organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-N′-[(E)-4-hy­droxy­benzyl­­idene]benzohydrazide

aDepartment of Chemistry, Ankang University, Ankang, Shanxi 725000, People's Republic of China
*Correspondence e-mail: guobiao_cao@126.com

(Received 23 May 2008; accepted 27 May 2008; online 7 June 2008)

The title compound, C14H11BrN2O2, was synthesized by the reaction of 4-hydroxy­benzaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 40.1 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For related structures, see: Cao (2007a[Cao, G.-B. (2007a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 639-642.],b[Cao, G.-B. (2007b). Acta Cryst. E63, m1149-m1150.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11BrN2O2

  • Mr = 319.16

  • Orthorhombic, P 21 21 21

  • a = 7.5576 (11) Å

  • b = 11.7337 (18) Å

  • c = 15.021 (2) Å

  • V = 1332.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.08 mm−1

  • T = 298 (2) K

  • 0.20 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.577, Tmax = 0.638

  • 7740 measured reflections

  • 2757 independent reflections

  • 2145 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.059

  • S = 0.97

  • 2757 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1154 Friedel pairs

  • Flack parameter: 0.006 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.95 2.750 (2) 166
O1—H1⋯N1i 0.82 2.56 3.003 (3) 116
N2—H2A⋯O1ii 0.904 (10) 2.136 (14) 3.007 (3) 162 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have recently reported some transition metal complexes with Schiff base ligands (Cao, 2007a,b). We report herein the crystal structure of the title compound, (I), derived from the reaction of 4-hydroxybenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide in methanol.

In compound (I), Fig. 1, the dihedral angle between the two benzene rings is 40.1 (2)°. In the crystal structure, molecules are linked through intermolecular O—H···O, O—H···N, and N—H···O hydrogen bonds, Table 1, to form a three-dimensional network, Figure 2.

Related literature top

For related structures, see: Cao (2007a,b).

Experimental top

The compound was prepared by refluxing equimolar quantities of 4-hydroxybenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed when the solution was evaporated in air for about a week.

