supplementary materials


hk2497 scheme

Acta Cryst. (2008). E64, m1050-m1051    [ doi:10.1107/S1600536808022320 ]

[mu]-2,3,5,6-Tetra-2-pyridylpyrazine-[kappa]3N1,N2,N6:[kappa]3N3,N4,N5-bis[(methanol-[kappa]O)(nitrato-[kappa]2O,O')(nitrato-[kappa]O)cadmium(II)]

M. Seyed Sadjadi, A. Ebadi, K. Zare, V. Amani and H. R. Khavasi

Abstract top

The title complex, [Cd2(NO3)4(C24H16N6)(CH4O)2], displays a centrosymmetric dinuclear structure, in which the 2,3,5,6-tetra-2-pyridinylpyrazine (tppz) ligand links two Cd ions separated by 7.323 (4) Å. Each CdII center is seven-coordinated by three N-atom donors of tppz in one plane, by two O atoms nearly normal to this plane, and by two O atoms 0.393 (3) and 0.488 (3) Å from that plane. The two CdII ions are above and below the plane of the pyrazine ring of the tppz ligand, oriented with respect to the pyridine rings at dihedral angles of 38.01 (3) and 31.90 (3)°. The dihedral angle between the two pyridine rings is 41.11 (3)°. In the crystal structure, intermolecular O-H...O hydrogen bonds link the molecules.

Comment top

Goodwin & Lyons (1959) were reported the synthesis of 2,3,5,6-tetra- (2-pyridinyl)pyrazine (tppz). Bock et al. (1992) and Greaves & Stoeckli-Evans (1992) were determined the structure of tppz by single crystal X-ray analysis. Among many reported compounds containing tppz, most are complexes of transition metal ions, including ruthenium (Hadadzadeh et al., 2006), platinum (Sakai & Kurashima, 2003), mercury (Zhang et al., 2005), copper (Carranza et al., 2004), iron (Laine et al., 1995), nickel (Graf et al., 1997), palladium (Yamada et al., 2000) and zinc (Graf et al., 1993). For further investigation of 2,3,5,6-tetra(2-pyridinyl)pyrazine, we synthesized the title complex, and report herein its crystal structure.

The title complex is a centrosymmetric dinuclear complex, in which the tppz ligand link two Cd ions separated by 7.323 (4) Å (Fig. 1). Each CdII center is seven-coordinated by three N donors of tppz in one plane, two O atoms (O1 and O5) nearly normal to this plane (Table 1) and two O atoms -0.393 (3) Å (for O2) and -0.488 (3) Å (for O3) away from that plane. The two CdII ions are above and below the plane of the pyrazine ring B (N2/C6/C7/N2a/C6a/C7a) [symmetry code: (a) 1 - x, -y, -z] of the tppz ligand. The dihedral angles between rings A (N1/C1-C5), B and C (N3/C8-C12) are A/B = 38.01 (3)°, A/C = 41.11 (3)° and B/C = 31.90 (3)°.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related literature, see: Bock et al. (1992); Carranza et al. (2004); Goodwin & Lyons (1959); Graf et al. (1993, 1997); Greaves & Stoeckli-Evans (1992); Hadadzadeh et al. (2006); Laine et al. (1995); Sakai & Kurashima (2003); Yamada et al. (2000); Zhang et al. (2005).

Experimental top

For the preparation of the title compound, a solution of 2,3,5,6-tetra- (2-pyridinyl)pyrazine (0.4 g, 1 mmol) in HCl3 (30 ml) was added to a solution of Cd(NO3)2.4H2O (0.62 g, 2 mmol) in methanol (200 ml) and the resulting colorless solution was stirred for 15 min at room temperature. Then, it was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.71 g, 76.73%, m.p < 573 k).

Refinement top

H1B atom (for OH) was located in difference syntheses and refined isotropically [O-H = 0.92 (5) Å and Uiso(H) = 0.020 (11) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level [symmetry code: (a) 1 - x, -y, -z].
[Figure 2] Fig. 2. A packing diagram for the title molecule. Hydrogen bonds are shown as dashed lines.
µ-2,3,5,6-Tetra-2-pyridylpyrazine- κ3N1,N2,N6:κ3N3,N4,N5- bis[(methanol-κO)(nitrato-κ2O,O')(nitrato-κO)cadmium(II)] top
Crystal data top
[Cd2(NO3)4(C24H16N6)(CH4O)2]F000 = 916
Mr = 925.37Dx = 1.866 Mg m3
Monoclinic, P21/cMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1543 reflections
a = 9.0777 (12) Åθ = 2.9–29.2º
b = 10.8949 (9) ŵ = 1.38 mm1
c = 16.690 (2) ÅT = 298 (2) K
β = 93.847 (10)ºPrism, colorless
V = 1646.9 (3) Å30.50 × 0.40 × 0.25 mm
Z = 2
Data collection top
Stoe IPDSII
diffractometer
4642 independent reflections
Radiation source: fine-focus sealed tube4223 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.075
Detector resolution: 0.15 mm pixels mm-1θmax = 29.8º
T = 298(2) Kθmin = 2.9º
rotation method scansh = 12→8
Absorption correction: numerical
Shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005)
k = 14→10
Tmin = 0.510, Tmax = 0.710l = 22→19
4664 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of
independent and constrained refinement
wR(F2) = 0.171  w = 1/[σ2(Fo2) + (0.1202P)2 + 2.8103P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.015
4642 reflectionsΔρmax = 1.00 e Å3
239 parametersΔρmin = 0.95 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none
Crystal data top
[Cd2(NO3)4(C24H16N6)(CH4O)2]V = 1646.9 (3) Å3
Mr = 925.37Z = 2
Monoclinic, P21/cMo Kα
a = 9.0777 (12) ŵ = 1.38 mm1
b = 10.8949 (9) ÅT = 298 (2) K
c = 16.690 (2) Å0.50 × 0.40 × 0.25 mm
β = 93.847 (10)º
Data collection top
Stoe IPDSII
diffractometer
4642 independent reflections
Absorption correction: numerical
Shape of crystal determined optically (X-SHAPE; Stoe & Cie, 2005)
4223 reflections with I > 2σ(I)
Tmin = 0.510, Tmax = 0.710Rint = 0.075
4664 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062239 parameters
wR(F2) = 0.171H atoms treated by a mixture of
independent and constrained refinement
S = 1.07Δρmax = 1.00 e Å3
4642 reflectionsΔρmin = 0.95 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.38914 (3)0.18792 (3)0.167582 (18)0.02737 (16)
O10.5852 (4)0.0852 (3)0.2353 (3)0.0397 (8)
H1B0.580 (6)0.001 (5)0.233 (3)0.020 (11)*
O20.2968 (5)0.1892 (3)0.3010 (3)0.0391 (9)
O30.4556 (4)0.3323 (3)0.2788 (2)0.0359 (8)
O40.3358 (5)0.3363 (5)0.3875 (3)0.0502 (10)
O50.2209 (6)0.3467 (5)0.1596 (3)0.0541 (10)
O60.1241 (9)0.2195 (8)0.0768 (8)0.118 (4)
O70.0039 (8)0.3728 (10)0.1114 (5)0.115 (3)
N10.2489 (4)0.0003 (4)0.1585 (3)0.0343 (8)
N20.4388 (4)0.0798 (3)0.0499 (2)0.0270 (7)
N30.5671 (4)0.2952 (3)0.0946 (3)0.0295 (7)
N40.3612 (4)0.2867 (4)0.3234 (2)0.0288 (7)
N50.1090 (6)0.3123 (4)0.1154 (4)0.0449 (12)
C10.1339 (6)0.0214 (5)0.2045 (4)0.0440 (12)
H10.13630.01230.25580.053*
C20.0136 (6)0.0917 (6)0.1781 (4)0.0482 (14)
H20.06200.10680.21170.058*
C30.0071 (5)0.1392 (6)0.1013 (4)0.0465 (13)
H30.07500.18380.08160.056*
C40.1251 (5)0.1196 (5)0.0536 (3)0.0365 (10)
H40.12320.15020.00160.044*
C50.2455 (4)0.0533 (4)0.0855 (3)0.0314 (8)
C60.3792 (4)0.0321 (4)0.0401 (3)0.0264 (8)
C70.5546 (4)0.1162 (4)0.0106 (3)0.0258 (7)
C80.5956 (4)0.2482 (4)0.0224 (3)0.0279 (8)
C90.6505 (5)0.3192 (4)0.0380 (3)0.0319 (10)
H90.65880.28680.08900.038*
C100.6926 (5)0.4390 (4)0.0209 (3)0.0361 (10)
H100.73250.48750.05990.043*
C110.6746 (5)0.4859 (4)0.0553 (3)0.0358 (10)
H110.70620.56480.06890.043*
C120.6086 (5)0.4124 (4)0.1104 (3)0.0324 (9)
H120.59200.44510.16050.039*
C130.7367 (7)0.1300 (6)0.2397 (5)0.0525 (14)
H13A0.74090.20930.26500.063*
H13B0.77020.13660.18650.063*
H13C0.79900.07380.27060.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0283 (2)0.0260 (2)0.0286 (2)0.00137 (9)0.00796 (15)0.00333 (9)
O10.0364 (16)0.0306 (16)0.052 (2)0.0038 (13)0.0046 (16)0.0021 (15)
O20.045 (2)0.0310 (17)0.043 (2)0.0054 (12)0.0127 (18)0.0033 (13)
O30.0322 (15)0.0335 (14)0.043 (2)0.0044 (12)0.0110 (16)0.0079 (14)
O40.0327 (17)0.082 (3)0.037 (2)0.0043 (18)0.0072 (16)0.023 (2)
O50.056 (2)0.056 (2)0.050 (2)0.018 (2)0.002 (2)0.004 (2)
O60.090 (5)0.076 (4)0.179 (11)0.014 (4)0.058 (6)0.043 (6)
O70.063 (4)0.176 (8)0.107 (6)0.073 (5)0.014 (4)0.038 (6)
N10.0264 (16)0.042 (2)0.0352 (19)0.0026 (14)0.0116 (16)0.0054 (16)
N20.0235 (14)0.0275 (15)0.0303 (17)0.0017 (12)0.0046 (14)0.0009 (13)
N30.0296 (17)0.0284 (15)0.0311 (18)0.0012 (13)0.0064 (15)0.0029 (14)
N40.0234 (15)0.0354 (16)0.0279 (17)0.0004 (13)0.0047 (14)0.0077 (15)
N50.051 (2)0.091 (3)0.082 (3)0.0054 (16)0.002 (2)0.015 (2)
C10.032 (2)0.053 (3)0.050 (3)0.005 (2)0.018 (2)0.011 (2)
C20.031 (2)0.055 (3)0.060 (3)0.009 (2)0.021 (2)0.015 (3)
C30.028 (2)0.052 (3)0.061 (3)0.009 (2)0.012 (2)0.013 (3)
C40.0243 (17)0.039 (2)0.047 (3)0.0025 (16)0.0053 (18)0.012 (2)
C50.0228 (16)0.036 (2)0.036 (2)0.0003 (15)0.0055 (16)0.0057 (18)
C60.0229 (16)0.0293 (18)0.0275 (18)0.0006 (13)0.0050 (15)0.0047 (15)
C70.0219 (15)0.0279 (17)0.0282 (18)0.0002 (14)0.0050 (15)0.0029 (15)
C80.0230 (16)0.0288 (18)0.033 (2)0.0007 (14)0.0063 (15)0.0021 (16)
C90.0276 (19)0.032 (2)0.037 (2)0.0010 (14)0.0117 (19)0.0024 (16)
C100.034 (2)0.032 (2)0.044 (2)0.0045 (17)0.012 (2)0.0003 (19)
C110.033 (2)0.0295 (19)0.046 (3)0.0027 (16)0.009 (2)0.0044 (19)
C120.0320 (18)0.0294 (19)0.036 (2)0.0036 (15)0.0055 (18)0.0053 (17)
C130.044 (3)0.051 (3)0.063 (4)0.003 (2)0.008 (3)0.005 (3)
Geometric parameters (Å, °) top
O1—Cd12.330 (4)C4—H40.9300
O1—H1B0.92 (5)C5—N11.349 (6)
O2—Cd12.431 (4)C5—C61.492 (5)
O3—Cd12.476 (4)C6—N21.340 (5)
O5—Cd12.305 (4)C6—C7i1.409 (5)
N1—Cd12.407 (4)C7—N21.336 (5)
N2—Cd12.359 (4)C7—C6i1.409 (5)
N3—Cd12.393 (4)C7—C81.495 (6)
N4—O41.234 (5)C8—N31.350 (6)
N4—O21.257 (5)C8—C91.389 (6)
N4—O31.273 (5)C9—C101.385 (6)
N5—O61.211 (10)C9—H90.9300
N5—O71.217 (7)C10—C111.390 (7)
N5—O51.271 (8)C10—H100.9300
C1—N11.357 (6)C11—C121.387 (6)
C1—C21.382 (8)C11—H110.9300
C1—H10.9300C12—N31.352 (6)
C2—C31.380 (9)C12—H120.9300
C2—H20.9300C13—O11.457 (7)
C3—C41.393 (6)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.385 (6)C13—H13C0.9600
O5—Cd1—O1150.47 (16)N1—C1—C2122.5 (5)
O5—Cd1—N2119.29 (16)N1—C1—H1118.8
O1—Cd1—N288.94 (13)C2—C1—H1118.8
O5—Cd1—N394.10 (16)C3—C2—C1119.2 (5)
O1—Cd1—N387.79 (13)C3—C2—H2120.4
N2—Cd1—N369.31 (13)C1—C2—H2120.4
O5—Cd1—N1106.73 (17)C2—C3—C4119.0 (5)
O1—Cd1—N190.37 (14)C2—C3—H3120.5
N2—Cd1—N169.73 (12)C4—C3—H3120.5
N3—Cd1—N1139.02 (13)C5—C4—C3118.5 (5)
O5—Cd1—O277.34 (15)C5—C4—H4120.7
O1—Cd1—O281.82 (14)C3—C4—H4120.7
N2—Cd1—O2149.55 (11)N1—C5—C4122.8 (4)
N3—Cd1—O2138.56 (14)N1—C5—C6114.9 (4)
N1—Cd1—O281.32 (12)C4—C5—C6122.2 (4)
O5—Cd1—O372.18 (16)N2—C6—C7i118.7 (3)
O1—Cd1—O378.57 (14)N2—C6—C5114.5 (3)
N2—Cd1—O3152.93 (12)C7i—C6—C5126.8 (4)
N3—Cd1—O386.13 (13)N2—C7—C6i118.9 (4)
N1—Cd1—O3133.44 (13)N2—C7—C8114.7 (3)
O2—Cd1—O352.52 (12)C6i—C7—C8126.3 (3)
C13—O1—Cd1123.5 (3)N3—C8—C9122.4 (4)
C13—O1—H1B112 (3)N3—C8—C7114.9 (3)
Cd1—O1—H1B115 (4)C9—C8—C7122.6 (4)
N4—O2—Cd195.5 (3)C10—C9—C8118.9 (5)
N4—O3—Cd192.9 (2)C10—C9—H9120.6
N5—O5—Cd1108.2 (4)C8—C9—H9120.6
C5—N1—C1117.6 (4)C9—C10—C11119.1 (4)
C5—N1—Cd1113.9 (3)C9—C10—H10120.4
C1—N1—Cd1122.4 (3)C11—C10—H10120.4
C7—N2—C6122.3 (3)C12—C11—C10118.5 (4)
C7—N2—Cd1117.5 (3)C12—C11—H11120.7
C6—N2—Cd1117.3 (3)C10—C11—H11120.7
C8—N3—C12117.7 (4)N3—C12—C11122.8 (4)
C8—N3—Cd1116.4 (3)N3—C12—H12118.6
C12—N3—Cd1123.4 (3)C11—C12—H12118.6
O4—N4—O2121.2 (4)O1—C13—H13A109.5
O4—N4—O3120.5 (4)O1—C13—H13B109.5
O2—N4—O3118.2 (4)H13A—C13—H13B109.5
O6—N5—O7123.2 (9)O1—C13—H13C109.5
O6—N5—O5116.1 (6)H13A—C13—H13C109.5
O7—N5—O5120.6 (8)H13B—C13—H13C109.5
N1—C1—C2—C31.9 (10)C13—O1—Cd1—N319.8 (4)
C1—C2—C3—C42.8 (10)C13—O1—Cd1—N1158.9 (4)
C2—C3—C4—C50.4 (9)C13—O1—Cd1—O2119.9 (4)
C3—C4—C5—N14.9 (8)C13—O1—Cd1—O366.7 (4)
C3—C4—C5—C6177.5 (5)C7—N2—Cd1—O594.7 (4)
N1—C5—C6—N236.5 (6)C6—N2—Cd1—O5104.3 (4)
C4—C5—C6—N2141.4 (5)C7—N2—Cd1—O176.2 (3)
N1—C5—C6—C7i143.9 (5)C6—N2—Cd1—O184.8 (3)
C4—C5—C6—C7i38.2 (7)C7—N2—Cd1—N311.8 (3)
N2—C7—C8—N331.1 (6)C6—N2—Cd1—N3172.8 (4)
C6i—C7—C8—N3152.5 (4)C7—N2—Cd1—N1167.0 (4)
N2—C7—C8—C9145.2 (4)C6—N2—Cd1—N16.0 (3)
C6i—C7—C8—C931.2 (7)C7—N2—Cd1—O2148.0 (3)
N3—C8—C9—C107.2 (7)C6—N2—Cd1—O213.0 (5)
C7—C8—C9—C10176.8 (5)C7—N2—Cd1—O314.4 (5)
C8—C9—C10—C112.0 (8)C6—N2—Cd1—O3146.6 (3)
C9—C10—C11—C122.9 (8)C8—N3—Cd1—O5114.3 (3)
C10—C11—C12—N33.1 (8)C12—N3—Cd1—O547.6 (4)
C4—C5—N1—C15.8 (8)C8—N3—Cd1—O195.3 (3)
C6—C5—N1—C1176.4 (5)C12—N3—Cd1—O1102.9 (4)
C4—C5—N1—Cd1147.4 (4)C8—N3—Cd1—N25.6 (3)
C6—C5—N1—Cd130.5 (5)C12—N3—Cd1—N2167.4 (4)
C2—C1—N1—C52.4 (9)C8—N3—Cd1—N17.2 (5)
C2—C1—N1—Cd1148.4 (5)C12—N3—Cd1—N1169.1 (4)
C6i—C7—N2—C63.0 (7)C8—N3—Cd1—O2170.3 (3)
C8—C7—N2—C6173.7 (4)C12—N3—Cd1—O227.9 (5)
C6i—C7—N2—Cd1157.0 (3)C8—N3—Cd1—O3173.9 (3)
C8—C7—N2—Cd126.3 (5)C12—N3—Cd1—O324.2 (4)
C7i—C6—N2—C73.0 (7)C5—N1—Cd1—O5102.0 (3)
C5—C6—N2—C7176.7 (4)C1—N1—Cd1—O549.8 (5)
C7i—C6—N2—Cd1157.0 (3)C5—N1—Cd1—O1102.5 (3)
C5—C6—N2—Cd123.3 (5)C1—N1—Cd1—O1105.8 (5)
C9—C8—N3—C127.0 (7)C5—N1—Cd1—N213.7 (3)
C7—C8—N3—C12176.7 (4)C1—N1—Cd1—N2165.5 (5)
C9—C8—N3—Cd1155.9 (4)C5—N1—Cd1—N315.4 (5)
C7—C8—N3—Cd120.4 (5)C1—N1—Cd1—N3167.2 (4)
C11—C12—N3—C81.7 (7)C5—N1—Cd1—O2175.9 (4)
C11—C12—N3—Cd1159.9 (4)C1—N1—Cd1—O224.1 (5)
O4—N4—O2—Cd1171.9 (4)C5—N1—Cd1—O3177.0 (3)
O3—N4—O2—Cd19.3 (5)C1—N1—Cd1—O331.3 (5)
O4—N4—O3—Cd1172.1 (4)N4—O2—Cd1—O571.8 (3)
O2—N4—O3—Cd19.1 (5)N4—O2—Cd1—O187.1 (3)
O6—N5—O5—Cd112.9 (9)N4—O2—Cd1—N2160.8 (3)
O7—N5—O5—Cd1169.2 (6)N4—O2—Cd1—N39.9 (4)
N5—O5—Cd1—O1154.5 (3)N4—O2—Cd1—N1178.8 (3)
N5—O5—Cd1—N244.2 (4)N4—O2—Cd1—O35.3 (3)
N5—O5—Cd1—N3112.8 (4)N4—O3—Cd1—O582.3 (3)
N5—O5—Cd1—N131.5 (4)N4—O3—Cd1—O193.6 (3)
N5—O5—Cd1—O2108.3 (4)N4—O3—Cd1—N2157.7 (3)
N5—O5—Cd1—O3162.6 (4)N4—O3—Cd1—N3177.9 (3)
C13—O1—Cd1—O574.6 (5)N4—O3—Cd1—N114.1 (4)
C13—O1—Cd1—N289.2 (4)N4—O3—Cd1—O25.2 (3)
Symmetry codes: (i) −x+1, −y, −z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3ii0.92 (5)1.87 (5)2.788 (5)172
Symmetry codes: (ii) −x+1, y−1/2, −z+1/2.
Table 1
Selected geometric parameters (Å, °)
top
O1—Cd12.330 (4)N1—Cd12.407 (4)
O2—Cd12.431 (4)N2—Cd12.359 (4)
O3—Cd12.476 (4)N3—Cd12.393 (4)
O5—Cd12.305 (4)
O5—Cd1—O1150.47 (16)O1—Cd1—O281.82 (14)
O5—Cd1—N2119.29 (16)N2—Cd1—O2149.55 (11)
O1—Cd1—N288.94 (13)N3—Cd1—O2138.56 (14)
O5—Cd1—N394.10 (16)N1—Cd1—O281.32 (12)
O1—Cd1—N387.79 (13)O5—Cd1—O372.18 (16)
N2—Cd1—N369.31 (13)O1—Cd1—O378.57 (14)
O5—Cd1—N1106.73 (17)N2—Cd1—O3152.93 (12)
O1—Cd1—N190.37 (14)N3—Cd1—O386.13 (13)
N2—Cd1—N169.73 (12)N1—Cd1—O3133.44 (13)
N3—Cd1—N1139.02 (13)O2—Cd1—O352.52 (12)
O5—Cd1—O277.34 (15)
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.92 (5)1.87 (5)2.788 (5)172
Symmetry codes: (i) −x+1, y−1/2, −z+1/2.
Acknowledgements top

We are grateful to the Islamic Azad University, Poonak, and Shahid Beheshti University for financial support.

references
References top

Bock, H., Vaupel, T., Nather, C., Ruppert, K. & Havlas, Z. (1992). Angew. Chem. Int. Ed. 31, 299–301.

Carranza, J., Sletten, J., Brennan, C., Lloret, F., Canoa, J. & Julve, M. (2004). Dalton Trans. pp. 3997–4005.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Goodwin, H. A. & Lyons, F. (1959). J. Am. Chem. Soc. 81, 6415–6422.

Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta. 204, 239–246.

Graf, M., Stoeckli-Evans, H., Escuer, A. & Vicente, R. (1997). Inorg. Chim. Acta. 257, 89–97.

Greaves, B. & Stoeckli-Evans, H. (1992). Acta Cryst. C48, 2269–2271.

Hadadzadeh, H., Yap, G. P. A. & Crutchley, R. J. (2006). Acta Cryst. E62, m2002–m2004.

Laine, P., Gourdon, A. & Launay, J.-P. (1995). Inorg. Chem. 34, 5156–5165.

Sakai, K. & Kurashima, M. (2003). Acta Cryst. E59, m411–m413.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stoe & Cie (2005). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.

Yamada, Y., Miyashita, Y., Fujisawa, K. & Okamoto, K. (2000). Bull. Chem. Soc. Jpn, 73, 1843–1844.

Zhang, L., Zhao, X.-H. & Zhao, Y. (2005). Acta Cryst. E61, m1760–m1761.