supplementary materials


gk2158 scheme

Acta Cryst. (2008). E64, o1564    [ doi:10.1107/S160053680802237X ]

Tris(diisopropylammonium) hydrogensulfate sulfate

G. S. Mohammadnezhad, M. M. Amini, H. R. Khavasi and S. W. Ng

Abstract top

The cations and anions of the title salt, 3C6H16N+·HSO4-·SO42-, are linked by N-H...O and O-H...O hydrogen bonds into a three-dimensional network. The hydrogensulfate ion, with a single S-O(H) bond of 1.563 (2) Å, forms a short O-H...O hydrogen bond [O...O = 2.609 (2) Å] to the sulfate ion. The hydrogensulfate ion accepts two hydrogen bonds from two cations, whereas the sulfate ion, as an acceptor, binds to four cations. The sulfate ion is disordered approximately equally over two sites related by rotation around one of the O-S bonds.

Comment top

Disubstituted ammonium sulfates are used in the synthesis of double salts with other metal sulfates (Jordanovska et al., 2000). The reaction of diisopropylamine with sulfuric acid yielded the expected compound as a double sulfate with diisopropylammonium hydrogensulfate ( Fig. 1). A small number of such double salts are known (Anderson et al., 2006; Banerjee & Murugavel, 2004; Kang et al., 2005; Novozhilova et al., 1987; Sridhar et al., 2001; Warden et al., 2004). In the title compound, the cations and anions are linked by N–H···O and O–H···O hydrogen bonds into three-dimensional network structure. The sulfate ion is disordered over two sites in an "umbrella" type of disorder (only three of the four oxygen atoms are disordered).

Related literature top

For the crystal structures of other hydrogensulfate–sulfate salts, see: Anderson et al. (2006); Banerjee & Murugavel (2004); Kang et al. (2005); Novozhilova et al. (1987); Sridhar et al. (2001); Warden et al. (2004). For the synthesis of ammonium sulfates, see: Jordanovska et al. (2000).

Experimental top

Following the method of Jordanovska et al. (2000), diisopropylamine (1 ml, 7.1 mmol) was dissolved in chloroform (10 ml) and concentrated sulfuric acid was added dropwise at 273 K until a white precipitate was formed. The precipitate was collected and recrystallized from water.

Refinement top

The sulfate ion is disordered over two positions related by rotation around the S1-O4 bond. For this ion, all S–O distances were restrained to be equal within 0.01 Å. Similar restraints were were imposed on O···O distances within this ion.

Carbon-bound hydrogen atoms were placed in calculated positions (C–H 0.96 – 0.98 Å), and were included in refinement in the riding model approximation, with U(H) set to 1.2-1.5 times Ueq(C). Oxygen and nitrogen-bound hydrogen atoms were located in a difference Fourier map, and were refined with a distance restraint (O,N)–H= 0.85±0.01 Å; their temperature factors were freely refined.

Computing details top

Data collection: X-RED (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [(C6H16N)3]3 [HSO4] [SO4]; displacement ellipsoids are drawn at the 50% probablity level and H atoms are drawn as spheres of arbitrary radii. Disorder in the sulfate ion is shown.
Tris(diisopropylammonium) hydrogensulfate sulfate top
Crystal data top
3C6H16N+·HSO4·SO42–F000 = 1096
Mr = 499.72Dx = 1.187 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4365 reflections
a = 8.6178 (6) Åθ = 2.4–27.5º
b = 16.741 (1) ŵ = 0.23 mm1
c = 19.819 (1) ÅT = 295 (2) K
β = 101.973 (5)ºBlock, colorless
V = 2797.2 (3) Å30.40 × 0.30 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS-II imaging plate
diffractometer
6311 independent reflections
Radiation source: medium-focus sealed tube4905 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 295(2) Kθmax = 27.5º
Rotation method scansθmin = 2.4º
Absorption correction: analytical
(X-SHAPE; Stoe & Cie, 2003)
h = 11→11
Tmin = 0.91, Tmax = 0.94k = 21→21
16154 measured reflectionsl = 25→15
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.122  w = 1/[σ2(Fo2) + (0.054P)2 + 0.953P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6311 reflectionsΔρmax = 0.26 e Å3
336 parametersΔρmin = 0.23 e Å3
94 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
3C6H16N+·HSO4·SO42–V = 2797.2 (3) Å3
Mr = 499.72Z = 4
Monoclinic, P21/cMo Kα
a = 8.6178 (6) ŵ = 0.23 mm1
b = 16.741 (1) ÅT = 295 (2) K
c = 19.819 (1) Å0.40 × 0.30 × 0.25 mm
β = 101.973 (5)º
Data collection top
Stoe IPDS-II imaging plate
diffractometer
6311 independent reflections
Absorption correction: analytical
(X-SHAPE; Stoe & Cie, 2003)
4905 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.94Rint = 0.035
16154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04994 restraints
wR(F2) = 0.122H atoms treated by a mixture of
independent and constrained refinement
S = 1.06Δρmax = 0.26 e Å3
6311 reflectionsΔρmin = 0.23 e Å3
336 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.69023 (5)0.61641 (3)0.59691 (2)0.03414 (13)
S20.50949 (5)0.60829 (3)0.81272 (3)0.03843 (14)
O10.6113 (17)0.6922 (6)0.5791 (8)0.093 (4)0.49 (3)
O20.6440 (16)0.5588 (7)0.5417 (4)0.068 (3)0.49 (3)
O30.8606 (6)0.6263 (9)0.6126 (4)0.072 (3)0.49 (3)
O40.63401 (18)0.58408 (10)0.65737 (8)0.0505 (4)
O1'0.5800 (8)0.6754 (5)0.5608 (5)0.082 (3)0.51 (3)
O2'0.6958 (17)0.5496 (4)0.5505 (4)0.065 (2)0.51 (3)
O3'0.8453 (7)0.6519 (7)0.6185 (4)0.068 (2)0.51 (3)
O50.36497 (17)0.57133 (11)0.77530 (9)0.0522 (4)
O60.4807 (2)0.66251 (12)0.86590 (9)0.0640 (5)
O70.5682 (2)0.66486 (10)0.76049 (10)0.0562 (4)
H70.584 (4)0.640 (2)0.7247 (12)0.099 (12)*
O80.63320 (19)0.55114 (12)0.83566 (10)0.0625 (5)
N10.6123 (2)0.82382 (11)0.51105 (9)0.0410 (4)
H1n10.604 (3)0.7752 (8)0.5238 (13)0.046 (6)*
H1n20.577 (3)0.8265 (16)0.4676 (6)0.057 (7)*
N20.4034 (2)0.46240 (11)0.59581 (9)0.0378 (4)
H2n10.390 (3)0.4557 (16)0.5525 (6)0.059 (8)*
H2n20.480 (2)0.4947 (12)0.6089 (13)0.049 (7)*
N31.0587 (2)0.63815 (11)0.73947 (9)0.0379 (4)
H3n11.003 (2)0.6345 (14)0.6985 (7)0.047 (7)*
H3n21.1482 (17)0.6160 (13)0.7392 (13)0.044 (6)*
C10.8175 (4)0.92758 (18)0.50748 (18)0.0813 (9)
H1A0.76740.96280.53470.122*
H1B0.77490.93690.45940.122*
H1C0.92970.93740.51720.122*
C20.7866 (3)0.84177 (15)0.52506 (12)0.0518 (6)
H20.83010.83330.57430.062*
C30.8635 (3)0.78284 (19)0.48440 (18)0.0711 (8)
H3A0.84210.72940.49750.107*
H3B0.97610.79160.49380.107*
H3C0.82130.79000.43600.107*
C40.5666 (5)0.8766 (2)0.62260 (17)0.0905 (11)
H4A0.67160.89880.63300.136*
H4B0.56890.82340.64080.136*
H4C0.49700.90910.64310.136*
C50.5075 (3)0.87439 (16)0.54560 (14)0.0609 (7)
H50.50670.92900.52770.073*
C60.3412 (4)0.8405 (3)0.5257 (2)0.0934 (12)
H6A0.30800.84010.47630.140*
H6B0.26980.87290.54510.140*
H6C0.34040.78690.54290.140*
C70.4706 (4)0.38395 (19)0.70440 (14)0.0758 (9)
H7A0.36910.39690.71430.114*
H7B0.54700.42330.72480.114*
H7C0.50350.33230.72310.114*
C80.4583 (3)0.38282 (13)0.62715 (12)0.0459 (5)
H80.37980.34240.60720.055*
C90.6128 (3)0.36272 (16)0.60696 (15)0.0620 (7)
H9A0.59790.36240.55760.093*
H9B0.64790.31100.62470.093*
H9C0.69110.40200.62570.093*
C100.1143 (3)0.44046 (19)0.58522 (16)0.0659 (7)
H10A0.13460.39090.60980.099*
H10B0.10270.43090.53670.099*
H10C0.01850.46370.59390.099*
C110.2517 (3)0.49718 (14)0.60939 (12)0.0461 (5)
H110.26370.50580.65910.055*
C120.2265 (3)0.57729 (16)0.57311 (16)0.0597 (6)
H12A0.31550.61140.59030.090*
H12B0.13160.60150.58170.090*
H12C0.21660.56970.52440.090*
C130.9325 (4)0.76767 (18)0.7572 (2)0.0849 (10)
H13A0.88960.74480.79380.127*
H13B0.85800.76120.71420.127*
H13C0.95260.82350.76600.127*
C141.0867 (3)0.72570 (14)0.75319 (14)0.0547 (6)
H141.16090.73200.79760.066*
C151.1633 (4)0.75867 (18)0.69695 (19)0.0760 (9)
H15A1.26040.73060.69700.114*
H15B1.18540.81440.70510.114*
H15C1.09260.75190.65300.114*
C161.0647 (3)0.5999 (2)0.86078 (14)0.0712 (8)
H16A1.06660.65520.87380.107*
H16B1.17140.58080.86550.107*
H16C1.01130.56940.89010.107*
C170.9777 (2)0.59106 (15)0.78665 (13)0.0476 (5)
H170.86960.61160.78240.057*
C180.9683 (3)0.50527 (16)0.76210 (19)0.0720 (8)
H18A0.91150.50290.71500.108*
H18B0.91390.47380.79040.108*
H18C1.07350.48470.76530.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0348 (2)0.0397 (3)0.0275 (2)0.00589 (19)0.00538 (17)0.00145 (19)
S20.0328 (2)0.0516 (3)0.0309 (2)0.0025 (2)0.00650 (18)0.0062 (2)
O10.102 (6)0.046 (3)0.155 (7)0.025 (4)0.081 (5)0.045 (4)
O20.077 (5)0.100 (5)0.028 (2)0.031 (4)0.011 (3)0.018 (3)
O30.029 (2)0.140 (8)0.046 (3)0.017 (3)0.0059 (19)0.009 (4)
O40.0605 (9)0.0598 (10)0.0357 (8)0.0112 (8)0.0203 (7)0.0017 (7)
O1'0.050 (3)0.056 (3)0.127 (5)0.015 (3)0.011 (4)0.045 (3)
O2'0.100 (6)0.051 (3)0.044 (3)0.002 (3)0.014 (3)0.011 (2)
O3'0.057 (3)0.096 (5)0.045 (3)0.040 (3)0.008 (2)0.025 (3)
O50.0340 (7)0.0676 (11)0.0536 (10)0.0023 (7)0.0058 (6)0.0119 (8)
O60.0698 (11)0.0832 (13)0.0400 (9)0.0056 (10)0.0138 (8)0.0220 (9)
O70.0715 (11)0.0512 (10)0.0520 (10)0.0055 (8)0.0265 (9)0.0041 (8)
O80.0450 (9)0.0744 (12)0.0647 (12)0.0125 (8)0.0037 (8)0.0073 (9)
N10.0502 (10)0.0411 (10)0.0312 (9)0.0023 (8)0.0068 (7)0.0063 (7)
N20.0391 (9)0.0437 (10)0.0297 (9)0.0076 (7)0.0046 (7)0.0014 (7)
N30.0317 (8)0.0428 (9)0.0365 (9)0.0022 (7)0.0010 (7)0.0008 (7)
C10.099 (2)0.0678 (19)0.076 (2)0.0386 (17)0.0171 (17)0.0039 (16)
C20.0525 (12)0.0613 (14)0.0389 (12)0.0140 (11)0.0031 (9)0.0054 (10)
C30.0594 (15)0.0784 (19)0.083 (2)0.0034 (14)0.0311 (14)0.0107 (16)
C40.120 (3)0.101 (3)0.0549 (18)0.025 (2)0.0283 (18)0.0156 (17)
C50.0791 (18)0.0545 (14)0.0517 (15)0.0212 (13)0.0196 (12)0.0102 (11)
C60.0603 (17)0.137 (3)0.087 (2)0.031 (2)0.0243 (16)0.030 (2)
C70.114 (2)0.0731 (19)0.0387 (14)0.0098 (17)0.0132 (14)0.0174 (13)
C80.0604 (13)0.0373 (11)0.0375 (11)0.0082 (10)0.0044 (9)0.0023 (9)
C90.0673 (16)0.0542 (14)0.0614 (16)0.0126 (12)0.0063 (13)0.0080 (12)
C100.0451 (13)0.0831 (19)0.0718 (19)0.0161 (13)0.0175 (12)0.0057 (15)
C110.0446 (11)0.0612 (14)0.0337 (11)0.0034 (10)0.0109 (9)0.0096 (10)
C120.0482 (13)0.0610 (15)0.0682 (17)0.0057 (11)0.0081 (11)0.0031 (13)
C130.088 (2)0.0484 (15)0.122 (3)0.0157 (15)0.030 (2)0.0075 (17)
C140.0540 (13)0.0440 (12)0.0603 (15)0.0026 (10)0.0017 (11)0.0095 (11)
C150.0704 (18)0.0574 (17)0.098 (2)0.0149 (14)0.0111 (16)0.0124 (16)
C160.0617 (15)0.109 (2)0.0455 (14)0.0151 (15)0.0178 (12)0.0147 (15)
C170.0341 (10)0.0587 (13)0.0511 (13)0.0062 (9)0.0114 (9)0.0079 (10)
C180.0656 (17)0.0508 (15)0.100 (3)0.0043 (13)0.0192 (16)0.0134 (15)
Geometric parameters (Å, °) top
S1—O31.445 (4)C6—H6A0.9600
S1—O3'1.444 (4)C6—H6B0.9600
S1—O11.448 (4)C6—H6C0.9600
S1—O21.450 (5)C7—C81.513 (3)
S1—O1'1.452 (4)C7—H7A0.9600
S1—O2'1.456 (4)C7—H7B0.9600
S1—O41.4848 (15)C7—H7C0.9600
S2—O81.4344 (17)C8—C91.506 (4)
S2—O51.4494 (16)C8—H80.9800
S2—O61.4508 (17)C9—H9A0.9600
S2—O71.5627 (18)C9—H9B0.9600
O7—H70.856 (10)C9—H9C0.9600
N1—C51.502 (3)C10—C111.516 (3)
N1—C21.500 (3)C10—H10A0.9600
N1—H1n10.860 (10)C10—H10B0.9600
N1—H1n20.854 (10)C10—H10C0.9600
N2—C81.504 (3)C11—C121.516 (4)
N2—C111.506 (3)C11—H110.9800
N2—H2n10.849 (10)C12—H12A0.9600
N2—H2n20.851 (10)C12—H12B0.9600
N3—C171.501 (3)C12—H12C0.9600
N3—C141.501 (3)C13—C141.519 (4)
N3—H3n10.856 (10)C13—H13A0.9600
N3—H3n20.857 (10)C13—H13B0.9600
C1—C21.515 (4)C13—H13C0.9600
C1—H1A0.9600C14—C151.513 (4)
C1—H1B0.9600C14—H140.9800
C1—H1C0.9600C15—H15A0.9600
C2—C31.511 (4)C15—H15B0.9600
C2—H20.9800C15—H15C0.9600
C3—H3A0.9600C16—C171.512 (4)
C3—H3B0.9600C16—H16A0.9600
C3—H3C0.9600C16—H16B0.9600
C4—C51.506 (4)C16—H16C0.9600
C4—H4A0.9600C17—C181.513 (4)
C4—H4B0.9600C17—H170.9800
C4—H4C0.9600C18—H18A0.9600
C5—C61.516 (5)C18—H18B0.9600
C5—H50.9800C18—H18C0.9600
O3—S1—O1110.9 (4)C8—C7—H7A109.5
O3—S1—O2110.3 (4)C8—C7—H7B109.5
O1—S1—O2110.9 (4)H7A—C7—H7B109.5
O3'—S1—O1'109.7 (4)C8—C7—H7C109.5
O3'—S1—O2'110.7 (4)H7A—C7—H7C109.5
O1'—S1—O2'108.3 (4)H7B—C7—H7C109.5
O3—S1—O4110.8 (4)C9—C8—N2107.92 (19)
O3'—S1—O4110.3 (3)C9—C8—C7113.1 (2)
O1—S1—O4107.5 (3)N2—C8—C7110.9 (2)
O2—S1—O4106.4 (3)C9—C8—H8108.3
O1'—S1—O4110.9 (3)N2—C8—H8108.3
O2'—S1—O4106.8 (3)C7—C8—H8108.3
O8—S2—O5112.37 (11)C8—C9—H9A109.5
O8—S2—O6114.51 (11)C8—C9—H9B109.5
O5—S2—O6112.38 (10)H9A—C9—H9B109.5
O8—S2—O7107.02 (11)C8—C9—H9C109.5
O5—S2—O7106.37 (10)H9A—C9—H9C109.5
O6—S2—O7103.28 (11)H9B—C9—H9C109.5
S2—O7—H7112 (3)C11—C10—H10A109.5
C5—N1—C2118.4 (2)C11—C10—H10B109.5
C5—N1—H1n1107.6 (17)H10A—C10—H10B109.5
C2—N1—H1n1106.2 (16)C11—C10—H10C109.5
C5—N1—H1n2107.9 (18)H10A—C10—H10C109.5
C2—N1—H1n2108.1 (18)H10B—C10—H10C109.5
H1n1—N1—H1n2108 (2)N2—C11—C10110.6 (2)
C8—N2—C11118.61 (18)N2—C11—C12107.53 (19)
C8—N2—H2n1105.4 (18)C10—C11—C12112.3 (2)
C11—N2—H2n1106.8 (18)N2—C11—H11108.8
C8—N2—H2n2106.2 (17)C10—C11—H11108.8
C11—N2—H2n2110.3 (17)C12—C11—H11108.8
H2n1—N2—H2n2109 (3)C11—C12—H12A109.5
C17—N3—C14118.56 (19)C11—C12—H12B109.5
C17—N3—H3n1108.2 (17)H12A—C12—H12B109.5
C14—N3—H3n1106.2 (16)C11—C12—H12C109.5
C17—N3—H3n2108.2 (17)H12A—C12—H12C109.5
C14—N3—H3n2108.2 (16)H12B—C12—H12C109.5
H3n1—N3—H3n2107 (2)C14—C13—H13A109.5
C2—C1—H1A109.5C14—C13—H13B109.5
C2—C1—H1B109.5H13A—C13—H13B109.5
H1A—C1—H1B109.5C14—C13—H13C109.5
C2—C1—H1C109.5H13A—C13—H13C109.5
H1A—C1—H1C109.5H13B—C13—H13C109.5
H1B—C1—H1C109.5N3—C14—C15107.5 (2)
N1—C2—C3107.7 (2)N3—C14—C13110.6 (2)
N1—C2—C1111.4 (2)C15—C14—C13112.9 (3)
C3—C2—C1112.3 (2)N3—C14—H14108.6
N1—C2—H2108.5C15—C14—H14108.6
C3—C2—H2108.5C13—C14—H14108.6
C1—C2—H2108.5C14—C15—H15A109.5
C2—C3—H3A109.5C14—C15—H15B109.5
C2—C3—H3B109.5H15A—C15—H15B109.5
H3A—C3—H3B109.5C14—C15—H15C109.5
C2—C3—H3C109.5H15A—C15—H15C109.5
H3A—C3—H3C109.5H15B—C15—H15C109.5
H3B—C3—H3C109.5C17—C16—H16A109.5
C5—C4—H4A109.5C17—C16—H16B109.5
C5—C4—H4B109.5H16A—C16—H16B109.5
H4A—C4—H4B109.5C17—C16—H16C109.5
C5—C4—H4C109.5H16A—C16—H16C109.5
H4A—C4—H4C109.5H16B—C16—H16C109.5
H4B—C4—H4C109.5N3—C17—C16110.7 (2)
N1—C5—C4111.5 (2)N3—C17—C18107.4 (2)
N1—C5—C6107.2 (2)C16—C17—C18112.8 (2)
C4—C5—C6112.1 (3)N3—C17—H17108.6
N1—C5—H5108.6C16—C17—H17108.6
C4—C5—H5108.6C18—C17—H17108.6
C6—C5—H5108.6C17—C18—H18A109.5
C5—C6—H6A109.5C17—C18—H18B109.5
C5—C6—H6B109.5H18A—C18—H18B109.5
H6A—C6—H6B109.5C17—C18—H18C109.5
C5—C6—H6C109.5H18A—C18—H18C109.5
H6A—C6—H6C109.5H18B—C18—H18C109.5
H6B—C6—H6C109.5
C5—N1—C2—C3180.0 (2)C8—N2—C11—C1058.1 (3)
C5—N1—C2—C156.5 (3)C8—N2—C11—C12179.04 (18)
C2—N1—C5—C453.9 (3)C17—N3—C14—C15177.8 (2)
C2—N1—C5—C6176.9 (2)C17—N3—C14—C1354.1 (3)
C11—N2—C8—C9178.90 (19)C14—N3—C17—C1655.2 (3)
C11—N2—C8—C754.6 (3)C14—N3—C17—C18178.7 (2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O40.86 (1)1.76 (1)2.609 (2)174 (4)
N1—H1N1···O10.86 (1)1.76 (1)2.585 (5)159 (3)
N1—H1N2···O6i0.85 (1)2.02 (1)2.874 (2)176 (3)
N2—H2N2···O40.85 (1)2.10 (1)2.929 (2)166 (2)
N2—H2N1···O2ii0.85 (1)1.85 (1)2.695 (6)179 (3)
N2—H2N1···O2'ii0.85 (1)2.02 (2)2.855 (8)166 (3)
N3—H3N1···O30.86 (1)1.89 (1)2.738 (8)174 (2)
N3—H3N1···O3'0.86 (1)1.88 (1)2.711 (7)162 (2)
N3—H3N2···O5iii0.86 (1)2.00 (1)2.819 (2)159 (2)
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O7—H7···O40.86 (1)1.76 (1)2.609 (2)174 (4)
N1—H1N1···O10.86 (1)1.76 (1)2.585 (5)159 (3)
N1—H1N2···O6i0.85 (1)2.02 (1)2.874 (2)176 (3)
N2—H2N2···O40.85 (1)2.10 (1)2.929 (2)166 (2)
N2—H2N1···O2ii0.85 (1)1.85 (1)2.695 (6)179 (3)
N2—H2N1···O2'ii0.85 (1)2.02 (2)2.855 (8)166 (3)
N3—H3N1···O30.86 (1)1.89 (1)2.738 (8)174 (2)
N3—H3N1···O3'0.86 (1)1.88 (1)2.711 (7)162 (2)
N3—H3N2···O5iii0.86 (1)2.00 (1)2.819 (2)159 (2)
Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z.
Acknowledgements top

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

references
References top

Anderson, K. M., Goeta, A. E., Hancock, K. S. B. & Steed, J. W. (2006). Chem. Commun. pp. 2138–2140.

Banerjee, S. & Murugavel, R. (2004). Cryst. Growth Des. 4, 545–552.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Jordanovska, V., Boyanov, B. & Naumov, P. (2000). J. Therm. Anal. Calorim. 62, 267–275.

Kang, S. O., Hossain, Md. A., Powell, D. & Bowman-James, K. (2005). Chem. Commun. pp. 328–330.

Novozhilova, N. V., Magomedova, N. S., Tudorovskaya, G. L. & Bel'skii, V. K. (1987). Zh. Strukt. Khim. (Russ.), 28, 84–86.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2001). Acta Cryst. E57, o558–o560.

Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.

Stoe & Cie (2003). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.

Stoe & Cie (2005). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.

Warden, A. C., Warren, M., Hearn, M. T. W. & Spiccia, L. (2004). New J. Chem. 28, 1301–1308.