Refinement top

H2A was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 Å, the O—H distance 0.82 Å, and with Uiso(H) set at 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
3-Bromo-N'-[(E)-4-hydroxybenzylidene]benzohydrazide top
Crystal data top
C14H11BrN2O2F(000) = 640
Mr = 319.16Dx = 1.591 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1827 reflections
a = 7.5576 (11) Åθ = 2.3–24.5°
b = 11.7337 (18) ŵ = 3.09 mm1
c = 15.021 (2) ÅT = 298 K
V = 1332.0 (3) Å3Block, colourless
Z = 40.20 × 0.17 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2757 independent reflections
Radiation source: fine-focus sealed tube2145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.577, Tmax = 0.638k = 1014
7740 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0151P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
2757 reflectionsΔρmax = 0.17 e Å3
176 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), with 1154 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (9)
Crystal data top
C14H11BrN2O2V = 1332.0 (3) Å3
Mr = 319.16Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5576 (11) ŵ = 3.09 mm1
b = 11.7337 (18) ÅT = 298 K
c = 15.021 (2) Å0.20 × 0.17 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2757 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2145 reflections with I > 2σ(I)
Tmin = 0.577, Tmax = 0.638Rint = 0.038
7740 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 0.17 e Å3
S = 0.97Δρmin = 0.29 e Å3
2757 reflectionsAbsolute structure: Flack (1983), with 1154 Friedel pairs
176 parametersAbsolute structure parameter: 0.006 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.04594 (5)0.39161 (3)0.901456 (17)0.06805 (13)
O10.1347 (3)0.14174 (14)0.15827 (10)0.0414 (5)
H10.06630.11630.12080.062*
O20.0446 (3)0.45672 (13)0.48129 (10)0.0435 (4)
N10.1134 (3)0.23480 (18)0.46451 (12)0.0380 (6)
N20.1329 (3)0.29110 (18)0.54514 (12)0.0372 (5)
C10.1401 (3)0.0602 (2)0.38450 (14)0.0310 (6)
C20.0757 (3)0.1044 (2)0.30437 (14)0.0343 (6)
H20.03390.17890.30240.041*
C30.0735 (3)0.03889 (19)0.22853 (14)0.0331 (6)
H30.03150.06920.17540.040*
C40.1341 (3)0.0726 (2)0.23148 (14)0.0309 (6)
C50.1975 (3)0.1177 (2)0.31015 (15)0.0357 (6)
H50.23810.19250.31200.043*
C60.2003 (3)0.0514 (2)0.38585 (15)0.0352 (6)
H60.24320.08200.43870.042*
C70.1494 (3)0.1299 (2)0.46504 (15)0.0348 (6)
H70.18290.09580.51830.042*
C80.0976 (3)0.4039 (2)0.54681 (14)0.0339 (6)
C90.1227 (3)0.4615 (2)0.63473 (15)0.0333 (6)
C100.0837 (3)0.4069 (2)0.71421 (14)0.0373 (6)
H100.04570.33150.71430.045*
C110.1020 (4)0.4657 (2)0.79290 (15)0.0405 (7)
C120.1571 (4)0.5781 (2)0.79396 (18)0.0482 (8)
H120.16890.61690.84760.058*
C130.1942 (4)0.6314 (2)0.7149 (2)0.0516 (8)
H130.23200.70680.71510.062*
C140.1760 (4)0.5743 (2)0.63504 (17)0.0425 (7)
H140.19950.61160.58170.051*
H2A0.195 (4)0.257 (2)0.5890 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0960 (3)0.0793 (2)0.02888 (14)0.0102 (2)0.00631 (17)0.00726 (16)
O10.0589 (13)0.0376 (10)0.0276 (8)0.0034 (9)0.0034 (9)0.0093 (8)
O20.0655 (12)0.0350 (10)0.0301 (8)0.0023 (10)0.0072 (10)0.0018 (8)
N10.0566 (16)0.0338 (13)0.0237 (10)0.0039 (11)0.0060 (10)0.0063 (9)
N20.0581 (16)0.0306 (13)0.0230 (11)0.0104 (11)0.0077 (10)0.0070 (9)
C10.0354 (14)0.0340 (13)0.0236 (13)0.0019 (11)0.0012 (10)0.0033 (10)
C20.0435 (16)0.0295 (12)0.0298 (11)0.0011 (13)0.0013 (11)0.0003 (11)
C30.0424 (16)0.0334 (14)0.0235 (11)0.0021 (12)0.0035 (11)0.0015 (10)
C40.0343 (14)0.0348 (15)0.0238 (12)0.0046 (11)0.0011 (11)0.0070 (10)
C50.0470 (17)0.0258 (14)0.0343 (12)0.0036 (13)0.0010 (11)0.0011 (12)
C60.0452 (16)0.0362 (14)0.0243 (13)0.0032 (11)0.0068 (11)0.0013 (11)
C70.0414 (15)0.0393 (17)0.0238 (11)0.0003 (13)0.0026 (11)0.0027 (11)
C80.0370 (16)0.0361 (15)0.0287 (12)0.0032 (13)0.0000 (10)0.0013 (12)
C90.0362 (15)0.0342 (15)0.0297 (12)0.0039 (12)0.0045 (11)0.0069 (11)
C100.0434 (17)0.0381 (14)0.0304 (12)0.0049 (13)0.0038 (11)0.0097 (12)
C110.0450 (18)0.0456 (17)0.0308 (13)0.0094 (13)0.0012 (11)0.0093 (12)
C120.0512 (19)0.055 (2)0.0388 (15)0.0096 (15)0.0131 (14)0.0196 (14)
C130.054 (2)0.0368 (17)0.0644 (19)0.0002 (14)0.0103 (15)0.0221 (15)
C140.0483 (18)0.0370 (17)0.0421 (15)0.0020 (13)0.0031 (13)0.0037 (12)
Geometric parameters (Å, º) top
Br1—C111.896 (3)C5—C61.378 (3)
O1—C41.367 (3)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—C81.230 (3)C7—H70.9300
N1—C71.260 (3)C8—C91.495 (3)
N1—N21.387 (2)C9—C141.384 (4)
N2—C81.351 (3)C9—C101.387 (3)
N2—H2A0.904 (10)C10—C111.376 (3)
C1—C61.386 (3)C10—H100.9300
C1—C21.398 (3)C11—C121.382 (4)
C1—C71.462 (3)C12—C131.371 (4)
C2—C31.374 (3)C12—H120.9300
C2—H20.9300C13—C141.381 (4)
C3—C41.386 (3)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.381 (3)
C4—O1—H1109.5N1—C7—H7119.0
C7—N1—N2115.88 (19)C1—C7—H7119.0
C8—N2—N1117.51 (19)O2—C8—N2122.9 (2)
C8—N2—H2A121.7 (19)O2—C8—C9121.4 (2)
N1—N2—H2A119 (2)N2—C8—C9115.7 (2)
C6—C1—C2118.5 (2)C14—C9—C10120.1 (2)
C6—C1—C7120.0 (2)C14—C9—C8118.2 (2)
C2—C1—C7121.4 (2)C10—C9—C8121.7 (2)
C3—C2—C1120.7 (2)C11—C10—C9119.1 (2)
C3—C2—H2119.7C11—C10—H10120.5
C1—C2—H2119.7C9—C10—H10120.5
C2—C3—C4119.8 (2)C10—C11—C12121.3 (2)
C2—C3—H3120.1C10—C11—Br1119.1 (2)
C4—C3—H3120.1C12—C11—Br1119.65 (19)
O1—C4—C5117.4 (2)C13—C12—C11119.1 (2)
O1—C4—C3122.4 (2)C13—C12—H12120.4
C5—C4—C3120.2 (2)C11—C12—H12120.4
C6—C5—C4119.7 (2)C12—C13—C14120.7 (3)
C6—C5—H5120.2C12—C13—H13119.6
C4—C5—H5120.2C14—C13—H13119.6
C5—C6—C1121.1 (2)C13—C14—C9119.7 (3)
C5—C6—H6119.5C13—C14—H14120.1
C1—C6—H6119.5C9—C14—H14120.1
N1—C7—C1122.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.952.750 (2)166
O1—H1···N1i0.822.563.003 (3)116
N2—H2A···O1ii0.90 (1)2.14 (1)3.007 (3)162 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11BrN2O2
Mr319.16
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.5576 (11), 11.7337 (18), 15.021 (2)
V3)1332.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.09
Crystal size (mm)0.20 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.577, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
7740, 2757, 2145
Rint0.038
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.059, 0.97
No. of reflections2757
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.29
Absolute structureFlack (1983), with 1154 Friedel pairs
Absolute structure parameter0.006 (9)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.952.750 (2)166
O1—H1···N1i0.822.563.003 (3)116
N2—H2A···O1ii0.904 (10)2.136 (14)3.007 (3)162 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

The Natural Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 07JK177) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 04JK302) are gratefully acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. (2007a). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 37, 639–642.  CAS Google Scholar
First citationCao, G.-B. (2007b). Acta Cryst. E63, m1149–m1150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds