metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-4,4′-Bi­pyridine-κ2N:N′-bis­­{[2-(3,5-di­bromo-2-oxido­benzyl­­idene­amino)-3-hy­droxy­propanoato-κ3O,N,O′]copper(II)} monohydrate

aKey Laboratory of Non-ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Guilin University of Technology, Ministry of Education, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 15 June 2008; accepted 17 June 2008; online 21 June 2008)

The title compound, [Cu2(C10H7Br2NO4)2(C10H8N2)]·H2O, is a binuclear copper(II) complex. Both Cu atoms are four-coordinate in a square-planar geometry. In addition, there is one water mol­ecule in the asymmetric unit. The crystal structure is stabilized by O—H⋯O and O—H⋯Br hydrogen bonds.

Related literature

For related literature, see: Gao et al. (2005[Gao, S., Huo, L. H. & Gu, C. S. (2005). Chin. J. Inorg. Chem. 21, 1345-1348.]); Liang et al. (2006[Liang, F. Z., Ma, J. P. & Zhu, J. H. (2006). Chin. J. Inorg. Chem. 22, 115-118.]); Zhang et al. (2003[Zhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517-520.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C10H7Br2NO4)2(C10H8N2)]·H2O

  • Mr = 1031.25

  • Monoclinic, P 21

  • a = 7.3905 (7) Å

  • b = 11.3374 (16) Å

  • c = 19.943 (2) Å

  • β = 93.686 (2)°

  • V = 1667.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.13 mm−1

  • T = 298 (2) K

  • 0.18 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.405, Tmax = 0.441 (expected range = 0.345–0.375)

  • 8428 measured reflections

  • 5732 independent reflections

  • 3029 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.187

  • S = 1.02

  • 5732 reflections

  • 442 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.73 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5732 Friedel pairs

  • Flack parameter: 0.00 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 2.10 2.90 (2) 164
O7—H7⋯O6ii 0.82 1.93 2.73 (2) 165
O9—H9A⋯Br3i 0.85 2.57 3.415 (14) 171
O9—H9B⋯Br4iii 0.85 2.76 3.599 (15) 171
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) [-x+1, y+{\script{3\over 2}}, -z+1].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Amino acids are the basic unit of proteins and enzymes, and they can form a series of amino acid Schiff-bases. Even though considerable work has been done on the complexes of amino acid Schiff-bases (Zhang et al., 2003; Liang et al., 2006; Gao et al., 2005), there is not much reported on amino acid Schiff-base complexes containing 4,4'-bipyridine as an additional ligand.

The coordination environment of Cu1 and Cu2 is almost equal, so we choose Cu1 for discussion. The distance of Cu1—N1 is 1.932 (16)Å, and the distance Cu1—N3 is 2.038 (14)Å. The bond angle of four atoms coordinated with Cu1 ion are as follows: O4—Cu1—N1 = 93.2 (6)°, N1—Cu1—O1 = 83.7 (6)°, O1—Cu1—N3 = 92.7 (6)°, N3—Cu1—O4 = 90.5 (6)°. The mean deviation from plane of the four atoms coordinated to Cu1 is 0.0507 Å, showing that these four atoms lie in a common plane. The packing didagram (Fig.2) shows that the water molecules is connected to the complex through H–O···Br hydrogen bonds. In addition, there are O–H···O hydrogen bonds stabilizing the crystal structure.

Related literature top

For related literature, see: Gao et al. (2005); Liang et al. (2006); Zhang et al. (2003).

Experimental top

An ethanol solution (5 ml) containing 3,5-dibromo-2-hydroxy-benzaldehyde (0.140 g, 0.5 mmol) was added to an aqueous solution (5 ml) containing 2-amino-3-hydroxy-propionic acid (0.056 g, 0.5 mmol) and sodium hydroxide (0.040 g, 1 mmol). After stirring for 1 h, an aqueous solution of copper nitrate (0.120 g, 0.5 mmol) was added to the resulting solution and stirred for 2 h. At last, the ethanol solution (5 ml) containing 4, 4'-bipyridine (0.05 g, 0.025 mmol) was added. The green solution was filtrated. After five days, green block shaped crystals were obtained by slow evaporation of the filtrate (yield: 36.5%, based on Cu).

