organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­benzo­yl)-N′-(3-pyrid­yl)thio­urea

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and bDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 14 June 2008; accepted 30 June 2008; online 5 July 2008)

In the mol­ecule of the title compound, C13H10ClN3OS, the dihedral angles between the plane through the thio­urea group and the pyridine and benzene rings are 53.08 (3) and 87.12 (3)°, respectively. The mol­ecules are linked by inter­molecular N—H⋯N hydrogen-bonding inter­actions to form a supra­molecular chain structure along the a axis. An intra­mol­ecular N—H⋯O hydrogen bond is also present.

Related literature

For related literature, see: Campo et al. (2002[Campo, R., Criado, J. J. & Garcia, E. (2002). J. Inorg. Biochem. 89, 74-82.]); Dong et al. (2006[Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459-o3460.], 2008[Dong, W. K., Yang, X. Q., Chai, L. Q., Tian, Y. Q. & Feng, J. H. (2008). Phosphorus Sulfur Silicon, 183, 1181-1187.]); Foss et al. (2004[Foss, O., Husebye, S., Törnroos, K. W. & Fanwick, P. E. (2004). Polyhedron, 23, 3021-3032.]); Guillon et al. (1996[Guillon, E., Mohamadou, G. & Déchamps-Olivier, I. (1996). Polyhedron, 15, 947-952.]); Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]); Krepps et al. (2001[Krepps, M. K., Parkin, S. & Atwood, D. A. (2001). Cryst. Growth Des. 1, 291-297.]); Su et al. (2004[Su, B.-Q., Xian, L., Song, H.-B. & Sheng, L. (2004). Acta Cryst. C60, m661-m662.], 2006[Su, B. Q., Liu, G. L. & Sheng, L. (2006). Phosphorus Sulfur Silicon, 181, 745-750.]); Teoh et al. (1999[Teoh, S. G., Ang, S. H. & Fun, H. K. (1999). J. Organomet. Chem. 580, 17-21.]); Venkatachalam et al. (2004[Venkatachalam, T. K., Sudbeck, E. & Uckun, F. M. (2004). J. Mol. Struct. 687, 45-51.]); West et al. (2000[West, D. X., Castiñeiras, A. & Bermejo, E. (2000). J. Mol. Struct. 520, 103-106.]); Xian et al. (2004[Xian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem. 57, 453-457.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClN3OS

  • Mr = 291.75

  • Triclinic, [P \overline 1]

  • a = 8.421 (3) Å

  • b = 9.282 (4) Å

  • c = 10.512 (4) Å

  • α = 98.336 (4)°

  • β = 110.797 (4)°

  • γ = 112.532 (4)°

  • V = 670.9 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 (2) K

  • 0.32 × 0.11 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.874, Tmax = 0.972

  • 3504 measured reflections

  • 2319 independent reflections

  • 1734 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.02

  • 2319 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.98 2.671 (3) 137
N1—H1⋯N3i 0.86 2.08 2.886 (4) 157
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea and its substituted derivatives have attracted much attention because of their unique properties, such as the strong coordination ability (Su et al., 2004; Su et al., 2006; Xian et al., 2004; West et al., 2000). They are used as selective analytical reagents, especially for the determination of transition metals in complex interfering matrices (Koch, 2001; Foss et al., 2004). It has been shown that the redox properties of thiourea are markedly influenced by electronic factors (Guillon et al., 1996), and the biological activity of thiourea derivatives has also been reported in the literature (Teoh et al., 1999; Campo et al., 2002). However, the study of S···H interactions may have fundamental importance in biochemical research due to the fact that living systems contain several important sulfur-containing molecules, such as the aminoacids cysteine and methionine (Krepps et al., 2001). Related to the biological relevance of S···H interactions, Uckum and coworkers have recently reported a structural study of a series of thiourea compounds (Venkatachalam et al., 2004). Here we report the synthesis and crystal structure of a new benzoylthiourea derivative, N-(o-chloro)benzoyl-N'-(3-pyridyl)thiourea. The molecular structure of the title compound is shown in Figure 1.

The dihedral angles formed by the plane through the thiourea group and the pyridine and benzene rings of 53.08 (3) and 87.12 (3)°, respectively. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bonding interaction (Table 1), forming a planar six-membered ring. In contrast to other thiourea compounds, the H1···S1 separation is 2.662 (2) Å, indicating that S1 is not involved in hydrogen bonding. This situation is similar to that found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). The C=O bond length of 1.217 (3) Å is just significantly longer than the average C=O bond length (1.200 Å) due to the intramolecular hydrogen bond. In the crystal structure, molecules are linked by intermolecular by N—H···N hydrogen interactions to form supramolecular chains along the a axis.

Related literature top

For related literature, see: Campo et al. (2002); Dong et al. (2006, 2008); Foss et al. (2004); Guillon et al. (1996); Koch (2001); Krepps et al. (2001); Su et al. (2004, 2006); Teoh et al. (1999); Venkatachalam et al. (2004); West et al. (2000); Xian et al. (2004).

Experimental top

N-(o-Chloro)benzoyl-N'-(3-pyridyl)thiourea was synthesized according the method reported in the literature (Dong et al., 2008). o-Chlorobenzoyl chloride (3.61 g, 0.02 mol) was reacted with ammonium thiocyanate (2.28 g, 0.03 mol) in CH2Cl2 (25 ml) under solid-liquid phase transfer catalysis, using 3% polyethylene glycol-400 (0.36 g) as catalyst, to give the corresponding benzoyl isothiocyanate, which was reacted with 3-aminopyridine (1.72 g, 0.02 mol). The title compound precipitated immediately. The product was filtered, washed with water and CH2Cl2 and dried. Colourless needle-shaped single crystals were obtained by slow evaporation of an acetone solution after several weeks at room temperature. M.p. 442 - 444 K. Anal. Calcd. for C13H10ClN3OS: C, 53.52; H, 3.45; N, 14.40. Found: C, 53.28; H, 3.48; N, 14.15%.

Refinement top

H atoms were treated as riding atoms with C—H = 0.93 Å, N—H = 0.86 Å, and Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title compound with atom numbering. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The supramolecular chain structure of the title compound constructed by intermolecular N—H···N hydrogen bonding interactions (dotted lines).
N-(2-Chlorobenzoyl)-N'-(3-pyridyl)thiourea top
Crystal data top
C13H10ClN3OSZ = 2
Mr = 291.75F(000) = 300
Triclinic, P1Dx = 1.444 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.421 (3) ÅCell parameters from 1514 reflections
b = 9.282 (4) Åθ = 2.5–26.6°
c = 10.512 (4) ŵ = 0.43 mm1
α = 98.336 (4)°T = 298 K
β = 110.797 (4)°Needle, colourless
γ = 112.532 (4)°0.32 × 0.11 × 0.07 mm
V = 670.9 (5) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2319 independent reflections
Radiation source: fine-focus sealed tube1734 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.874, Tmax = 0.972k = 119
3504 measured reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.044P)2 + 0.2146P]
where P = (Fo2 + 2Fc2)/3
2319 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H10ClN3OSγ = 112.532 (4)°
Mr = 291.75V = 670.9 (5) Å3
Triclinic, P1Z = 2
a = 8.421 (3) ÅMo Kα radiation
b = 9.282 (4) ŵ = 0.43 mm1
c = 10.512 (4) ÅT = 298 K
α = 98.336 (4)°0.32 × 0.11 × 0.07 mm
β = 110.797 (4)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2319 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1734 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.972Rint = 0.019
3504 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2319 reflectionsΔρmin = 0.18 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.41414 (14)0.64074 (11)0.50918 (8)0.0781 (3)
N10.4306 (3)0.5361 (2)0.1841 (2)0.0397 (5)
H10.30770.49660.14770.048*
N20.6871 (3)0.4903 (2)0.2029 (2)0.0416 (5)
H20.75610.59270.25480.050*
N31.0366 (3)0.3871 (2)0.1394 (2)0.0481 (5)
O10.7112 (3)0.7734 (2)0.3311 (2)0.0630 (5)
S10.33789 (9)0.24252 (8)0.02568 (7)0.0500 (2)
C10.4967 (3)0.4294 (3)0.1432 (2)0.0370 (5)
C20.5364 (4)0.6956 (3)0.2748 (3)0.0422 (6)
C30.4139 (3)0.7708 (3)0.2962 (2)0.0400 (5)
C40.3540 (4)0.7557 (3)0.4027 (3)0.0476 (6)
C50.2449 (4)0.8281 (3)0.4233 (3)0.0560 (7)
H50.20620.81770.49550.067*
C60.1944 (4)0.9154 (3)0.3359 (3)0.0613 (8)
H60.12110.96440.34900.074*
C70.2513 (4)0.9307 (3)0.2296 (3)0.0593 (7)
H70.21570.98950.17050.071*
C80.3611 (4)0.8595 (3)0.2093 (3)0.0495 (6)
H80.39970.87110.13710.059*
C90.9299 (3)0.4610 (3)0.1477 (2)0.0411 (6)
H90.95510.55860.12590.049*
C100.7848 (3)0.3985 (3)0.1872 (2)0.0380 (5)
C110.7442 (4)0.2524 (3)0.2178 (3)0.0481 (6)
H110.64560.20700.24360.058*
C120.8523 (4)0.1757 (3)0.2093 (3)0.0542 (7)
H120.82910.07760.23000.065*
C130.9953 (4)0.2463 (3)0.1697 (3)0.0537 (7)
H131.06740.19300.16360.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1271 (8)0.0975 (6)0.0704 (5)0.0861 (6)0.0617 (5)0.0496 (5)
N10.0341 (10)0.0395 (11)0.0488 (11)0.0192 (9)0.0225 (9)0.0076 (9)
N20.0372 (11)0.0368 (10)0.0569 (12)0.0195 (9)0.0271 (10)0.0101 (9)
N30.0439 (12)0.0496 (12)0.0650 (14)0.0268 (10)0.0339 (11)0.0184 (11)
O10.0406 (11)0.0539 (11)0.0758 (13)0.0192 (9)0.0209 (10)0.0069 (10)
S10.0487 (4)0.0416 (4)0.0571 (4)0.0206 (3)0.0259 (3)0.0051 (3)
C10.0437 (14)0.0408 (13)0.0405 (13)0.0244 (11)0.0273 (11)0.0160 (10)
C20.0426 (15)0.0419 (13)0.0447 (14)0.0219 (12)0.0227 (12)0.0074 (11)
C30.0408 (13)0.0356 (12)0.0459 (14)0.0206 (11)0.0213 (11)0.0071 (11)
C40.0624 (17)0.0491 (14)0.0487 (14)0.0376 (13)0.0297 (13)0.0177 (12)
C50.0712 (19)0.0653 (17)0.0544 (16)0.0448 (16)0.0386 (15)0.0170 (14)
C60.0686 (19)0.0596 (17)0.0696 (19)0.0464 (16)0.0307 (16)0.0129 (15)
C70.0712 (19)0.0516 (16)0.0672 (18)0.0404 (15)0.0291 (16)0.0236 (14)
C80.0577 (16)0.0438 (14)0.0540 (15)0.0264 (13)0.0293 (13)0.0168 (12)
C90.0374 (13)0.0396 (13)0.0515 (14)0.0198 (11)0.0238 (12)0.0142 (11)
C100.0388 (13)0.0410 (13)0.0432 (13)0.0231 (11)0.0236 (11)0.0120 (10)
C110.0507 (15)0.0512 (15)0.0599 (16)0.0269 (13)0.0380 (13)0.0222 (13)
C120.0630 (17)0.0487 (15)0.0750 (18)0.0351 (14)0.0422 (15)0.0300 (14)
C130.0556 (16)0.0537 (16)0.0732 (18)0.0373 (14)0.0378 (15)0.0220 (14)
Geometric parameters (Å, º) top
Cl1—C41.734 (2)C5—C61.372 (4)
N1—C21.368 (3)C5—H50.9300
N1—C11.394 (3)C6—C71.369 (4)
N1—H10.8600C6—H60.9300
N2—C11.331 (3)C7—C81.380 (4)
N2—C101.422 (3)C7—H70.9300
N2—H20.8600C8—H80.9300
N3—C131.335 (3)C9—C101.375 (3)
N3—C91.340 (3)C9—H90.9300
O1—C21.217 (3)C10—C111.381 (3)
S1—C11.659 (2)C11—C121.371 (3)
C2—C31.508 (3)C11—H110.9300
C3—C41.385 (3)C12—C131.373 (3)
C3—C81.386 (3)C12—H120.9300
C4—C51.384 (3)C13—H130.9300
C2—N1—C1128.3 (2)C7—C6—H6119.8
C2—N1—H1115.9C5—C6—H6119.8
C1—N1—H1115.9C6—C7—C8120.5 (2)
C1—N2—C10124.83 (19)C6—C7—H7119.7
C1—N2—H2117.6C8—C7—H7119.7
C10—N2—H2117.6C7—C8—C3120.1 (2)
C13—N3—C9117.2 (2)C7—C8—H8119.9
N2—C1—N1115.4 (2)C3—C8—H8119.9
N2—C1—S1125.54 (17)N3—C9—C10122.6 (2)
N1—C1—S1119.02 (17)N3—C9—H9118.7
O1—C2—N1124.8 (2)C10—C9—H9118.7
O1—C2—C3122.1 (2)C9—C10—C11119.2 (2)
N1—C2—C3113.1 (2)C9—C10—N2119.10 (19)
C4—C3—C8118.6 (2)C11—C10—N2121.6 (2)
C4—C3—C2121.6 (2)C12—C11—C10118.6 (2)
C8—C3—C2119.8 (2)C12—C11—H11120.7
C5—C4—C3121.1 (2)C10—C11—H11120.7
C5—C4—Cl1119.9 (2)C11—C12—C13118.8 (2)
C3—C4—Cl1118.97 (18)C11—C12—H12120.6
C6—C5—C4119.2 (2)C13—C12—H12120.6
C6—C5—H5120.4N3—C13—C12123.6 (2)
C4—C5—H5120.4N3—C13—H13118.2
C7—C6—C5120.4 (2)C12—C13—H13118.2
C10—N2—C1—N1173.77 (19)C4—C5—C6—C70.0 (4)
C10—N2—C1—S17.1 (3)C5—C6—C7—C80.4 (4)
C2—N1—C1—N21.6 (3)C6—C7—C8—C30.4 (4)
C2—N1—C1—S1177.58 (18)C4—C3—C8—C70.0 (4)
C1—N1—C2—O13.2 (4)C2—C3—C8—C7179.1 (2)
C1—N1—C2—C3178.6 (2)C13—N3—C9—C100.8 (4)
O1—C2—C3—C493.6 (3)N3—C9—C10—C111.0 (4)
N1—C2—C3—C488.1 (3)N3—C9—C10—N2175.7 (2)
O1—C2—C3—C885.4 (3)C1—N2—C10—C9129.9 (2)
N1—C2—C3—C892.8 (3)C1—N2—C10—C1153.4 (3)
C8—C3—C4—C50.4 (4)C9—C10—C11—C120.8 (4)
C2—C3—C4—C5178.7 (2)N2—C10—C11—C12175.8 (2)
C8—C3—C4—Cl1178.40 (18)C10—C11—C12—C130.5 (4)
C2—C3—C4—Cl12.5 (3)C9—N3—C13—C120.5 (4)
C3—C4—C5—C60.4 (4)C11—C12—C13—N30.4 (4)
Cl1—C4—C5—C6178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.982.671 (3)137
N1—H1···N3i0.862.082.886 (4)157
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC13H10ClN3OS
Mr291.75
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.421 (3), 9.282 (4), 10.512 (4)
α, β, γ (°)98.336 (4), 110.797 (4), 112.532 (4)
V3)670.9 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.32 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.874, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
3504, 2319, 1734
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.02
No. of reflections2319
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.982.671 (3)136.8
N1—H1···N3i0.862.082.886 (4)156.9
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the 'Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A), which are gratefully acknowledged.

References

First citationCampo, R., Criado, J. J. & Garcia, E. (2002). J. Inorg. Biochem. 89, 74–82.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDong, W. K., Yang, X. Q., Chai, L. Q., Tian, Y. Q. & Feng, J. H. (2008). Phosphorus Sulfur Silicon, 183, 1181–1187.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFoss, O., Husebye, S., Törnroos, K. W. & Fanwick, P. E. (2004). Polyhedron, 23, 3021–3032.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuillon, E., Mohamadou, G. & Déchamps-Olivier, I. (1996). Polyhedron, 15, 947–952.  CrossRef CAS Web of Science Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationKrepps, M. K., Parkin, S. & Atwood, D. A. (2001). Cryst. Growth Des. 1, 291–297.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSu, B. Q., Liu, G. L. & Sheng, L. (2006). Phosphorus Sulfur Silicon, 181, 745–750.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, B.-Q., Xian, L., Song, H.-B. & Sheng, L. (2004). Acta Cryst. C60, m661–m662.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTeoh, S. G., Ang, S. H. & Fun, H. K. (1999). J. Organomet. Chem. 580, 17–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenkatachalam, T. K., Sudbeck, E. & Uckun, F. M. (2004). J. Mol. Struct. 687, 45–51.  Web of Science CSD CrossRef CAS Google Scholar
First citationWest, D. X., Castiñeiras, A. & Bermejo, E. (2000). J. Mol. Struct. 520, 103–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationXian, L., Wei, T. B. & Zhang, Y. M. (2004). J. Coord. Chem. 57, 453–457.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds