supporting information


Acta Cryst. (2008). E64, m995    [ doi:10.1107/S1600536808019752 ]

Poly[tris­([mu]-benzene-1,4-dicarboxylato)bis­(dipyrido[3,2-a:2',3'-c]phenazine)trimanganese(II)]

W.-Z. Zhang and Q. Xu

Abstract top

In the title compound, [Mn3(C8H4O4)3(C14H8N4)2]n, one Mn atom is located on an inversion centre and is six-coordinated by four carboxyl­ate O atoms from different benzene-1,4-dicarboxyl­ate (1,4-bdc) ligands and two phenanthrene N atoms from a dipyrido[3,2-a:2',3'-c]phenazine ligand. The other Mn atom is also six-coordinate, binding to six carboxyl­ate O atoms from different 1,4-bdc ligands. The dicarboxyl­ate groups chelate and bridge the two Mn atoms and a symmetry-related Mn atom to form a trimanganese unit. Bridging of the trinuclear MnII clusters leads to a two-dimensional structure.

Comment top

Benzene-1,4-dicarboxylic acid (1,4-H2bdc), as a multidentate ligand, has been extensively studied in the chemistry of coordination polymers (Chen & Liu, 2002). Here, we report a new MnII coordination polymer with 1,4-bdc ligand, namely [Mn3(1,4-bdc)3(L)2] (I), where L = dipyrido[3,2-a:2',3'-c]-phenazine.

In (I) the Mn1 atom is located on an inversion center and six-coordinated by four carboxylate O atoms from different 1,4-bdc ligands and two phenanthrene N atoms from L ligand. The Mn2 atom is also six-coordinate binding to six carboxylate O atoms from different 1,4-bdc ligands (Fig. 1). The dicarboxylato groups chelate and bridge the Mn1, Mn2 and Mn2iii atoms to form a trimanganese unit (Fig. 1). The asymmetric unit based on trinuclear MnII clusters leads to a 2D structure. The L ligands are attached on both sides of the layers.

Related literature top

For related structures, see: Chen & Liu (2002).

Experimental top

A mixture of Mn(NO3)2.2H2O (1 mmol), 1,4-H2bdc (1 mmol) and L (1 mmol) was dissolved in 12 ml distilled water, followed by addition of triethylamine until the pH value of the system was approximately 5.0. The resulting solution was sealed in a 23 ml Teflon-lined stainless steel autoclave and heated at 190 °C for 10 days under autogenous pressure. The reaction vessel was then slowly cooled to room temperature. Pale-yellow block-like crystals of (I) suitable for single-crystal X-ray diffraction analysis were obtained from the resulting solution.

Refinement top

C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms and also some C atoms have been omitted for the sake of clarity. Symmetry code: (i) 1-x, 2-y, 1-z; (ii) x, 0.5-y, z-0.5; (iii) 1-x, 1-y, 1-z; (iv) 1-x, 0.5+y, 1.5-z.
Poly[tris(µ-benzene-1,4-dicarboxylato)bis(dipyrido[3,2-a:2',3'-c]phenazine)trimanganese(II)] top
Crystal data top
[Mn3(C8H4O4)3(C14H8N4)2]F(000) = 1134
Mr = 1121.64Dx = 1.565 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14328 reflections
a = 13.323 (3) Åθ = 3.0–27.5°
b = 10.949 (2) ŵ = 0.86 mm1
c = 16.315 (3) ÅT = 293 K
β = 90.04 (3)°Block, pale yellow
V = 2379.9 (8) Å30.28 × 0.21 × 0.19 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5424 independent reflections
Radiation source: rotating anode3840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1717
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1413
Tmin = 0.783, Tmax = 0.847l = 2120
21939 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0202P)2 + 2.6391P]
where P = (Fo2 + 2Fc2)/3
5424 reflections(Δ/σ)max = 0.001
340 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Mn3(C8H4O4)3(C14H8N4)2]V = 2379.9 (8) Å3
Mr = 1121.64Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.323 (3) ŵ = 0.86 mm1
b = 10.949 (2) ÅT = 293 K
c = 16.315 (3) Å0.28 × 0.21 × 0.19 mm
β = 90.04 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5424 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3840 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.847Rint = 0.073
21939 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
5424 reflectionsΔρmin = 0.39 e Å3
340 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0322 (2)0.6320 (3)0.4463 (2)0.0404 (8)
H10.04860.56600.41300.048*
C20.0586 (3)0.6896 (3)0.4341 (2)0.0482 (9)
H20.10250.66160.39390.058*
C30.0840 (3)0.7882 (3)0.4815 (2)0.0459 (9)
H30.14460.82860.47330.055*
C40.0176 (2)0.8268 (3)0.54190 (19)0.0328 (7)
C50.0715 (2)0.7628 (3)0.55150 (18)0.0287 (7)
C60.1417 (2)0.7963 (3)0.61634 (18)0.0289 (7)
C70.2902 (3)0.7568 (3)0.6832 (2)0.0433 (8)
H70.34890.71130.68780.052*
C80.2726 (3)0.8488 (3)0.7401 (2)0.0494 (9)
H80.31870.86480.78150.059*
C90.1856 (3)0.9157 (3)0.7339 (2)0.0465 (9)
H90.17190.97710.77170.056*
C100.1185 (2)0.8913 (3)0.67094 (19)0.0338 (7)
C110.0389 (2)0.9296 (3)0.5959 (2)0.0361 (7)
C120.0252 (2)0.9581 (3)0.6599 (2)0.0374 (8)
C130.0781 (3)1.1090 (4)0.6994 (3)0.0612 (11)
H130.09531.17230.73480.073*
C140.1422 (3)1.0841 (3)0.6341 (3)0.0570 (11)
H140.19901.13230.62670.068*
C150.4005 (2)0.7660 (3)0.49542 (19)0.0324 (7)
C160.4529 (2)0.8864 (2)0.4964 (2)0.0335 (7)
C170.5458 (3)0.8984 (3)0.5301 (3)0.0619 (12)
H170.57840.82990.55080.074*
C180.5926 (3)1.0109 (3)0.5339 (3)0.0664 (13)
H180.65591.01700.55750.080*
C190.3513 (2)0.4088 (3)0.63506 (18)0.0311 (7)
C200.3366 (2)0.3233 (3)0.70612 (18)0.0297 (7)
C210.4127 (2)0.2443 (3)0.7294 (2)0.0442 (9)
H210.47350.24500.70150.053*
C220.3987 (2)0.1647 (3)0.7938 (2)0.0388 (8)
H220.45050.11300.80990.047*
C230.3081 (2)0.1615 (2)0.83462 (17)0.0259 (6)
C240.2313 (2)0.2385 (3)0.8108 (2)0.0366 (8)
H240.16960.23490.83720.044*
C250.2460 (2)0.3212 (3)0.74757 (19)0.0368 (8)
H250.19510.37510.73300.044*
C260.2900 (2)0.0716 (2)0.90190 (17)0.0253 (6)
N10.09707 (18)0.6666 (2)0.50352 (15)0.0314 (6)
N20.22697 (19)0.7308 (2)0.62252 (16)0.0331 (6)
N30.1245 (2)0.9939 (3)0.58228 (19)0.0483 (8)
N40.0048 (2)1.0488 (3)0.7141 (2)0.0531 (8)
O10.43683 (17)0.4150 (2)0.60481 (14)0.0475 (6)
O20.27522 (16)0.46763 (19)0.61136 (13)0.0367 (5)
O30.31820 (17)0.75629 (19)0.45763 (15)0.0401 (6)
O40.43671 (16)0.67877 (17)0.53665 (13)0.0333 (5)
O50.36377 (16)0.01648 (19)0.93248 (13)0.0370 (5)
O60.20305 (16)0.0478 (2)0.92461 (13)0.0395 (6)
Mn10.50000.50000.50000.02269 (14)
Mn20.25609 (3)0.59443 (4)0.51712 (3)0.02279 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (19)0.047 (2)0.039 (2)0.0036 (15)0.0036 (15)0.0090 (15)
C20.036 (2)0.064 (2)0.045 (2)0.0035 (18)0.0131 (16)0.0072 (18)
C30.0327 (19)0.057 (2)0.048 (2)0.0051 (17)0.0031 (16)0.0013 (17)
C40.0269 (16)0.0366 (17)0.0350 (18)0.0020 (14)0.0016 (13)0.0037 (13)
C50.0292 (16)0.0252 (15)0.0317 (17)0.0002 (12)0.0033 (13)0.0015 (12)
C60.0302 (16)0.0241 (15)0.0323 (17)0.0035 (12)0.0018 (13)0.0002 (12)
C70.039 (2)0.050 (2)0.041 (2)0.0085 (16)0.0090 (15)0.0107 (16)
C80.047 (2)0.056 (2)0.045 (2)0.0042 (18)0.0160 (17)0.0207 (17)
C90.051 (2)0.044 (2)0.045 (2)0.0041 (17)0.0037 (16)0.0180 (16)
C100.0363 (18)0.0304 (17)0.0348 (18)0.0003 (14)0.0012 (13)0.0014 (13)
C110.0318 (17)0.0314 (18)0.045 (2)0.0060 (14)0.0048 (14)0.0062 (14)
C120.0397 (19)0.0298 (17)0.043 (2)0.0064 (14)0.0072 (15)0.0030 (14)
C130.061 (3)0.046 (2)0.077 (3)0.020 (2)0.006 (2)0.014 (2)
C140.049 (2)0.042 (2)0.079 (3)0.0222 (19)0.009 (2)0.003 (2)
C150.0368 (18)0.0235 (16)0.0368 (18)0.0017 (13)0.0047 (14)0.0001 (13)
C160.0309 (17)0.0184 (15)0.051 (2)0.0031 (13)0.0035 (14)0.0056 (13)
C170.051 (2)0.0238 (18)0.111 (4)0.0033 (17)0.034 (2)0.021 (2)
C180.049 (2)0.0296 (19)0.121 (4)0.0141 (18)0.042 (2)0.020 (2)
C190.0385 (18)0.0289 (16)0.0258 (16)0.0024 (14)0.0006 (13)0.0048 (12)
C200.0344 (17)0.0291 (16)0.0256 (16)0.0025 (13)0.0002 (12)0.0079 (12)
C210.0293 (18)0.056 (2)0.047 (2)0.0019 (16)0.0076 (15)0.0238 (17)
C220.0276 (17)0.048 (2)0.041 (2)0.0079 (15)0.0021 (14)0.0201 (15)
C230.0305 (16)0.0253 (15)0.0220 (15)0.0025 (12)0.0021 (12)0.0036 (11)
C240.0335 (18)0.0392 (18)0.0371 (19)0.0059 (14)0.0103 (14)0.0148 (14)
C250.0405 (19)0.0358 (18)0.0342 (18)0.0115 (15)0.0058 (14)0.0110 (14)
C260.0330 (16)0.0207 (14)0.0223 (15)0.0003 (12)0.0008 (12)0.0001 (11)
N10.0318 (14)0.0299 (14)0.0324 (15)0.0004 (11)0.0022 (11)0.0025 (11)
N20.0339 (15)0.0334 (14)0.0320 (15)0.0071 (11)0.0013 (11)0.0065 (11)
N30.0420 (17)0.0420 (17)0.061 (2)0.0127 (14)0.0055 (14)0.0061 (15)
N40.054 (2)0.0421 (17)0.064 (2)0.0163 (15)0.0024 (16)0.0168 (15)
O10.0393 (13)0.0572 (16)0.0462 (15)0.0007 (12)0.0114 (11)0.0291 (12)
O20.0418 (13)0.0353 (12)0.0329 (13)0.0052 (10)0.0036 (10)0.0149 (9)
O30.0385 (13)0.0260 (11)0.0560 (15)0.0088 (10)0.0080 (11)0.0055 (10)
O40.0479 (13)0.0159 (10)0.0361 (12)0.0008 (9)0.0007 (10)0.0003 (8)
O50.0363 (12)0.0400 (13)0.0349 (13)0.0057 (10)0.0038 (10)0.0153 (10)
O60.0340 (13)0.0456 (13)0.0391 (13)0.0035 (10)0.0021 (10)0.0213 (10)
Mn10.0237 (3)0.0192 (3)0.0252 (3)0.0012 (2)0.0033 (2)0.0028 (2)
Mn20.0281 (2)0.0183 (2)0.0220 (2)0.00027 (18)0.00073 (16)0.00085 (17)
Geometric parameters (Å, º) top
C1—N11.328 (4)C17—H170.9300
C1—C21.379 (5)C18—C16i1.369 (4)
C1—H10.9300C18—H180.9300
C2—C31.370 (5)C19—O11.244 (4)
C2—H20.9300C19—O21.262 (4)
C3—C41.390 (4)C19—C201.503 (4)
C3—H30.9300C20—C251.384 (4)
C4—C51.387 (4)C20—C211.386 (4)
C4—C111.457 (4)C21—C221.378 (4)
C5—N11.356 (4)C21—H210.9300
C5—C61.458 (4)C22—C231.379 (4)
C6—N21.347 (4)C22—H220.9300
C6—C101.404 (4)C23—C241.382 (4)
C7—N21.331 (4)C23—C261.494 (4)
C7—C81.390 (5)C24—C251.386 (4)
C7—H70.9300C24—H240.9300
C8—C91.374 (5)C25—H250.9300
C8—H80.9300C26—O61.245 (3)
C9—C101.388 (4)C26—O51.256 (3)
C9—H90.9300N1—Mn22.272 (3)
C10—C121.454 (4)N2—Mn22.311 (2)
C11—N31.358 (4)O1—Mn12.121 (2)
C11—C121.385 (5)O2—Mn22.087 (2)
C12—N41.357 (4)O3—Mn22.184 (2)
C13—N41.309 (5)O4—Mn12.214 (2)
C13—C141.392 (6)O5—Mn1ii2.130 (2)
C13—H130.9300O5—Mn2iii2.333 (2)
C14—N31.322 (5)O6—Mn2iii2.281 (2)
C14—H140.9300Mn1—O1iv2.121 (2)
C15—O31.262 (4)Mn1—O5v2.130 (2)
C15—O41.264 (3)Mn1—O5vi2.130 (2)
C15—C161.492 (4)Mn1—O4iv2.214 (2)
C16—C171.361 (4)Mn2—O6v2.281 (2)
C16—C18i1.369 (4)Mn2—O5v2.333 (2)
C17—C181.382 (5)
N1—C1—C2122.8 (3)C20—C21—H21119.9
N1—C1—H1118.6C21—C22—C23120.2 (3)
C2—C1—H1118.6C21—C22—H22119.9
C3—C2—C1119.8 (3)C23—C22—H22119.9
C3—C2—H2120.1C22—C23—C24119.8 (3)
C1—C2—H2120.1C22—C23—C26120.8 (3)
C2—C3—C4118.8 (3)C24—C23—C26119.3 (3)
C2—C3—H3120.6C23—C24—C25120.2 (3)
C4—C3—H3120.6C23—C24—H24119.9
C5—C4—C3118.1 (3)C25—C24—H24119.9
C5—C4—C11119.2 (3)C20—C25—C24119.9 (3)
C3—C4—C11122.6 (3)C20—C25—H25120.1
N1—C5—C4122.9 (3)C24—C25—H25120.1
N1—C5—C6116.9 (3)O6—C26—O5120.6 (3)
C4—C5—C6120.2 (3)O6—C26—C23120.5 (3)
N2—C6—C10122.2 (3)O5—C26—C23118.8 (3)
N2—C6—C5117.5 (3)C1—N1—C5117.6 (3)
C10—C6—C5120.3 (3)C1—N1—Mn2125.2 (2)
N2—C7—C8123.0 (3)C5—N1—Mn2116.66 (19)
N2—C7—H7118.5C7—N2—C6118.4 (3)
C8—C7—H7118.5C7—N2—Mn2125.8 (2)
C9—C8—C7118.7 (3)C6—N2—Mn2115.48 (19)
C9—C8—H8120.6C14—N3—C11115.7 (3)
C7—C8—H8120.6C13—N4—C12114.7 (3)
C8—C9—C10119.6 (3)C19—O1—Mn1135.1 (2)
C8—C9—H9120.2C19—O2—Mn2131.5 (2)
C10—C9—H9120.2C15—O3—Mn2100.40 (19)
C9—C10—C6118.1 (3)C15—O4—Mn1132.0 (2)
C9—C10—C12123.0 (3)C26—O5—Mn1ii155.8 (2)
C6—C10—C12118.9 (3)C26—O5—Mn2iii90.23 (17)
N3—C11—C12121.5 (3)Mn1ii—O5—Mn2iii100.02 (8)
N3—C11—C4117.7 (3)C26—O6—Mn2iii92.95 (17)
C12—C11—C4120.7 (3)O1iv—Mn1—O1180.0
N4—C12—C11122.2 (3)O1iv—Mn1—O5v87.63 (9)
N4—C12—C10117.3 (3)O1—Mn1—O5v92.37 (9)
C11—C12—C10120.4 (3)O1iv—Mn1—O5vi92.37 (9)
N4—C13—C14124.0 (4)O1—Mn1—O5vi87.63 (9)
N4—C13—H13118.0O5v—Mn1—O5vi180.00 (10)
C14—C13—H13118.0O1iv—Mn1—O4iv91.07 (9)
N3—C14—C13121.8 (3)O1—Mn1—O4iv88.93 (9)
N3—C14—H14119.1O5v—Mn1—O4iv96.31 (8)
C13—C14—H14119.1O5vi—Mn1—O4iv83.69 (8)
O3—C15—O4121.8 (3)O1iv—Mn1—O488.93 (9)
O3—C15—C16119.1 (3)O1—Mn1—O491.07 (9)
O4—C15—C16119.0 (3)O5v—Mn1—O483.69 (8)
C17—C16—C18i117.9 (3)O5vi—Mn1—O496.31 (8)
C17—C16—C15121.0 (3)O4iv—Mn1—O4180.00 (10)
C18i—C16—C15121.0 (3)O2—Mn2—O3145.20 (9)
C16—C17—C18121.0 (3)O2—Mn2—N1114.63 (9)
C16—C17—H17119.5O3—Mn2—N191.60 (9)
C18—C17—H17119.5O2—Mn2—O6v94.06 (9)
C16i—C18—C17121.1 (3)O3—Mn2—O6v112.18 (9)
C16i—C18—H18119.5N1—Mn2—O6v83.37 (9)
C17—C18—H18119.5O2—Mn2—N284.38 (9)
O1—C19—O2125.9 (3)O3—Mn2—N282.54 (9)
O1—C19—C20117.4 (3)N1—Mn2—N271.99 (9)
O2—C19—C20116.7 (3)O6v—Mn2—N2151.86 (9)
C25—C20—C21119.6 (3)O2—Mn2—O5v90.86 (9)
C25—C20—C19120.1 (3)O3—Mn2—O5v85.76 (9)
C21—C20—C19120.3 (3)N1—Mn2—O5v134.20 (8)
C22—C21—C20120.3 (3)O6v—Mn2—O5v56.17 (7)
C22—C21—H21119.9N2—Mn2—O5v151.71 (8)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+1/2, z1/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn3(C8H4O4)3(C14H8N4)2]
Mr1121.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.323 (3), 10.949 (2), 16.315 (3)
β (°) 90.04 (3)
V3)2379.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.28 × 0.21 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.783, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
21939, 5424, 3840
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.098, 1.05
No. of reflections5424
No. of parameters340
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.39

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 
Acknowledgements top

This work was supported by the Programme for Young Academic Backbone [Not well translated. Foundation?] in Heilongjiang Provincial University (grant No. 1152G053).