metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m950-m951

Di-μ-oxido-bis­­({(R)-(–)-2-[1-(2-amino­propyl­imino)eth­yl]-1-naphtholato-κ3N,N′,O}oxidovanadium(V))

aUniversity of Gdańsk, Faculty of Chemistry, Sobieskiego 18/19, 80-952 Gdańsk, Poland, and bNicholas Copernicus University, Faculty of Chemistry, Gagarina 7, 87-100 Toruń, Poland
*Correspondence e-mail: greg@chem.univ.gda.pl

(Received 29 May 2008; accepted 12 June 2008; online 21 June 2008)

In the title dinuclear compound, [V2(C15H17N2O)2O4], each VV atom is six-coordinated by one oxide group, and by two N and one O atom of the tridentate Schiff base ligand, and bridged by two additional oxide O atoms, resulting in a centrosymmetric dimer. The metal centre has a distorted octa­hedral coordination with the monoanionic Schiff base ligand occupying one equatorial and two axial coordination positions. The separation between V atoms is 3.214 (3) Å. In the crystal structure, there are N—H⋯O, C—H⋯O and C—H⋯π hydrogen bonds, and ππ inter­actions.

Related literature

For general background, see: Sigel & Sigel (1995[Sigel, H. & Sigel, A. (1995). Vanadium and its Role in Life. In Metal Ions in Biological Systems, Vol. 31, edited by H. Sigel, A & Sigel, A. New York: Marcel Dekker.]); Butler & Walker (1993[Butler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937-1944.]); Martinez et al. (2001[Martinez, J. S., Carrol, G. L., Tschirret-Guth, R. A., Altenhoff, G., Little, R. D. & Butler, A. (2001). J. Am. Chem. Soc. 123, 3289-3294.]); Rehder (1991[Rehder, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 148-167.]); Thompson & Orvig (2000[Thompson, K. H. & Orvig, C. (2000). J. Chem. Soc. Dalton Trans. pp. 2885-2892.]); Evangelou (2002[Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249-265.]); Kwiatkowski et al. (2003[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009-1018.], 2006[Kwiatkowski, E., Romanowski, G., Nowicki, W. & Kwiatkowski, M. (2006). Polyhedron, 25, 2809-2814.], 2007[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559-2568.]); Romanowski et al. (2008[Romanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601-1609.]); Rehder (1999[Rehder, D. (1999). Coord. Chem. Rev. 182, 297-322.]); Colpas et al. (1994[Colpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4669-4675.]); Li et al. (1988[Li, X., Lah, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657-4664.]); Fulwood et al. (1995[Fulwood, R., Schmidt, H. & Rehder, D. (1995). J. Chem. Soc. Chem. Commun. pp. 1443-1444.]). For related structures, see: Root et al. (1993[Root, C. A., Hoeschele, J. D., Cornman, C. R., Kampf, J. W. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3855-3861.]); Romanowski et al. (2008[Romanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601-1609.]); Rayati et al. (2007[Rayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545-1548.], 2008[Rayati, S., Wojtczak, A. & Kozakiewicz, A. (2008). Inorg. Chim. Acta, 361, 1530-1533.]); Kwiatkowski et al. (2007[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559-2568.]). For the synthesis, see: Kwiatkowski et al. (2003[Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009-1018.]).

[Scheme 1]

Experimental

Crystal data
  • [V2(C15H17N2O)2O4]

  • Mr = 648.49

  • Monoclinic, C 2/c

  • a = 25.187 (5) Å

  • b = 7.663 (2) Å

  • c = 16.898 (3) Å

  • β = 118.09 (3)°

  • V = 2877.3 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 298 (2) K

  • 0.28 × 0.13 × 0.12 mm

Data collection
  • Oxford Diffraction Sapphire CCD diffractometer

  • Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.828, Tmax = 0.918

  • 9202 measured reflections

  • 2474 independent reflections

  • 2086 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.153

  • S = 1.23

  • 2474 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6-C9/C14/C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 2.19 3.011 (6) 151
C7—H7A⋯O2ii 0.93 2.41 3.335 (7) 173
C18—H18B⋯O16ii 0.96 2.56 3.482 (8) 161
C3—H3BCg1ii 0.97 2.95 3.874 (7) 159
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
ππ interactions (Å,°)

CgI CgJ CgCg Dihedral angle Interplanar distance Offset
Cg2 Cg2iii 3.518 (4) 0.0 3.365 (4) 1.025 (4)
Symmetry code: (iii) -x, -y, -z. Notes: Cg2 represents the centroid of the C14–C19 ring. CgCg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. Offset is the lateral offset distance of ring I from ring J.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Vanadium is a trace element in diverse living forms (Sigel & Sigel, 1995). It plays active roles in many biologically important reactions such as halogenation of organic substrates, activation or fixation of nitrogen through an alternative pathway (Butler & Walker, 1993; Martinez et al., 2001) and potent inhibitor of phosphate-metabolizing enzymes (Rehder, 1991). Some of the vanadium compounds stimulate glucose uptake and inhibit lipid breakdown in a manner remarkably reminiscent of insulin effects (Thompson & Orvig, 2000) or exert preventive effects against chemical carcinogenesis on animals (Evangelou, 2002). Recently, it has been established that vanadium(V) complexes with Schiff bases, which are excellent models for active sites of vanadium containing haloperoxidases, are able to catalyze the oxidation of organic sulfides to the corresponding sulfoxides (Kwiatkowski et al., 2003, 2007; Romanowski et al., 2008). A collection of such models discussed in some detail in a review (Rehder, 1999) show that they contained either N2O2 or NO4–5 set of donor atoms in the coordination sphere.

The half of the molecule, constituting the asymmetric part of the structure, is related to the other half by the center of symmetry (Fig. 1). The geometry of the coordination environment resembles two edge shared octahedrons that are significantly distorted. The V1=O1 bond length of 1.612 (4) Å is typically for the distances between vanadium and the doubly bonded oxygen atoms which are not involved in donor-acceptor interactions (Kwiatkowski et al., 2003, 2006, 2007; Romanowski et al., 2008). The O2, V1, O2i, V1i atoms are situated in edges of a parallelogram with the acute O2-V1-O2i angle of 77.09 (18)° [symmetry code: (i) -x+1/2,-y+1/2,-z]. The tridentate ligand is coordinated meridionally, its oxygen (O16) and primary amine nitrogen (N1) occupy axial positions. The V1—O1 bond is shorter than V1—O2i bond (1.658 Å) due to involvement of O2i atom in V1···V1i bridging. The O1-V1-O2i angle of 107.6 (2)° indicate significant double bond character of this bond (Colpas et al., 1994) and is close to other cis-VO2 units (Li et al., 1988). The five-membered ring comprising the propylenediamine moiety exhibits twofold disorder. A disorder of two carbon atoms in the aliphatic five-membered ring is interpreted assuming the presence of two conformations of the CH2—CH(CH3) fragment. The C2 and C17 atoms are disordered over two sites, with occupancy factors of 0.54 (2) and 0.46 (2) for C2A/C17A and C2B/C17B, respectively. The methyl group of the aliphatic five-membered ring assumes a pseudoequatorial position for both conformers. The ligand sites are diastereotopic and therefore the crystal of the complex may be considered as a solid solution of two covalent diastereomers (Kwiatkowski et al., 2006). A rare case of two diastereomers in one crystal was demonstrated earlier (Fulwood et al., 1995), in which is resolved the crystal structure of the monooxovanadium(V) Schiff base complex [VO(sal-L-ala)Bus]BusOH. Structures of dimeric vanadium(V) Schiff base complexes, but derived from racemic 1,2-diaminopropane, have already been reported (Root et al., 1993; Rayati et al., 2007, 2008).

Hydrogen bonds, C—H···π and π-π interactions stabilize a network formed with the dimeric molecules (Fig. 2, Table 1, 2 and 3).

Related literature top

For general background, see: Sigel & Sigel (1995); Butler & Walker (1993); Martinez et al. (2001); Rehder (1991); Thompson & Orvig (2000); Evangelou (2002); Kwiatkowski et al. (2003, 2006, 2007); Romanowski et al. (2008); Rehder (1999); Colpas et al. (1994); Li et al. (1988); Fulwood et al. (1995). For related structures, see: Root et al. (1993); Romanowski et al. (2008); Rayati et al. (2007, 2008); Kwiatkowski et al. (2007). For the synthesis, see: Kwiatkowski et al. (2003). Cg1 is the centroid of the C6-C9/C14/C15 ring.

Experimental top

The title complex were obtained in a template/complexation reactions analogous to those described for preparation of dioxovanadium(V) complexes with Schiff base ligands (Kwiatkowski et al., 2003). A sample of 10 mmol of R(-)-1,2-diaminopropane in 10 ml of absolute ethanol was added with stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (10 mmol) in 50 ml of absolute ethanol producing a yellow suspension. 1-Hydroxy-2-acetonaphthone (10 mmol) dissolved in 10 ml of absolute ethanol was slowly added. After refluxing of the resulting mixture for 10 h and its cooling to room temperature the separated solid was filtered off and washed. Crystals suitable for X-ray analysis were obtained by slow recrystallization from ethanol/DMSO solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) (C–H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group) and with N–H distances of 0.90 Å and with Uiso(H) = 1.2Ueq(C). The C2 and C17 atoms are disordered over two sites, the occupancy ratio was refined and converged to 0.54 (2):0.46 (2).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure viewed approximately along the c axis. The N—H···O, C—H···O and C—H···π interactions are represented by dashed lines and π-π interactions by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) 1/2 - x, -1/2 - y, -z, 1/2 - z; (ii) 1/2 - x, -1/2 + y, 1/2 - z; (iii) -x, -y, -z].
Di-µ-oxido-bis({(R)-(-)-2-[1-(2-aminopropylimino)ethyl]-1-naphtholato- κ3N,N',O}oxidovanadium(V)) top
Crystal data top
[V2(C15H17N2O)2O4]F(000) = 1344
Mr = 648.49Dx = 1.497 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2875 reflections
a = 25.187 (5) Åθ = 2.8–25.0°
b = 7.663 (2) ŵ = 0.70 mm1
c = 16.898 (3) ÅT = 298 K
β = 118.09 (3)°Needle, yellow
V = 2877.3 (13) Å30.28 × 0.13 × 0.12 mm
Z = 4
Data collection top
Oxford Diffraction Sapphire CCD
diffractometer
2474 independent reflections
Radiation source: fine-focus sealed tube2086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
θ/2θ scansθmax = 25.0°, θmin = 2.8°
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 2529
Tmin = 0.828, Tmax = 0.918k = 98
9202 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.084Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0144P)2 + 24.507P]
where P = (Fo2 + 2Fc2)/3
2474 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[V2(C15H17N2O)2O4]V = 2877.3 (13) Å3
Mr = 648.49Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.187 (5) ŵ = 0.70 mm1
b = 7.663 (2) ÅT = 298 K
c = 16.898 (3) Å0.28 × 0.13 × 0.12 mm
β = 118.09 (3)°
Data collection top
Oxford Diffraction Sapphire CCD
diffractometer
2474 independent reflections
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2006)
2086 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.918Rint = 0.078
9202 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0840 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0144P)2 + 24.507P]
where P = (Fo2 + 2Fc2)/3
2474 reflectionsΔρmax = 0.66 e Å3
202 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
V10.22582 (5)0.07588 (12)0.02520 (6)0.0261 (3)
O10.1947 (2)0.1142 (5)0.0042 (3)0.0419 (11)
N10.3137 (2)0.0142 (6)0.0585 (3)0.0323 (12)
H1A0.31020.10530.02260.039*
H1B0.33300.07130.04570.039*
O20.28370 (18)0.3407 (5)0.0711 (2)0.0308 (9)
C30.3353 (3)0.0368 (9)0.2130 (4)0.0413 (16)
H3A0.35460.14680.23930.050*
H3B0.34760.04790.26120.050*
N40.2701 (2)0.0595 (6)0.1714 (3)0.0266 (10)
C50.2442 (3)0.0737 (7)0.2207 (4)0.0307 (13)
C60.1780 (3)0.0906 (7)0.1799 (4)0.0301 (13)
C70.1481 (3)0.0356 (7)0.2291 (4)0.0361 (15)
H7A0.17020.01600.28500.043*
C80.0877 (3)0.0571 (9)0.1958 (4)0.0413 (16)
H8A0.06910.01740.22870.050*
C90.0529 (3)0.1389 (8)0.1121 (4)0.0384 (15)
C100.0103 (3)0.1660 (9)0.0753 (5)0.0475 (18)
H10A0.03000.12820.10690.057*
C110.0422 (3)0.2461 (10)0.0052 (6)0.056 (2)
H11A0.08340.26280.02750.068*
C120.0147 (3)0.3033 (10)0.0545 (5)0.056 (2)
H12A0.03700.36010.10890.067*
C130.0463 (3)0.2751 (8)0.0219 (4)0.0415 (16)
H13A0.06460.31070.05580.050*
C140.0811 (3)0.1941 (7)0.0611 (4)0.0315 (13)
C150.1446 (2)0.1620 (7)0.0945 (4)0.0264 (12)
O160.16869 (17)0.2114 (5)0.0436 (2)0.0288 (9)
C180.2780 (3)0.0802 (9)0.3211 (4)0.0414 (15)
H18A0.31390.14840.33970.062*
H18B0.28870.03610.34440.062*
H18C0.25310.13240.34360.062*
C2A0.3524 (5)0.070 (2)0.1537 (8)0.042 (4)0.54 (2)
H2A0.34350.19220.15900.051*0.54 (2)
C17A0.419 (2)0.055 (6)0.180 (3)0.067 (15)0.54 (2)
H17A0.44220.11620.23590.101*0.54 (2)
H17B0.43060.06530.18770.101*0.54 (2)
H17C0.42620.10630.13440.101*0.54 (2)
C2B0.3583 (6)0.041 (3)0.1485 (9)0.029 (4)*0.46 (2)
H2B0.36790.16370.14370.034*0.46 (2)
C17B0.418 (3)0.071 (6)0.184 (4)0.046 (11)*0.46 (2)
H17D0.43850.07180.24850.069*0.46 (2)
H17E0.44420.02070.16300.069*0.46 (2)
H17F0.40840.18850.16220.069*0.46 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0346 (5)0.0226 (5)0.0201 (5)0.0047 (5)0.0121 (4)0.0020 (4)
O10.052 (3)0.026 (2)0.049 (3)0.000 (2)0.024 (2)0.0016 (19)
N10.044 (3)0.024 (3)0.034 (3)0.004 (2)0.022 (3)0.002 (2)
O20.042 (2)0.028 (2)0.023 (2)0.0073 (18)0.0157 (19)0.0015 (17)
C30.035 (4)0.052 (4)0.029 (3)0.014 (3)0.008 (3)0.009 (3)
N40.032 (3)0.025 (3)0.023 (2)0.007 (2)0.013 (2)0.010 (2)
C50.045 (3)0.022 (3)0.025 (3)0.003 (3)0.017 (3)0.003 (3)
C60.043 (3)0.021 (3)0.032 (3)0.001 (3)0.022 (3)0.002 (3)
C70.053 (4)0.026 (3)0.036 (3)0.001 (3)0.027 (3)0.001 (3)
C80.054 (4)0.040 (4)0.042 (4)0.008 (3)0.033 (3)0.001 (3)
C90.039 (4)0.032 (3)0.047 (4)0.008 (3)0.023 (3)0.008 (3)
C100.037 (4)0.043 (4)0.069 (5)0.003 (3)0.030 (4)0.001 (4)
C110.028 (4)0.052 (5)0.074 (6)0.001 (3)0.012 (4)0.006 (4)
C120.042 (4)0.047 (5)0.063 (5)0.008 (4)0.012 (4)0.014 (4)
C130.041 (4)0.034 (3)0.041 (4)0.001 (3)0.012 (3)0.004 (3)
C140.035 (3)0.025 (3)0.035 (3)0.005 (3)0.017 (3)0.005 (3)
C150.033 (3)0.019 (3)0.026 (3)0.003 (2)0.013 (3)0.003 (2)
O160.036 (2)0.028 (2)0.025 (2)0.0029 (18)0.0170 (18)0.0041 (17)
C180.052 (4)0.048 (4)0.024 (3)0.006 (3)0.017 (3)0.000 (3)
C2A0.036 (7)0.042 (10)0.040 (7)0.016 (6)0.011 (6)0.011 (6)
C17A0.041 (13)0.11 (3)0.051 (13)0.040 (15)0.020 (9)0.037 (15)
Geometric parameters (Å, º) top
V1—O11.612 (4)C9—C141.413 (8)
V1—O2i1.658 (4)C9—C101.425 (9)
V1—O161.915 (4)C10—C111.358 (11)
V1—N12.127 (5)C10—H10A0.9300
V1—N42.183 (4)C11—C121.382 (10)
V1—O22.404 (4)C11—H11A0.9300
N1—C2B1.466 (14)C12—C131.383 (9)
N1—C2A1.498 (13)C12—H12A0.9300
N1—H1A0.9000C13—C141.401 (9)
N1—H1B0.9000C13—H13A0.9300
O2—V1i1.658 (4)C14—C151.446 (8)
C3—C2B1.456 (14)C15—O161.320 (6)
C3—N41.460 (7)C18—H18A0.9600
C3—C2A1.502 (14)C18—H18B0.9600
C3—H3A0.9700C18—H18C0.9600
C3—H3B0.9700C2A—C17A1.52 (6)
N4—C51.282 (7)C2A—H2A0.9800
C5—C61.479 (8)C17A—H17A0.9600
C5—C181.499 (8)C17A—H17B0.9600
C6—C151.395 (8)C17A—H17C0.9600
C6—C71.424 (8)C2B—C17B1.59 (6)
C7—C81.360 (9)C2B—H2B0.9800
C7—H7A0.9300C17B—H17D0.9600
C8—C91.413 (9)C17B—H17E0.9600
C8—H8A0.9300C17B—H17F0.9600
O1—V1—O2i107.6 (2)C9—C8—H8A119.6
O1—V1—O16101.6 (2)C14—C9—C8119.4 (6)
O2i—V1—O16100.23 (18)C14—C9—C10117.9 (6)
O1—V1—N195.9 (2)C8—C9—C10122.7 (6)
O2i—V1—N192.07 (19)C11—C10—C9121.1 (7)
O16—V1—N1154.36 (19)C11—C10—H10A119.5
O1—V1—N497.7 (2)C9—C10—H10A119.5
O2i—V1—N4153.32 (19)C10—C11—C12121.2 (7)
O16—V1—N482.56 (17)C10—C11—H11A119.4
N1—V1—N476.61 (18)C12—C11—H11A119.4
O1—V1—O2172.50 (19)C11—C12—C13119.3 (7)
O2i—V1—O277.09 (18)C11—C12—H12A120.4
O16—V1—O282.98 (15)C13—C12—H12A120.4
N1—V1—O277.93 (17)C12—C13—C14121.5 (7)
N4—V1—O276.95 (15)C12—C13—H13A119.3
C2B—N1—V1111.9 (6)C14—C13—H13A119.3
C2A—N1—V1116.4 (5)C13—C14—C9119.0 (6)
C2B—N1—H1A135.2C13—C14—C15121.5 (6)
C2A—N1—H1A108.2C9—C14—C15119.5 (5)
V1—N1—H1A108.2O16—C15—C6123.2 (5)
C2B—N1—H1B78.5O16—C15—C14117.4 (5)
C2A—N1—H1B108.2C6—C15—C14119.2 (5)
V1—N1—H1B108.2C15—O16—V1124.1 (3)
H1A—N1—H1B107.3C5—C18—H18A109.5
V1i—O2—V1102.91 (18)C5—C18—H18B109.5
C2B—C3—N4112.9 (7)H18A—C18—H18B109.5
N4—C3—C2A110.7 (6)C5—C18—H18C109.5
C2B—C3—H3A91.7H18A—C18—H18C109.5
N4—C3—H3A109.0H18B—C18—H18C109.5
C2A—C3—H3A122.4N1—C2A—C3108.6 (9)
C2B—C3—H3B124.2N1—C2A—C17A111 (2)
N4—C3—H3B109.1C3—C2A—C17A113 (2)
C2A—C3—H3B96.8N1—C2A—H2A108.0
H3A—C3—H3B107.7C3—C2A—H2A108.0
C5—N4—C3119.9 (5)C17A—C2A—H2A108.0
C5—N4—V1125.8 (4)C3—C2B—N1113.0 (10)
C3—N4—V1114.3 (3)C3—C2B—C17B110 (3)
N4—C5—C6120.8 (5)N1—C2B—C17B111 (2)
N4—C5—C18123.2 (5)C3—C2B—H2B106.6
C6—C5—C18116.0 (5)N1—C2B—H2B106.9
C15—C6—C7119.5 (5)C17B—C2B—H2B108.7
C15—C6—C5121.0 (5)C2B—C17B—H17D109.5
C7—C6—C5119.6 (5)C2B—C17B—H17E109.5
C8—C7—C6121.3 (6)H17D—C17B—H17E109.5
C8—C7—H7A119.3C2B—C17B—H17F109.5
C6—C7—H7A119.3H17D—C17B—H17F109.5
C7—C8—C9120.8 (6)H17E—C17B—H17F109.5
C7—C8—H8A119.6
O1—V1—N1—C2B123.4 (9)C8—C9—C10—C11179.6 (7)
O2i—V1—N1—C2B128.7 (9)C9—C10—C11—C120.4 (11)
O16—V1—N1—C2B9.6 (10)C10—C11—C12—C131.3 (12)
N4—V1—N1—C2B26.9 (9)C11—C12—C13—C141.8 (11)
O2—V1—N1—C2B52.3 (9)C12—C13—C14—C90.6 (10)
O1—V1—N1—C2A86.0 (9)C12—C13—C14—C15179.0 (6)
O2i—V1—N1—C2A166.1 (9)C8—C9—C14—C13180.0 (6)
O16—V1—N1—C2A47.0 (10)C10—C9—C14—C131.1 (9)
N4—V1—N1—C2A10.5 (9)C8—C9—C14—C151.5 (9)
O2—V1—N1—C2A89.8 (9)C10—C9—C14—C15177.4 (6)
O2i—V1—O2—V1i0.0C7—C6—C15—O16178.0 (5)
O16—V1—O2—V1i102.2 (2)C5—C6—C15—O163.1 (8)
N1—V1—O2—V1i95.0 (2)C7—C6—C15—C145.8 (8)
N4—V1—O2—V1i173.8 (2)C5—C6—C15—C14173.2 (5)
C2B—C3—N4—C5173.8 (10)C13—C14—C15—O160.3 (8)
C2A—C3—N4—C5149.1 (9)C9—C14—C15—O16178.1 (5)
C2B—C3—N4—V13.9 (10)C13—C14—C15—C6176.2 (5)
C2A—C3—N4—V133.1 (9)C9—C14—C15—C65.4 (8)
O1—V1—N4—C575.5 (5)C6—C15—O16—V145.4 (7)
O2i—V1—N4—C5123.3 (5)C14—C15—O16—V1138.3 (4)
O16—V1—N4—C525.3 (5)O1—V1—O16—C1547.0 (4)
N1—V1—N4—C5169.7 (5)O2i—V1—O16—C15157.5 (4)
O2—V1—N4—C5109.8 (5)N1—V1—O16—C1585.1 (6)
O1—V1—N4—C3106.9 (4)N4—V1—O16—C1549.4 (4)
O2i—V1—N4—C354.3 (6)O2—V1—O16—C15127.0 (4)
O16—V1—N4—C3152.3 (4)C2B—N1—C2A—C359.9 (13)
N1—V1—N4—C312.7 (4)V1—N1—C2A—C330.7 (14)
O2—V1—N4—C367.8 (4)C2B—N1—C2A—C17A65 (2)
C3—N4—C5—C6177.8 (5)V1—N1—C2A—C17A155 (2)
V1—N4—C5—C64.7 (8)C2B—C3—C2A—N160.6 (12)
C3—N4—C5—C184.2 (9)N4—C3—C2A—N140.1 (13)
V1—N4—C5—C18173.3 (4)C2B—C3—C2A—C17A63 (2)
N4—C5—C6—C1526.7 (8)N4—C3—C2A—C17A164 (2)
C18—C5—C6—C15151.4 (6)N4—C3—C2B—N127.1 (16)
N4—C5—C6—C7154.3 (6)C2A—C3—C2B—N166.4 (14)
C18—C5—C6—C727.6 (8)N4—C3—C2B—C17B152.1 (19)
C15—C6—C7—C82.4 (9)C2A—C3—C2B—C17B59 (2)
C5—C6—C7—C8176.6 (6)C2A—N1—C2B—C366.9 (14)
C6—C7—C8—C91.6 (10)V1—N1—C2B—C338.2 (15)
C7—C8—C9—C142.0 (10)C2A—N1—C2B—C17B58 (3)
C7—C8—C9—C10179.2 (6)V1—N1—C2B—C17B163 (3)
C14—C9—C10—C111.6 (10)
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.902.193.011 (6)151
C7—H7A···O2iii0.932.413.335 (7)173
C18—H18B···O16iii0.962.563.482 (8)161
C3—H3B···Cg1iii0.972.953.874 (7)159
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[V2(C15H17N2O)2O4]
Mr648.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)25.187 (5), 7.663 (2), 16.898 (3)
β (°) 118.09 (3)
V3)2877.3 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.28 × 0.13 × 0.12
Data collection
DiffractometerOxford Diffraction Sapphire CCD
diffractometer
Absorption correctionNumerical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.828, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
9202, 2474, 2086
Rint0.078
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.153, 1.23
No. of reflections2474
No. of parameters202
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0144P)2 + 24.507P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.66, 0.41

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.902.193.011 (6)151
C7—H7A···O2ii0.932.413.335 (7)173
C18—H18B···O16ii0.962.563.482 (8)161
C3—H3B···Cg1ii0.972.953.874 (7)159
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y1/2, z+1/2.
ππ interactions (Å,°). top
CgICgJCg···CgDihedral angleInterplanar distanceOffset
Cg2Cg2iii3.518 (4)0.03.365 (4)1.025 (4)
Symmetry code: (iii) -x, -y, -z. Notes: Cg2 represents the centre of gravity of the ring C14-C19. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the offset distance of ring I from ring J.
 

Acknowledgements

This scientific work has been supported from funds for science in years 2007–2009 as a research project (N N204 0355 33 and DS/8210–4-0086–8).

References

First citationButler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937–1944.  CrossRef CAS Web of Science Google Scholar
First citationColpas, G. J., Hamstra, B. J., Kampf, J. W. & Pecoraro, V. L. (1994). Inorg. Chem. 33, 4669–4675.  CSD CrossRef CAS Web of Science Google Scholar
First citationEvangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249–265.  Web of Science CrossRef PubMed Google Scholar
First citationFulwood, R., Schmidt, H. & Rehder, D. (1995). J. Chem. Soc. Chem. Commun. pp. 1443–1444.  CrossRef Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W. & Kwiatkowski, M. (2006). Polyhedron, 25, 2809–2814.  Web of Science CSD CrossRef CAS Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018.  Web of Science CSD CrossRef CAS Google Scholar
First citationKwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559–2568.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Lah, M. S. & Pecoraro, V. L. (1988). Inorg. Chem. 27, 4657–4664.  CSD CrossRef CAS Web of Science Google Scholar
First citationMartinez, J. S., Carrol, G. L., Tschirret-Guth, R. A., Altenhoff, G., Little, R. D. & Butler, A. (2001). J. Am. Chem. Soc. 123, 3289–3294.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationRayati, S., Sadeghzadeh, N. & Khavasi, H. R. (2007). Inorg. Chem. Commun. 10, 1545–1548.  Web of Science CrossRef CAS Google Scholar
First citationRayati, S., Wojtczak, A. & Kozakiewicz, A. (2008). Inorg. Chim. Acta, 361, 1530–1533.  Web of Science CSD CrossRef CAS Google Scholar
First citationRehder, D. (1991). Angew. Chem. Int. Ed. Engl. 30, 148–167.  CrossRef Web of Science Google Scholar
First citationRehder, D. (1999). Coord. Chem. Rev. 182, 297–322.  Web of Science CrossRef CAS Google Scholar
First citationRomanowski, G., Kwiatkowski, E., Nowicki, W., Kwiatkowski, M. & Lis, T. (2008). Polyhedron, 27, 1601–1609.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoot, C. A., Hoeschele, J. D., Cornman, C. R., Kampf, J. W. & Pecoraro, V. L. (1993). Inorg. Chem. 32, 3855–3861.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSigel, H. & Sigel, A. (1995). Vanadium and its Role in Life. In Metal Ions in Biological Systems, Vol. 31, edited by H. Sigel, A & Sigel, A. New York: Marcel Dekker.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H. & Orvig, C. (2000). J. Chem. Soc. Dalton Trans. pp. 2885–2892.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m950-m951
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds