
N3—C2—H2A111.2C19—C14—C13121.6 (3)
N1—C2—H2B111.2C15—C14—C13120.5 (3)
N3—C2—H2B111.2C14—C15—C16120.6 (3)
H2A—C2—H2B109.2C14—C15—H15119.7
C4—N3—C2110.1 (2)C16—C15—H15119.7
C4—N3—C20124.9 (2)C17—C16—C15120.7 (3)
C2—N3—C20123.6 (2)C17—C16—H16119.7
O4—C4—N3128.0 (3)C15—C16—H16119.7
O4—C4—C5124.3 (3)C16—C17—C18119.4 (3)
N3—C4—C5107.7 (2)C16—C17—H17120.3
N1—C5—C13114.9 (2)C18—C17—H17120.3
N1—C5—C4102.2 (2)C17—C18—C19120.2 (3)
C13—C5—C4112.5 (2)C17—C18—H18119.9
N1—C5—H5109.0C19—C18—H18119.9
C13—C5—H5109.0C14—C19—C18121.2 (3)
C4—C5—H5109.0C14—C19—H19119.4
N1—C6—C7111.9 (2)C18—C19—H19119.4
N1—C6—H6A109.2N3—C20—C21108.4 (3)
C7—C6—H6A109.2N3—C20—C23109.5 (3)
N1—C6—H6B109.2C21—C20—C23110.6 (3)
C7—C6—H6B109.2N3—C20—C22109.1 (3)
H6A—C6—H6B107.9C21—C20—C22112.9 (4)
C12—C7—C8118.7 (3)C23—C20—C22106.4 (3)
C12—C7—C6120.9 (2)C20—C21—H21A109.5
C8—C7—C6120.4 (3)C20—C21—H21B109.5
C7—C8—C9120.2 (3)H21A—C21—H21B109.5
C7—C8—H8119.9C20—C21—H21C109.4
C9—C8—H8119.9H21A—C21—H21C109.5
C10—C9—C8120.7 (3)H21B—C21—H21C109.5
C10—C9—H9119.6C20—C22—H22A109.5
C8—C9—H9119.6C20—C22—H22B109.4
C9—C10—C11119.6 (3)H22A—C22—H22B109.5
C9—C10—H10120.2C20—C22—H22C109.5
C11—C10—H10120.2H22A—C22—H22C109.5
C12—C11—C10119.8 (3)H22B—C22—H22C109.5
C12—C11—H11120.1C20—C23—H23A109.5
C10—C11—H11120.1C20—C23—H23B109.5
C7—C12—C11121.0 (3)H23A—C23—H23B109.5
C7—C12—H12119.5C20—C23—H23C109.5
C11—C12—H12119.5H23A—C23—H23C109.5
C14—C13—C5117.0 (2)H23B—C23—H23C109.5
C14—C13—H13A108.0
C5—N1—C2—N335.3 (3)C8—C9—C10—C110.2 (5)
C6—N1—C2—N3159.4 (2)C9—C10—C11—C120.6 (5)
N1—C2—N3—C425.0 (3)C8—C7—C12—C110.2 (4)
N1—C2—N3—C20168.0 (2)C6—C7—C12—C11179.1 (3)
C2—N3—C4—O4174.1 (3)C10—C11—C12—C70.8 (5)
C20—N3—C4—O47.3 (5)N1—C5—C13—C1484.6 (3)
C2—N3—C4—C54.8 (3)C4—C5—C13—C14159.1 (3)
C20—N3—C4—C5171.5 (3)C5—C13—C14—C1952.8 (4)
C2—N1—C5—C13154.4 (2)C5—C13—C14—C15128.8 (3)
C6—N1—C5—C1381.8 (3)C19—C14—C15—C161.8 (5)
C2—N1—C5—C432.3 (3)C13—C14—C15—C16176.6 (3)
C6—N1—C5—C4156.1 (2)C14—C15—C16—C170.7 (5)
O4—C4—C5—N1163.8 (3)C15—C16—C17—C181.2 (5)
N3—C4—C5—N117.3 (3)C16—C17—C18—C192.0 (5)
O4—C4—C5—C1340.1 (4)C15—C14—C19—C181.0 (4)
N3—C4—C5—C13141.0 (2)C13—C14—C19—C18177.4 (3)
C2—N1—C6—C765.6 (3)C17—C18—C19—C140.9 (5)
C5—N1—C6—C7175.3 (2)C4—N3—C20—C2162.2 (4)
N1—C6—C7—C1245.6 (3)C2—N3—C20—C21102.8 (4)
N1—C6—C7—C8135.5 (3)C4—N3—C20—C2358.5 (4)
C12—C7—C8—C90.6 (4)C2—N3—C20—C23136.5 (3)
C6—C7—C8—C9178.3 (3)C4—N3—C20—C22174.5 (3)
C7—C8—C9—C100.8 (5)C2—N3—C20—C2220.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O4i0.992.483.439 (4)164
C17—H17···Cgii0.952.683.621 (4)169
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC21H26N2O
Mr322.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)9.4112 (6), 11.4713 (7), 17.0556 (11)
V3)1841.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.62 × 0.45 × 0.23
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.957, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8034, 2047, 1824
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.00
No. of reflections2047
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O4i0.992.483.439 (4)163.9
C17—H17···Cgii0.952.683.621 (4)169.4
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y, z1/2.
 

Acknowledgements

The authors acknowledge the Natural Science Foundation of Fujian Province of China (No. U0650024), Xiamen Science Foundation (No.3502Z20055019) and NFFTBS (No. J0630429) for financial support. We also thank Mr Z.-B. Wei and Mr T.-B. Wen for technical assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJin, L. R., Huang, S. J. & Zhang, F. J. (2005). China Patent 1 562 974.  Google Scholar
First citationPavel, H., Heinrich, L. S. & Edward, W. S. (1993). J. Am. Chem. Soc. 116, 3500–3506.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds