supplementary materials


cf2208 scheme

Acta Cryst. (2008). E64, m1027    [ doi:10.1107/S160053680802120X ]

Dipotassium 4,4'-(hexane-3,4-diyl)bis(benzenesulfonate) dihydrate

L. Orola, M. V. Veidis, S. Belyakov and A. Actins

Abstract top

The anion of the title compound, also called sygethin dihydrate, 2K+·C18H20O6S22-·2H2O, has crystallographic inversion symmetry. The K+ cation is surrounded by eight O atoms in a distorted cubic coordination geometry, forming extended K-O-S networks. There are also O-H...O hydrogen bonds.

Comment top

The synthesis has been described by Torf & Khromov-Borisov (1961). Replacement of the two OH groups of the estrogen hexestrol molecule with two KSO3 groups results in the formation of the dipotassium salt of 4,4'-(1,2-diethyl-1,2-ethanediyl)bis(benzenesulfonic acid), also known as sygethin. Although the placement of carbon atoms in sygethin is very similar to hexestrol (Weeks et al., 1973) sygethin does not show estrogen-type activity (Svergun, 1979).

The crystal structure of the title compound has been determined. Fig. 1 illustrates the structure. The anion is located on a center of symmetry. The unit cell contains one sygethin anion, two potassium cations and two water molecules.

The packing diagram, Fig. 2, indicates that there are eight oxygen atoms coordinated to the potassium ion in a very distorted cubic geometry: six oxygen atoms are from four sygethin SO3 ions and two oxygen atoms are from the two water molecules. A hydrogen bond is formed by each water molecule and sygethin.

Related literature top

For the synthesis, see: Torf & Khromov-Borisov (1961). For general background, see: Svergun (1979). For a related structure, see: Weeks et al. (1973).

Experimental top

The title compound was supplied by Grindeks Company. To grow crystals suitable for single-crystal diffraction study, the powder form of sygethin dihydrate was dissolved in water at 333 K to obtain a saturated solution. After filtration, the saturated solution was diluted with approximately 50% more water and allowed to crystallize in a petri dish at ambient temperature.

Refinement top

The hydrogen atoms were all located in a difference Fourier map. Hydrogen atoms attached to carbon atoms were repositioned goemetrically. During refinement, hydrogen atoms were constrained to the riding mode. Uiso(H)=xUeq(C,O), where the average values of x are 1.66 for H atoms of the methyl group, 1.2 to 1.29 for H atoms attached to the remaining C atom, and 1.41 for the H atoms of the water molecule.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids at the 50% probability level. [Symmetry code for unlabeled atoms: 1-x, -y, -z.]
[Figure 2] Fig. 2. Packing diagram of the title compound.
Dipotassium 4,4'-(hexane-3,4-diyl)bis(benzenesulfonate) dihydrate top
Crystal data top
2K+·C18H20O6S22–·2H2OZ = 1
Mr = 255.36F000 = 266
Triclinic, P1Dx = 1.497 Mg m3
Dm = Mg m3
Dm measured by ?
Hall symbol: -P 1Mo Kα radiation
λ = 0.71073 Å
a = 5.8741 (5) ÅCell parameters from 2576 reflections
b = 6.5684 (5) Åθ = 1.4–27.4º
c = 15.2335 (14) ŵ = 0.64 mm1
α = 84.272 (4)ºT = 298 K
β = 83.768 (5)ºPrism, colourless
γ = 76.522 (6)º0.27 × 0.19 × 0.14 mm
V = 566.51 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
1918 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.027
Monochromator: graphiteθmax = 27.4º
T = 298 Kθmin = 1.4º
φ and ω scansh = 7→7
Absorption correction: nonek = 8→8
4330 measured reflectionsl = 18→19
2576 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = [1-(Fo-Fc)2/36σ2(F)]2/[53.8T0(x) + 84.3T1(x) + 51.6T2(x) + 20.0T3(x) + 5.48T4(x)]
where Ti are Chebychev polynomials and x = Fc/Fmax
R[F2 > 2σ(F2)] = 0.051(Δ/σ)max = 0.0003
wR(F2) = 0.122Δρmax = 1.49 e Å3
S = 0.89Δρmin = 0.42 e Å3
1918 reflectionsExtinction correction: none
137 parameters
Crystal data top
2K+·C18H20O6S22–·2H2Oγ = 76.522 (6)º
Mr = 255.36V = 566.51 (8) Å3
Triclinic, P1Z = 1
a = 5.8741 (5) ÅMo Kα
b = 6.5684 (5) ŵ = 0.64 mm1
c = 15.2335 (14) ÅT = 298 K
α = 84.272 (4)º0.27 × 0.19 × 0.14 mm
β = 83.768 (5)º
Data collection top
Nonius KappaCCD
diffractometer
2576 independent reflections
Absorption correction: none1918 reflections with I > 2σ(I)
4330 measured reflectionsRint = 0.027
Refinement top
R[F2 > 2σ(F2)] = 0.051137 parameters
wR(F2) = 0.122H-atom parameters constrained
S = 0.89Δρmax = 1.49 e Å3
1918 reflectionsΔρmin = 0.42 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5804 (7)0.0364 (6)0.0370 (2)0.0454
C20.4756 (6)0.0667 (5)0.1221 (2)0.0398
C30.5685 (7)0.2183 (5)0.1527 (2)0.0455
C40.4714 (7)0.3172 (5)0.2292 (2)0.0431
C50.2797 (5)0.2595 (5)0.27676 (19)0.0324
S60.15644 (14)0.37197 (12)0.37713 (5)0.0329
O70.1593 (5)0.1938 (4)0.44237 (15)0.0503
O80.0830 (4)0.4813 (4)0.36269 (17)0.0476
O90.3068 (5)0.5041 (5)0.39615 (18)0.0554
C100.1865 (7)0.1054 (7)0.2483 (2)0.0490
C110.2858 (7)0.0092 (8)0.1721 (3)0.0564
C120.6723 (9)0.2695 (7)0.0533 (3)0.0589
C130.8749 (8)0.3309 (7)0.1140 (3)0.0603
K140.67561 (14)0.20792 (11)0.48854 (5)0.0427
O150.3244 (5)0.1011 (4)0.62693 (19)0.0594
H110.71950.02350.01720.0592*
H310.70030.25420.12010.0587*
H410.53610.42400.24930.0543*
H1010.05520.06530.28170.0628*
H1110.21990.09570.15240.0748*
H1210.72800.33090.00330.0684*
H1220.54100.32720.08250.0689*
H1310.92070.48390.11920.0894*
H1321.00670.27430.08670.0891*
H1330.82130.27570.17130.0894*
H50.22490.21100.64060.0828*
H130.41650.07170.66650.0829*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.053 (2)0.050 (2)0.0306 (16)0.0163 (14)0.0018 (14)0.0036 (16)
C20.0498 (19)0.0424 (18)0.0251 (14)0.0110 (13)0.0015 (12)0.0038 (15)
C30.066 (2)0.0375 (17)0.0340 (16)0.0099 (13)0.0122 (15)0.0186 (17)
C40.062 (2)0.0350 (16)0.0350 (16)0.0118 (13)0.0071 (15)0.0172 (16)
C50.0360 (15)0.0342 (15)0.0247 (13)0.0073 (11)0.0044 (11)0.0006 (13)
S60.0364 (4)0.0328 (4)0.0272 (4)0.0097 (3)0.0024 (3)0.0000 (3)
O70.0666 (17)0.0453 (14)0.0291 (12)0.0015 (10)0.0008 (11)0.0045 (13)
O80.0413 (14)0.0446 (14)0.0498 (14)0.0112 (11)0.0066 (11)0.0089 (11)
O90.0584 (17)0.0668 (18)0.0492 (15)0.0335 (13)0.0058 (12)0.0235 (14)
C100.0441 (19)0.068 (2)0.0424 (18)0.0273 (17)0.0078 (15)0.0226 (18)
C110.053 (2)0.080 (3)0.049 (2)0.039 (2)0.0069 (16)0.032 (2)
C120.073 (3)0.055 (2)0.049 (2)0.0125 (18)0.0002 (19)0.014 (2)
C130.062 (3)0.054 (2)0.066 (3)0.005 (2)0.016 (2)0.010 (2)
K140.0488 (5)0.0328 (4)0.0463 (4)0.0084 (3)0.0041 (3)0.0066 (3)
O150.0713 (19)0.0425 (14)0.0553 (16)0.0111 (12)0.0175 (14)0.0138 (13)
Geometric parameters (Å, °) top
C1—C1i1.518 (7)C11—H1110.952
C1—C21.525 (4)C12—C131.542 (6)
C1—C121.505 (6)C12—H1210.980
C1—H110.993C12—H1220.982
C2—C31.382 (5)C13—H1310.975
C2—C111.386 (5)C13—H1320.972
C3—C41.393 (4)C13—H1330.971
C3—H310.938O15—H50.844
C4—C51.380 (5)O15—H130.832
C4—H410.961K14—O9ii2.733 (3)
C5—S61.773 (3)K14—O7iii2.736 (3)
C5—C101.382 (5)K14—O15iii2.816 (3)
S6—O71.456 (3)K14—O7iv2.834 (3)
S6—O81.452 (2)K14—O92.934 (3)
S6—O91.442 (3)K14—O152.937 (3)
C10—C111.383 (5)K14—O8iv2.970 (3)
C10—H1010.952K14—O73.211 (3)
C1i—C1—C2111.4 (4)O7—S6—O9112.47 (18)
C1i—C1—C12116.9 (4)O8—S6—O9114.94 (17)
C2—C1—C12112.1 (3)C5—C10—C11119.9 (3)
C1i—C1—H11104.1C5—C10—H101119.6
C2—C1—H11104.9C11—C10—H101120.5
C12—C1—H11106.2C2—C11—C10121.4 (3)
C1—C2—C3121.3 (3)C2—C11—H111119.0
C1—C2—C11121.1 (3)C10—C11—H111119.6
C3—C2—C11117.6 (3)C1—C12—C13114.2 (4)
C2—C3—C4121.9 (3)C1—C12—H121109.5
C2—C3—H31117.9C13—C12—H121108.1
C4—C3—H31120.2C1—C12—H122106.9
C3—C4—C5119.1 (3)C13—C12—H122107.6
C3—C4—H41121.1H121—C12—H122110.5
C5—C4—H41119.8C12—C13—H131106.9
C4—C5—S6121.1 (2)C12—C13—H132109.2
C4—C5—C10120.0 (3)H131—C13—H132109.6
S6—C5—C10118.9 (3)C12—C13—H133109.4
C5—S6—O7104.86 (14)H131—C13—H133111.4
C5—S6—O8106.39 (14)H132—C13—H133110.4
O7—S6—O8110.82 (17)H5—O15—H13106.5
C5—S6—O9106.55 (15)
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O15—H5···O8v0.842.002.790 (2)156
Symmetry codes: (v) −x, −y+1, −z+1.
Table 1
Selected geometric parameters (Å)
top
K14—O9i2.733 (3)K14—O92.934 (3)
K14—O7ii2.736 (3)K14—O152.937 (3)
K14—O15ii2.816 (3)K14—O8iii2.970 (3)
K14—O7iii2.834 (3)K14—O73.211 (3)
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x+1, y, z.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O15—H5···O8iv0.842.002.790 (2)156
Symmetry codes: (iv) −x, −y+1, −z+1.
Acknowledgements top

Financial aid was provided by Latvia Science Council grant 05.1737.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Svergun, V. T. (1979). Biull. Eksp. Biol. Med. 87, 151–153.

Torf, S. F. & Khromov-Borisov, N. V. (1961). Med. Radiol. 15, 13–14.

Weeks, C. M., Pokrywiecki, S. & Duax, W. (1973). Acta Cryst. B29, 1729–1731.