Refinement top

Water H atoms were located in a difference Fourier map and were allowed to ride on the O atom, with Uiso(H) = 1.5Ueq(O). All other H atomswere positioned geometrically and refined as riding, with C–H = 0.93 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The three-dimensional network of (I) through hydrogen bonds.
µ-4,4'-Bipyridine-κ2N:N'- bis{[2-(3,5-Dibromo-2-oxidobenzylideneamino)-3-hydroxypropanoato- κ3O,N,O']copper(II)} monohydrate top
Crystal data top
[Cu2(C10H7Br2NO4)2(C10H8N2)]·H2OF(000) = 1004
Mr = 1031.25Dx = 2.054 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1685 reflections
a = 7.3905 (7) Åθ = 2.7–24.9°
b = 11.3374 (16) ŵ = 6.13 mm1
c = 19.943 (2) ÅT = 298 K
β = 93.686 (2)°Block, green
V = 1667.6 (3) Å30.18 × 0.17 × 0.16 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
5732 independent reflections
Radiation source: fine-focus sealed tube3029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.084
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 58
Tmin = 0.405, Tmax = 0.441k = 1313
8428 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0693P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5732 reflectionsΔρmax = 0.80 e Å3
442 parametersΔρmin = 0.73 e Å3
1 restraintAbsolute structure: Flack (1983), 2625 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Cu2(C10H7Br2NO4)2(C10H8N2)]·H2OV = 1667.6 (3) Å3
Mr = 1031.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.3905 (7) ŵ = 6.13 mm1
b = 11.3374 (16) ÅT = 298 K
c = 19.943 (2) Å0.18 × 0.17 × 0.16 mm
β = 93.686 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5732 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3029 reflections with I > 2σ(I)
Tmin = 0.405, Tmax = 0.441Rint = 0.084
8428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.073H-atom parameters constrained
wR(F2) = 0.187Δρmax = 0.80 e Å3
S = 1.02Δρmin = 0.73 e Å3
5732 reflectionsAbsolute structure: Flack (1983), 2625 Friedel pairs
442 parametersAbsolute structure parameter: 0.00 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.6425 (3)0.82294 (19)0.68048 (12)0.0410 (6)
Cu20.3052 (3)0.0991 (2)0.82661 (12)0.0400 (6)
Br10.8208 (3)0.8393 (2)0.91853 (11)0.0580 (6)
Br21.0514 (3)1.3118 (2)0.88646 (14)0.0752 (8)
Br30.1238 (3)0.11439 (18)0.58941 (10)0.0531 (6)
Br40.0792 (3)0.5930 (2)0.61848 (12)0.0656 (7)
N10.678 (2)0.9816 (14)0.6484 (8)0.042 (4)
N20.251 (2)0.2541 (14)0.8606 (8)0.042 (4)
N30.589 (2)0.6542 (12)0.7086 (8)0.037 (4)
N40.3702 (19)0.0648 (13)0.7989 (8)0.036 (4)
O10.5913 (18)0.7883 (11)0.5864 (7)0.047 (4)
O20.558 (2)0.8659 (13)0.4829 (7)0.067 (5)
O30.724 (2)1.1969 (14)0.5553 (8)0.081 (5)
H30.63321.23290.54140.122*
O40.7108 (17)0.8640 (11)0.7719 (6)0.049 (4)
O50.3548 (17)0.0627 (10)0.9202 (6)0.043 (4)
O60.3950 (19)0.1389 (12)1.0224 (6)0.055 (4)
O70.3448 (19)0.4755 (12)0.9412 (8)0.068 (4)
H70.42360.52640.94470.102*
O80.2331 (17)0.1390 (10)0.7358 (7)0.046 (4)
O90.820 (2)0.6748 (12)0.4525 (8)0.095 (5)
H9A0.84380.60550.43910.114*
H9B0.88770.72330.43320.114*
C10.578 (3)0.8763 (19)0.5442 (11)0.053 (5)
C20.612 (3)0.9974 (17)0.5764 (10)0.048 (5)
H20.49111.03260.57800.058*
C30.714 (3)1.0800 (16)0.5322 (10)0.057 (6)
H3A0.83621.05010.52920.068*
H3B0.65531.07940.48730.068*
C40.759 (3)1.0674 (17)0.6838 (10)0.047 (5)
H40.77621.13870.66190.056*
C50.821 (3)1.0595 (17)0.7508 (10)0.044 (5)
C60.793 (3)0.9601 (18)0.7942 (11)0.043 (5)
C70.853 (3)0.9737 (18)0.8614 (11)0.050 (6)
C80.928 (3)1.0682 (19)0.8908 (11)0.049 (6)
H80.96111.06990.93650.059*
C90.954 (3)1.1678 (18)0.8481 (11)0.048 (6)
C100.900 (3)1.1637 (19)0.7819 (11)0.049 (5)
H100.91401.23050.75570.058*
C110.351 (2)0.1498 (17)0.9624 (10)0.043 (5)
C120.282 (3)0.2650 (16)0.9346 (10)0.044 (5)
H120.16720.28410.95400.053*
C130.424 (3)0.3636 (15)0.9540 (10)0.050 (5)
H13A0.52940.35430.92800.060*
H13B0.46290.35701.00130.060*
C140.171 (2)0.3387 (17)0.8278 (10)0.040 (5)
H140.13440.40350.85210.048*
C150.132 (3)0.3404 (17)0.7536 (10)0.041 (5)
C160.155 (3)0.2372 (17)0.7129 (11)0.041 (5)
C170.100 (2)0.2486 (17)0.6457 (10)0.039 (5)
C180.029 (2)0.3534 (17)0.6184 (11)0.046 (5)
H180.00800.35680.57290.055*
C190.013 (3)0.4503 (17)0.6576 (11)0.044 (5)
C200.056 (2)0.4448 (17)0.7274 (10)0.043 (5)
H200.03490.50860.75510.051*
C210.520 (3)0.5759 (16)0.6625 (10)0.039 (5)
H210.50160.60080.61810.047*
C220.477 (2)0.4650 (16)0.6773 (10)0.038 (5)
H220.42470.41620.64390.046*
C230.509 (2)0.4221 (15)0.7418 (9)0.034 (4)
C240.579 (2)0.4999 (16)0.7890 (10)0.040 (5)
H240.60180.47580.83330.048*
C250.618 (3)0.6195 (16)0.7698 (10)0.041 (5)
H250.66420.67240.80220.049*
C260.331 (3)0.1090 (16)0.7361 (10)0.041 (5)
H260.27290.05860.70480.050*
C270.368 (2)0.2229 (16)0.7147 (10)0.040 (5)
H270.33770.24720.67090.048*
C280.454 (2)0.2985 (16)0.7613 (9)0.039 (5)
C290.498 (2)0.2568 (16)0.8271 (10)0.039 (5)
H290.55700.30580.85890.047*
C300.452 (2)0.1379 (16)0.8441 (10)0.041 (5)
H300.48010.11100.88760.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0588 (15)0.0261 (13)0.0369 (14)0.0032 (12)0.0069 (12)0.0037 (12)
Cu20.0560 (14)0.0274 (13)0.0353 (14)0.0029 (12)0.0063 (11)0.0035 (12)
Br10.0639 (13)0.0598 (15)0.0494 (14)0.0004 (11)0.0033 (10)0.0105 (12)
Br20.0904 (18)0.0616 (18)0.0719 (17)0.0270 (15)0.0074 (13)0.0250 (16)
Br30.0715 (14)0.0456 (13)0.0410 (13)0.0020 (11)0.0063 (10)0.0104 (10)
Br40.0863 (16)0.0439 (14)0.0649 (16)0.0157 (13)0.0071 (12)0.0127 (14)
N10.054 (10)0.032 (10)0.038 (10)0.005 (8)0.008 (8)0.004 (8)
N20.058 (11)0.027 (9)0.039 (11)0.003 (8)0.003 (8)0.007 (8)
N30.059 (10)0.020 (8)0.030 (10)0.000 (7)0.004 (8)0.006 (8)
N40.047 (10)0.029 (9)0.032 (10)0.006 (7)0.007 (8)0.005 (8)
O10.070 (10)0.027 (8)0.044 (9)0.004 (6)0.007 (7)0.003 (7)
O20.110 (11)0.052 (12)0.037 (9)0.016 (8)0.009 (8)0.000 (8)
O30.103 (12)0.052 (10)0.087 (13)0.017 (9)0.015 (10)0.004 (10)
O40.070 (9)0.030 (8)0.044 (8)0.005 (6)0.012 (7)0.003 (6)
O50.065 (9)0.027 (8)0.037 (8)0.004 (6)0.007 (7)0.001 (6)
O60.106 (11)0.039 (10)0.020 (8)0.005 (7)0.001 (7)0.004 (6)
O70.097 (12)0.032 (8)0.069 (11)0.011 (7)0.033 (8)0.018 (8)
O80.064 (9)0.026 (8)0.046 (8)0.009 (6)0.003 (7)0.003 (6)
O90.136 (15)0.049 (9)0.099 (13)0.016 (9)0.004 (11)0.008 (8)
C10.072 (14)0.037 (13)0.047 (13)0.004 (10)0.009 (11)0.005 (12)
C20.067 (14)0.039 (12)0.038 (12)0.005 (10)0.010 (11)0.003 (10)
C30.073 (15)0.043 (12)0.052 (14)0.009 (11)0.015 (11)0.006 (10)
C40.061 (14)0.035 (12)0.044 (13)0.005 (10)0.004 (11)0.008 (10)
C50.059 (14)0.035 (12)0.038 (13)0.003 (9)0.009 (10)0.013 (10)
C60.055 (13)0.033 (12)0.040 (13)0.002 (9)0.011 (10)0.005 (10)
C70.060 (14)0.041 (13)0.046 (14)0.006 (10)0.012 (11)0.008 (11)
C80.056 (14)0.043 (13)0.047 (14)0.008 (10)0.018 (11)0.013 (11)
C90.057 (14)0.038 (13)0.048 (14)0.006 (9)0.014 (11)0.017 (11)
C100.060 (14)0.040 (12)0.045 (14)0.001 (10)0.004 (11)0.006 (11)
C110.063 (13)0.030 (12)0.035 (11)0.004 (9)0.016 (9)0.005 (10)
C120.061 (13)0.032 (11)0.037 (12)0.004 (9)0.011 (10)0.006 (9)
C130.076 (15)0.031 (11)0.041 (12)0.000 (10)0.013 (11)0.005 (9)
C140.047 (12)0.031 (11)0.043 (13)0.000 (9)0.001 (10)0.009 (10)
C150.045 (12)0.034 (12)0.042 (13)0.002 (9)0.004 (10)0.004 (10)
C160.045 (12)0.032 (12)0.046 (14)0.004 (9)0.001 (10)0.001 (10)
C170.039 (11)0.035 (12)0.041 (13)0.004 (8)0.004 (9)0.005 (10)
C180.053 (13)0.042 (13)0.042 (13)0.003 (10)0.001 (11)0.007 (10)
C190.048 (12)0.036 (12)0.047 (14)0.001 (9)0.003 (10)0.004 (11)
C200.049 (12)0.031 (12)0.047 (14)0.004 (9)0.003 (10)0.002 (10)
C210.057 (13)0.031 (12)0.029 (11)0.002 (9)0.002 (10)0.006 (9)
C220.055 (12)0.024 (11)0.034 (13)0.003 (9)0.010 (9)0.005 (9)
C230.050 (11)0.023 (11)0.028 (11)0.000 (8)0.005 (9)0.000 (9)
C240.057 (13)0.028 (12)0.035 (12)0.001 (9)0.003 (10)0.009 (9)
C250.057 (13)0.032 (11)0.032 (12)0.004 (9)0.000 (10)0.003 (9)
C260.056 (13)0.031 (11)0.037 (13)0.010 (9)0.001 (10)0.001 (10)
C270.056 (13)0.032 (12)0.032 (12)0.001 (9)0.002 (10)0.002 (9)
C280.053 (12)0.027 (12)0.035 (12)0.001 (9)0.002 (10)0.000 (10)
C290.055 (13)0.028 (12)0.033 (13)0.003 (9)0.012 (9)0.002 (9)
C300.057 (13)0.036 (12)0.031 (12)0.006 (9)0.004 (10)0.001 (9)
Geometric parameters (Å, º) top
Cu1—O41.917 (13)C5—C61.44 (3)
Cu1—O11.930 (13)C6—C71.39 (3)
Cu1—N11.932 (16)C7—C81.32 (3)
Cu1—N32.038 (14)C8—C91.44 (3)
Cu2—O81.909 (13)C8—H80.9300
Cu2—O51.924 (13)C9—C101.36 (3)
Cu2—N21.934 (16)C10—H100.9300
Cu2—N42.006 (15)C11—C121.50 (3)
Br1—C71.93 (2)C12—C131.56 (2)
Br2—C91.92 (2)C12—H120.9800
Br3—C171.905 (19)C13—H13A0.9700
Br4—C191.90 (2)C13—H13B0.9700
N1—C41.32 (2)C14—C151.49 (3)
N1—C21.50 (2)C14—H140.9300
N2—C141.28 (2)C15—C201.40 (3)
N2—C121.48 (2)C15—C161.44 (3)
N3—C251.29 (2)C16—C171.38 (3)
N3—C211.36 (2)C17—C181.40 (3)
N4—C301.34 (2)C18—C191.36 (3)
N4—C261.36 (2)C18—H180.9300
O1—C11.30 (2)C19—C201.41 (3)
O2—C11.23 (2)C20—H200.9300
O3—C31.40 (2)C21—C221.34 (2)
O3—H30.8200C21—H210.9300
O4—C61.31 (2)C22—C231.38 (2)
O5—C111.30 (2)C22—H220.9300
O6—C111.23 (2)C23—C241.37 (2)
O7—C131.41 (2)C23—C281.517 (18)
O7—H70.8200C24—C251.44 (2)
O8—C161.32 (2)C24—H240.9300
O9—H9A0.8500C25—H250.9300
O9—H9B0.8500C26—C271.39 (2)
C1—C21.53 (3)C26—H260.9300
C2—C31.52 (3)C27—C281.39 (2)
C2—H20.9800C27—H270.9300
C3—H3A0.9700C28—C291.41 (2)
C3—H3B0.9700C29—C301.44 (2)
C4—C51.39 (3)C29—H290.9300
C4—H40.9300C30—H300.9300
C5—C101.44 (3)
O4—Cu1—O1175.3 (6)O6—C11—O5122.7 (18)
O4—Cu1—N193.2 (6)O6—C11—C12120.8 (18)
O1—Cu1—N183.7 (6)O5—C11—C12116.4 (16)
O4—Cu1—N390.5 (6)N2—C12—C11108.8 (15)
O1—Cu1—N392.7 (6)N2—C12—C13111.3 (16)
N1—Cu1—N3175.6 (6)C11—C12—C13109.1 (15)
O8—Cu2—O5174.5 (6)N2—C12—H12109.2
O8—Cu2—N293.8 (6)C11—C12—H12109.2
O5—Cu2—N283.4 (6)C13—C12—H12109.2
O8—Cu2—N490.9 (6)O7—C13—C12109.5 (15)
O5—Cu2—N492.0 (6)O7—C13—H13A109.8
N2—Cu2—N4175.3 (7)C12—C13—H13A109.8
C4—N1—C2122.1 (17)O7—C13—H13B109.8
C4—N1—Cu1125.1 (14)C12—C13—H13B109.8
C2—N1—Cu1112.7 (12)H13A—C13—H13B108.2
C14—N2—C12118.8 (16)N2—C14—C15124.7 (18)
C14—N2—Cu2126.8 (14)N2—C14—H14117.7
C12—N2—Cu2113.7 (12)C15—C14—H14117.7
C25—N3—C21118.4 (16)C20—C15—C16122.5 (18)
C25—N3—Cu1121.7 (13)C20—C15—C14115.4 (18)
C21—N3—Cu1119.9 (12)C16—C15—C14121.8 (18)
C30—N4—C26116.9 (16)O8—C16—C17120.6 (19)
C30—N4—Cu2119.5 (12)O8—C16—C15123.6 (19)
C26—N4—Cu2123.5 (12)C17—C16—C15115.6 (18)
C1—O1—Cu1118.3 (12)C16—C17—C18122.6 (19)
C3—O3—H3109.5C16—C17—Br3117.7 (15)
C6—O4—Cu1127.8 (13)C18—C17—Br3119.7 (16)
C11—O5—Cu2117.1 (11)C19—C18—C17120 (2)
C13—O7—H7109.5C19—C18—H18119.8
C16—O8—Cu2128.1 (13)C17—C18—H18119.8
H9A—O9—H9B108.6C18—C19—C20120.7 (19)
O2—C1—O1124.7 (19)C18—C19—Br4119.5 (16)
O2—C1—C2121 (2)C20—C19—Br4119.7 (15)
O1—C1—C2114.4 (17)C15—C20—C19117.8 (19)
N1—C2—C3119.0 (17)C15—C20—H20121.1
N1—C2—C1109.2 (17)C19—C20—H20121.1
C3—C2—C1112.6 (17)C22—C21—N3123.6 (18)
N1—C2—H2104.9C22—C21—H21118.2
C3—C2—H2104.9N3—C21—H21118.2
C1—C2—H2104.9C21—C22—C23120.5 (19)
O3—C3—C2114.2 (17)C21—C22—H22119.7
O3—C3—H3A108.7C23—C22—H22119.7
C2—C3—H3A108.7C24—C23—C22116.7 (17)
O3—C3—H3B108.7C24—C23—C28121.0 (14)
C2—C3—H3B108.7C22—C23—C28122.1 (14)
H3A—C3—H3B107.6C23—C24—C25119.8 (18)
N1—C4—C5125.1 (19)C23—C24—H24120.1
N1—C4—H4117.5C25—C24—H24120.1
C5—C4—H4117.5N3—C25—C24121.1 (18)
C4—C5—C10117.4 (19)N3—C25—H25119.5
C4—C5—C6125.4 (19)C24—C25—H25119.5
C10—C5—C6116.7 (18)N4—C26—C27125.9 (18)
O4—C6—C7122 (2)N4—C26—H26117.1
O4—C6—C5121.6 (18)C27—C26—H26117.1
C7—C6—C5116.3 (18)C28—C27—C26117.3 (19)
C8—C7—C6128 (2)C28—C27—H27121.4
C8—C7—Br1116.2 (16)C26—C27—H27121.4
C6—C7—Br1116.0 (15)C27—C28—C29119.0 (18)
C7—C8—C9116 (2)C27—C28—C23121.1 (14)
C7—C8—H8121.9C29—C28—C23119.8 (14)
C9—C8—H8121.9C28—C29—C30119.3 (18)
C10—C9—C8121 (2)C28—C29—H29120.4
C10—C9—Br2119.8 (17)C30—C29—H29120.4
C8—C9—Br2119.6 (15)N4—C30—C29121.6 (18)
C9—C10—C5122 (2)N4—C30—H30119.2
C9—C10—H10118.9C29—C30—H30119.2
C5—C10—H10118.9
O4—Cu1—N1—C411.7 (16)Cu2—O5—C11—C129 (2)
O1—Cu1—N1—C4164.7 (16)C14—N2—C12—C11171.5 (16)
O4—Cu1—N1—C2171.5 (13)Cu2—N2—C12—C111 (2)
O1—Cu1—N1—C212.0 (13)C14—N2—C12—C1368 (2)
O8—Cu2—N2—C148.0 (17)Cu2—N2—C12—C13121.0 (14)
O5—Cu2—N2—C14167.2 (17)O6—C11—C12—N2176.3 (17)
O8—Cu2—N2—C12177.9 (13)O5—C11—C12—N26 (3)
O5—Cu2—N2—C122.7 (12)O6—C11—C12—C1355 (3)
O4—Cu1—N3—C253.0 (15)O5—C11—C12—C13127.6 (17)
O1—Cu1—N3—C25173.6 (14)N2—C12—C13—O773 (2)
O4—Cu1—N3—C21176.1 (14)C11—C12—C13—O7167.3 (17)
O1—Cu1—N3—C217.3 (14)C12—N2—C14—C15179.4 (17)
O8—Cu2—N4—C30173.2 (13)Cu2—N2—C14—C1511 (3)
O5—Cu2—N4—C3011.5 (14)N2—C14—C15—C20175.3 (17)
O8—Cu2—N4—C268.9 (15)N2—C14—C15—C1611 (3)
O5—Cu2—N4—C26166.4 (15)Cu2—O8—C16—C17175.6 (13)
N1—Cu1—O1—C18.0 (14)Cu2—O8—C16—C159 (3)
N3—Cu1—O1—C1169.3 (14)C20—C15—C16—O8177.2 (17)
N1—Cu1—O4—C614.4 (16)C14—C15—C16—O89 (3)
N3—Cu1—O4—C6168.0 (15)C20—C15—C16—C171 (3)
N2—Cu2—O5—C116.4 (13)C14—C15—C16—C17174.9 (17)
N4—Cu2—O5—C11172.7 (13)O8—C16—C17—C18175.4 (17)
N2—Cu2—O8—C166.8 (15)C15—C16—C17—C181 (3)
N4—Cu2—O8—C16173.8 (15)O8—C16—C17—Br35 (2)
Cu1—O1—C1—O2174.8 (16)C15—C16—C17—Br3179.1 (13)
Cu1—O1—C1—C22 (2)C16—C17—C18—C191 (3)
C4—N1—C2—C332 (3)Br3—C17—C18—C19179.2 (14)
Cu1—N1—C2—C3145.0 (15)C17—C18—C19—C205 (3)
C4—N1—C2—C1163.1 (17)C17—C18—C19—Br4178.5 (14)
Cu1—N1—C2—C114 (2)C16—C15—C20—C195 (3)
O2—C1—C2—N1165.5 (18)C14—C15—C20—C19178.6 (16)
O1—C1—C2—N18 (2)C18—C19—C20—C156 (3)
O2—C1—C2—C331 (3)Br4—C19—C20—C15176.9 (14)
O1—C1—C2—C3142.5 (19)C25—N3—C21—C221 (3)
N1—C2—C3—O359 (3)Cu1—N3—C21—C22178.0 (15)
C1—C2—C3—O3171.1 (17)N3—C21—C22—C233 (3)
C2—N1—C4—C5178.9 (19)C21—C22—C23—C242 (3)
Cu1—N1—C4—C55 (3)C21—C22—C23—C28177.2 (16)
N1—C4—C5—C10177.6 (18)C22—C23—C24—C251 (3)
N1—C4—C5—C65 (3)C28—C23—C24—C25175.5 (15)
Cu1—O4—C6—C7172.9 (14)C21—N3—C25—C241 (3)
Cu1—O4—C6—C510 (3)Cu1—N3—C25—C24179.8 (13)
C4—C5—C6—O43 (3)C23—C24—C25—N31 (3)
C10—C5—C6—O4175.2 (17)C30—N4—C26—C270 (3)
C4—C5—C6—C7174.8 (19)Cu2—N4—C26—C27178.3 (14)
C10—C5—C6—C72 (3)N4—C26—C27—C280 (3)
C5—C6—C7—C82 (3)C26—C27—C28—C290 (3)
O4—C6—C7—Br14 (3)C26—C27—C28—C23177.0 (15)
C5—C6—C7—Br1178.7 (14)C24—C23—C28—C27174.5 (19)
C6—C7—C8—C91 (3)C22—C23—C28—C270 (2)
Br1—C7—C8—C9179.1 (14)C24—C23—C28—C299 (2)
C7—C8—C9—C102 (3)C22—C23—C28—C29176.6 (19)
C7—C8—C9—Br2177.2 (15)C27—C28—C29—C301 (3)
C8—C9—C10—C53 (3)C23—C28—C29—C30177.4 (16)
Br2—C9—C10—C5178.0 (15)C26—N4—C30—C291 (3)
C4—C5—C10—C9175.9 (19)Cu2—N4—C30—C29178.8 (14)
C6—C5—C10—C93 (3)C28—C29—C30—N41 (3)
Cu2—O5—C11—O6173.7 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.102.90 (2)164
O7—H7···O6ii0.821.932.73 (2)165
O9—H9A···Br3i0.852.573.415 (14)171
O9—H9B···Br4iii0.852.763.599 (15)171
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+2; (iii) x+1, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C10H7Br2NO4)2(C10H8N2)]·H2O
Mr1031.25
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.3905 (7), 11.3374 (16), 19.943 (2)
β (°) 93.686 (2)
V3)1667.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.13
Crystal size (mm)0.18 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.405, 0.441
No. of measured, independent and
observed [I > 2σ(I)] reflections
8428, 5732, 3029
Rint0.084
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.187, 1.02
No. of reflections5732
No. of parameters442
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.73
Absolute structureFlack (1983), 2625 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.822.102.90 (2)163.8
O7—H7···O6ii0.821.932.73 (2)165.1
O9—H9A···Br3i0.852.573.415 (14)170.9
O9—H9B···Br4iii0.852.763.599 (15)171.0
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+2; (iii) x+1, y+3/2, z+1.
 

Acknowledgements

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials andProcessing Technology, Ministry of Education, People's Republic of China.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, S., Huo, L. H. & Gu, C. S. (2005). Chin. J. Inorg. Chem. 21, 1345–1348.  CAS Google Scholar
First citationLiang, F. Z., Ma, J. P. & Zhu, J. H. (2006). Chin. J. Inorg. Chem. 22, 115–118.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517–520.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds