supplementary materials


cs2083 scheme

Acta Cryst. (2008). E64, o1608    [ doi:10.1107/S160053680802312X ]

Methyl 2-[(E)-(4-nitrophenyl)hydrazono]-3-oxobutyrate

Y.-H. Liu, G.-Y. Sun, J.-F. Liu, J. Ye and X.-L. Liu

Abstract top

The molecule of the title compound, C11H11N3O5, exists as the E isomer as it is stabilized by an intramolecular hydrogen bond. Except for the methyl H atoms, all atoms lie in special positions on a mirror plane and form a large conjugated system; the methyl H atoms are disordered about the mirror plane. In the crystalline state, bifurcated intra- and intermolecular N-H...O hydrogen bonds and four intermolecular C-H...O hydrogen bonds link the molecules into large perfectly planar sheets. Along the c axis, the N-N bond center approaches the phenyl-ring centroids of its neighbouring molecules above and below to give [pi]-[pi] overlap (at a distance of ca 3.57 Å), thus fusing the molecules into a three-dimensional framework.

Comment top

Phenylhydrazone and its derivatives show remarkable stability and high tendency to form non-centrosymmetric crystal packing (Lewis et al., 1999; Mague et al., 1997) and exceptional electronic, bioactive and chemical properties useful for analytic purposes (Mahy et al., 1993), for biological chemistry (Thami et al., 1992) and also for optical materials (Serbutoviez et al., 1995). As a part of our ongoing research (Liu et al., 2007; Liu et al., 2008), the crystal structure of the title compound was solved.

The molecule of the title compound exists in the (E)-isomer configuration, not as the generally more stable (Z)-isomer (Schemes 1 and 2). The (E)-isomer exists here because of the N—H···O intra-molecular hydrogen bond stabilizes it by forming a pseudo-ring S(6) (Bernstein et al., 1995) motif (Fig. 1, Table 1 and 2). The N1—C6 bond distance at 1.397 (3) Å is longer than the expected CN double bond (1.32 Å) but is shorter than a C—N single bond (1.47 Å) because of the classic sp2-hybrid nitrogen atom, as also found in our earlier work (Liu et al., 2007, 2008). All these effects may help all non-hydrogen atoms to form a perfect plane which coincides with the mirror plane of the space group, less for the hydrogen atoms of the two methyl groups whose six H atoms are disordered over two orientations.

In the crystal packing the molecules are linked into larger perfectly planar sheets via by four C—H···O inter-molecular hydrogen bonds and one N—H···O intra-molecular hydrogen bond running parallel to the [001] plane (Fig. 2, Table 2). H1 atom of the N1 atom is a part of a bifurcated system and makes both intra- and intermolecular H-bridges, with angles around the H1 adding up to 360°. Finally, along the c axis the N1—N2 bond centers of molecules combine its up and down neighbours' phenyl rings into three dimensional framework (Fig. 2). Consecutive bond centers···phenyl ring centers are at a distance of ca. 3.57 Å and an incline at an angle of ca. 137° (Fig. 3).

Related literature top

For related literature, see: Bernstein et al. (1995); Lewis et al. (1999); Liu et al. (2007, 2008); Mague et al. (1997); Mahy et al. (1993); Serbutoviez et al. (1995); Thami et al. (1992); Wang et al. (2005).

Experimental top

The title compound was synthesized according to literature procedure (Wang et al. 2005; Liu et al. 2008). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane at room temperature over a period of 6 d.

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H distances of 0.93 (aromatic) or 0.97 Å (methyl), and with Uiso(H) values of 1.2Ueq (C, N).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Disorder of the two methyl groups are indicated and the N–H···O intra-molecular hydrogen bond shown as dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of a hydrogen bonded plane parallel to [001], which is built by one N—H···O and four C—H···O inter-molecular hydrogen bonds (dashed lines). For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3] Fig. 3. Excerpt of the crystal structure of the title compound, showing that along the c axis the N1—N2 bond center of one molecule combines its up and down phenyl rings in the other two molecules into a three dimensional framework. H atoms not involved in hydrogen bonding have been omitted.
[Figure 4] Fig. 4. The E and Z isomers of the title compound.
(Z)-3-Ferrocenyl-2-(4-pyridyl)propenenitrile top
Crystal data top
C11H11N3O5Dx = 1.442 Mg m3
Mr = 265.2Melting point: 400 K
Orthorhombic, PbcmMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 1996 reflections
a = 12.880 (3) Åθ = 2.8–25.4º
b = 14.299 (3) ŵ = 0.12 mm1
c = 6.6328 (14) ÅT = 296 (2) K
V = 1221.6 (5) Å3Block, yellow
Z = 40.30 × 0.30 × 0.20 mm
F000 = 552
Data collection top
Bruker SMART 1000 CCD
diffractometer
1546 independent reflections
Radiation source: fine-focus sealed tube968 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
T = 296(2) Kθmax = 27.6º
Thin–slice ω scansθmin = 1.6º
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 16→16
Tmin = 0.966, Tmax = 0.977k = 17→18
10245 measured reflectionsl = 8→8
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042  w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2977P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.121(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.20 e Å3
1546 reflectionsΔρmin = 0.13 e Å3
118 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (9)
Secondary atom site location: difference Fourier map
Crystal data top
C11H11N3O5V = 1221.6 (5) Å3
Mr = 265.2Z = 4
Orthorhombic, PbcmMo Kα
a = 12.880 (3) ŵ = 0.12 mm1
b = 14.299 (3) ÅT = 296 (2) K
c = 6.6328 (14) Å0.30 × 0.30 × 0.20 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
1546 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
968 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.977Rint = 0.041
10245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042118 parameters
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
1546 reflectionsΔρmin = 0.13 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.68298 (15)0.51128 (12)0.25000.0726 (6)
O31.00596 (16)0.52888 (14)0.25000.0896 (8)
O10.68240 (17)0.10594 (13)0.25000.0887 (8)
O20.52310 (17)0.06963 (13)0.25000.1081 (10)
N30.61352 (18)0.04820 (14)0.25000.0582 (6)
N10.72021 (14)0.33126 (12)0.25000.0422 (5)
H10.67210.37300.25000.051*
N20.81817 (14)0.35582 (13)0.25000.0435 (5)
C100.7757 (2)0.52229 (16)0.25000.0489 (6)
C60.69506 (16)0.23623 (15)0.25000.0379 (5)
C80.9648 (2)0.45339 (18)0.25000.0597 (7)
C50.59053 (17)0.21060 (14)0.25000.0436 (6)
H50.53920.25630.25000.052*
C20.74469 (18)0.07505 (15)0.25000.0447 (6)
H20.79570.02900.25000.054*
C40.56352 (18)0.11723 (15)0.25000.0475 (6)
H40.49410.09930.25000.057*
O50.81917 (15)0.60575 (12)0.25000.0768 (7)
C30.64146 (18)0.05094 (15)0.25000.0423 (5)
C10.77167 (17)0.16807 (15)0.25000.0431 (6)
H1A0.84130.18530.25000.052*
C90.84922 (18)0.44293 (16)0.25000.0453 (6)
C71.0288 (2)0.3663 (2)0.25000.0906 (12)
H7A1.03180.34120.11580.136*0.50
H7B0.99800.32110.33870.136*0.50
H7C1.09780.38060.29540.136*0.50
C110.7477 (3)0.68338 (19)0.25000.0908 (11)
H11A0.71530.68820.12010.136*0.50
H11B0.78470.74010.27880.136*0.50
H11C0.69550.67350.35110.136*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0474 (12)0.0424 (10)0.1281 (19)0.0013 (8)0.0000.000
O30.0517 (12)0.0553 (13)0.162 (2)0.0184 (10)0.0000.000
O10.0783 (14)0.0355 (10)0.152 (2)0.0124 (10)0.0000.000
O20.0591 (13)0.0402 (11)0.225 (3)0.0140 (10)0.0000.000
N30.0587 (14)0.0335 (11)0.0824 (16)0.0003 (11)0.0000.000
N10.0398 (10)0.0318 (10)0.0551 (12)0.0030 (8)0.0000.000
N20.0430 (11)0.0392 (10)0.0482 (12)0.0067 (9)0.0000.000
C100.0524 (16)0.0355 (13)0.0588 (16)0.0074 (11)0.0000.000
C60.0426 (12)0.0333 (11)0.0377 (12)0.0018 (10)0.0000.000
C80.0493 (15)0.0478 (15)0.0821 (19)0.0102 (13)0.0000.000
C50.0417 (12)0.0317 (12)0.0575 (14)0.0039 (9)0.0000.000
C20.0434 (13)0.0358 (12)0.0547 (14)0.0065 (10)0.0000.000
C40.0392 (12)0.0369 (12)0.0664 (16)0.0023 (10)0.0000.000
O50.0622 (12)0.0348 (10)0.1333 (19)0.0092 (9)0.0000.000
C30.0456 (13)0.0283 (11)0.0530 (14)0.0000 (10)0.0000.000
C10.0381 (12)0.0404 (13)0.0507 (14)0.0020 (10)0.0000.000
C90.0460 (13)0.0360 (12)0.0537 (14)0.0081 (10)0.0000.000
C70.0511 (17)0.0568 (17)0.164 (4)0.0011 (14)0.0000.000
C110.088 (2)0.0336 (14)0.150 (3)0.0002 (16)0.0000.000
Geometric parameters (Å, °) top
O4—C101.204 (3)C5—C41.380 (3)
O3—C81.203 (3)C5—H50.9300
O1—N31.212 (3)C2—C31.374 (3)
O2—N31.204 (3)C2—C11.375 (3)
N3—C31.463 (3)C2—H20.9300
N1—N21.310 (2)C4—C31.381 (3)
N1—C61.397 (3)C4—H40.9300
N1—H10.8600O5—C111.442 (3)
N2—C91.308 (3)C1—H1A0.9300
C10—O51.318 (3)C7—H7A0.9600
C10—C91.478 (3)C7—H7B0.9600
C6—C11.387 (3)C7—H7C0.9600
C6—C51.395 (3)C11—H11A0.9600
C8—C71.494 (4)C11—H11B0.9600
C8—C91.496 (3)C11—H11C0.9600
O2—N3—O1122.3 (2)C3—C4—H4120.6
O2—N3—C3119.0 (2)C10—O5—C11115.2 (2)
O1—N3—C3118.7 (2)C2—C3—C4122.1 (2)
N2—N1—C6118.96 (18)C2—C3—N3118.8 (2)
N2—N1—H1120.5C4—C3—N3119.1 (2)
C6—N1—H1120.5C2—C1—C6120.0 (2)
C9—N2—N1123.4 (2)C2—C1—H1A120.0
O4—C10—O5122.7 (2)C6—C1—H1A120.0
O4—C10—C9122.3 (2)N2—C9—C10122.4 (2)
O5—C10—C9115.0 (2)N2—C9—C8113.5 (2)
C1—C6—C5120.1 (2)C10—C9—C8124.1 (2)
C1—C6—N1121.24 (19)C8—C7—H7A109.5
C5—C6—N1118.64 (19)C8—C7—H7B109.5
O3—C8—C7120.3 (2)H7A—C7—H7B109.5
O3—C8—C9121.9 (2)C8—C7—H7C109.5
C7—C8—C9117.8 (2)H7A—C7—H7C109.5
C4—C5—C6119.8 (2)H7B—C7—H7C109.5
C4—C5—H5120.1O5—C11—H11A109.5
C6—C5—H5120.1O5—C11—H11B109.5
C3—C2—C1119.2 (2)H11A—C11—H11B109.5
C3—C2—H2120.4O5—C11—H11C109.5
C1—C2—H2120.4H11A—C11—H11C109.5
C5—C4—C3118.8 (2)H11B—C11—H11C109.5
C5—C4—H4120.6
C6—N1—N2—C9180.0O1—N3—C3—C4180.0
N2—N1—C6—C10.0C3—C2—C1—C60.0
N2—N1—C6—C5180.0C5—C6—C1—C20.0
C1—C6—C5—C40.0N1—C6—C1—C2180.0
N1—C6—C5—C4180.0N1—N2—C9—C100.0
C6—C5—C4—C30.0N1—N2—C9—C8180.0
O4—C10—O5—C110.0O4—C10—C9—N20.0
C9—C10—O5—C11180.0O5—C10—C9—N2180.0
C1—C2—C3—C40.0O4—C10—C9—C8180.0
C1—C2—C3—N3180.0O5—C10—C9—C80.0
C5—C4—C3—C20.0O3—C8—C9—N2180.0
C5—C4—C3—N3180.0C7—C8—C9—N20.0
O2—N3—C3—C2180.0O3—C8—C9—C100.0
O1—N3—C3—C20.0C7—C8—C9—C10180.0
O2—N3—C3—C40.0
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.982.618 (3)130
C2—H2···O3i0.932.553.279 (3)135
C11—H11B···O1ii0.962.573.128 (3)117
N1—H1···O2iii0.862.643.439 (3)154
C5—H5···O2iii0.932.623.467 (4)153
C4iii—H4iii···O40.932.613.518 (3)167
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+1/2.
Table 1
Selected geometric parameters (Å, °)
top
O4—C101.204 (3)N2—C91.308 (3)
O3—C81.203 (3)C10—O51.318 (3)
O1—N31.212 (3)C10—C91.478 (3)
O2—N31.204 (3)C8—C71.494 (4)
N3—C31.463 (3)C8—C91.496 (3)
N1—N21.310 (2)O5—C111.442 (3)
N1—C61.397 (3)
O2—N3—O1122.3 (2)C5—C6—N1118.64 (19)
O2—N3—C3119.0 (2)O3—C8—C7120.3 (2)
O1—N3—C3118.7 (2)O3—C8—C9121.9 (2)
C9—N2—N1123.4 (2)C7—C8—C9117.8 (2)
O4—C10—O5122.7 (2)C10—O5—C11115.2 (2)
O4—C10—C9122.3 (2)N2—C9—C10122.4 (2)
O5—C10—C9115.0 (2)N2—C9—C8113.5 (2)
C1—C6—N1121.24 (19)C10—C9—C8124.1 (2)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.982.618 (3)130
C2—H2···O3i0.932.553.279 (3)135
C11—H11B···O1ii0.962.573.128 (3)117
N1—H1···O2iii0.862.643.439 (3)154
C5—H5···O2iii0.932.623.467 (4)153
C4iii—H4iii···O40.932.613.518 (3)167
Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+1/2.
Acknowledgements top

The authors thank the Natural Science Foundation of Yangzhou University (grant No. 2006XJJ03) for financial support of this work.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker, (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Lewis, M., Barnes, C. L., Hathaway, B. A. & Glaser, R. (1999). Acta Cryst. C55, 975–978.

Liu, X.-L., Zhao, Y., Li, Z.-G. & Liu, Y.-H. (2008). Acta Cryst. E64, o152.

Liu, Y.-H., Zhao, Y., Liu, X.-L., Tong, B.-W. & Ye, J. (2007). Acta Cryst. E63, o4072.

Mague, J. T., Vang, S., Berge, D. G. & Wacholtz, W. F. (1997). Acta Cryst. C53, 973–979.

Mahy, J. P., Gaspard, S. & Mansuy, D. (1993). Biochemistry, 32, 4014–4021.

Serbutoviez, C., Bosshard, C., Knöpfle, G., Wyss, P., Prêtre, P., Gunter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198–1206.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Thami, T., Bassoul, P., Petit, M., Simon, J., Fort, A., Barzoukas, M. & Villaeys, A. (1992). J. Am. Chem. Soc. 114, 915–921.

Wang, J.-P., Chen, X.-X. & Zhang, Y.-Q. (2005). Huaxue Yanjiu, 16, 29–31.