organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-3,4-di­hydro-9H-carbazol-1(2H)-one

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 21 July 2008; accepted 24 July 2008; online 31 July 2008)

The carbazole unit of the title mol­ecule, C12H10ClNO, is not planar. The dihedral angle between the benzene and pyrrole rings is 1.35 (10)°. The cyclo­hexene ring adopts an envelope conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds form centrosymmetric dimers.

Related literature

For a related structure with a non-planar carbazole unit, see: Sridharan et al. (2008[Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763-o764.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClNO

  • Mr = 219.66

  • Monoclinic, P 21 /c

  • a = 10.4211 (5) Å

  • b = 5.6851 (3) Å

  • c = 17.0824 (10) Å

  • β = 100.239 (6)°

  • V = 995.93 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 200 (2) K

  • 0.58 × 0.18 × 0.11 mm

Data collection
  • Oxford Diffraction R Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.923, Tmax = 1.000 (expected range = 0.888–0.962)

  • 10695 measured reflections

  • 3909 independent reflections

  • 1793 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.139

  • S = 0.88

  • 3909 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.82 (2) 2.11 (2) 2.872 (2) 154 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Sridharan et al. (2008) have reported the crystal structure of 6-Methoxy-2,3,4,9-tetrahydro-1H-carbazol-1-one, in which the carbazole unit is not planar. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The carbazole unit of the title molecule is not planar. The dihedral angle between the benzene ring and the pyrrole ring is 1.35 (10)°. The cyclohexene ring adopts an envelope conformation. Intermolecular N9—H9···O1 (-x, -y, -z) hydrogen bonds form centrosymmetric dimers in the crystal structure, Fig. 2.

Related literature top

For a related structure with a non-planar carbazole unit, see: Sridharan et al. (2008).

Experimental top

A solution of 2-(2-(4-chlorophenyl)hydrazono)cyclohexanone (0.236 g, 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398–403 K for 2 h. The contents were then cooled and poured onto cold water with stirring. The brown solid which separated was purified by passing through a column of silica gel and eluting with (95:5 v/v) petroleum ether-ethyl acetate mixture to yield the title compound (0.153 g, 70%). This was recrystallized from ethanol.

Refinement top

The crystal used was very weakly diffracting particularly at high Bragg angles. The H atom bonded to N9 was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
6-Chloro-3,4-dihydro-9H-carbazol-1(2H)-one top
Crystal data top
C12H10ClNOF(000) = 456
Mr = 219.66Dx = 1.465 Mg m3
Monoclinic, P21/cMelting point: 475(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.4211 (5) ÅCell parameters from 1948 reflections
b = 5.6851 (3) Åθ = 4.6–34.7°
c = 17.0824 (10) ŵ = 0.35 mm1
β = 100.239 (6)°T = 200 K
V = 995.93 (9) Å3Needle, colourless
Z = 40.58 × 0.18 × 0.11 mm
Data collection top
Oxford Diffraction R Gemini
diffractometer
3909 independent reflections
Radiation source: fine-focus sealed tube1793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.5081 pixels mm-1θmax = 34.7°, θmin = 4.6°
ϕ and ω scansh = 1615
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 99
Tmin = 0.923, Tmax = 1.000l = 2719
10695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.0611P)2]
where P = (Fo2 + 2Fc2)/3
3909 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H10ClNOV = 995.93 (9) Å3
Mr = 219.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4211 (5) ŵ = 0.35 mm1
b = 5.6851 (3) ÅT = 200 K
c = 17.0824 (10) Å0.58 × 0.18 × 0.11 mm
β = 100.239 (6)°
Data collection top
Oxford Diffraction R Gemini
diffractometer
3909 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1793 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 1.000Rint = 0.072
10695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.46 e Å3
3909 reflectionsΔρmin = 0.23 e Å3
140 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51516 (5)0.81197 (10)0.14449 (3)0.0418 (2)
O10.02083 (14)0.1402 (3)0.10672 (9)0.0403 (5)
N90.14769 (15)0.2338 (3)0.00949 (10)0.0293 (5)
C10.05496 (17)0.3080 (3)0.11410 (11)0.0276 (5)
C20.06417 (19)0.4778 (4)0.18253 (12)0.0340 (6)
C30.1973 (2)0.5983 (4)0.20336 (12)0.0361 (6)
C40.2388 (2)0.7173 (4)0.13273 (12)0.0358 (7)
C4A0.22083 (17)0.5536 (3)0.06315 (11)0.0258 (5)
C4B0.28050 (17)0.5475 (3)0.00559 (11)0.0251 (5)
C50.36953 (17)0.6955 (3)0.03472 (12)0.0286 (5)
C60.40706 (18)0.6321 (3)0.10471 (12)0.0292 (6)
C70.36271 (19)0.4274 (4)0.14660 (12)0.0337 (6)
C80.27603 (19)0.2811 (4)0.11885 (12)0.0318 (6)
C8A0.23419 (17)0.3435 (3)0.04868 (11)0.0260 (5)
C9A0.13871 (17)0.3614 (3)0.05784 (11)0.0253 (5)
H2A0.003990.599710.169030.0408*
H2B0.046400.392040.229910.0408*
H3A0.263640.479520.225110.0433*
H3B0.193910.716950.245350.0433*
H4A0.331550.764290.146530.0430*
H4B0.186030.860990.118760.0430*
H50.402310.833890.006980.0343*
H70.392750.389710.194430.0404*
H80.245550.141530.146660.0381*
H90.1137 (19)0.107 (4)0.0230 (12)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0407 (3)0.0437 (3)0.0464 (3)0.0017 (2)0.0224 (2)0.0095 (3)
O10.0350 (7)0.0496 (9)0.0389 (8)0.0151 (7)0.0138 (7)0.0069 (8)
N90.0308 (8)0.0319 (9)0.0269 (8)0.0096 (7)0.0095 (7)0.0062 (8)
C10.0222 (8)0.0333 (10)0.0273 (9)0.0006 (8)0.0046 (7)0.0012 (9)
C20.0336 (10)0.0437 (12)0.0271 (10)0.0017 (9)0.0119 (9)0.0023 (10)
C30.0424 (11)0.0397 (12)0.0279 (10)0.0077 (9)0.0109 (9)0.0051 (10)
C40.0459 (12)0.0306 (11)0.0333 (11)0.0057 (9)0.0138 (10)0.0061 (10)
C4A0.0265 (9)0.0262 (9)0.0250 (9)0.0022 (7)0.0051 (8)0.0012 (9)
C4B0.0255 (8)0.0275 (10)0.0223 (9)0.0020 (7)0.0043 (7)0.0035 (8)
C50.0302 (9)0.0269 (10)0.0294 (9)0.0009 (8)0.0071 (8)0.0023 (9)
C60.0273 (9)0.0319 (11)0.0305 (10)0.0040 (7)0.0113 (8)0.0085 (9)
C70.0355 (10)0.0412 (12)0.0266 (9)0.0051 (9)0.0117 (9)0.0005 (10)
C80.0344 (10)0.0348 (11)0.0276 (10)0.0007 (8)0.0097 (8)0.0046 (9)
C8A0.0244 (8)0.0302 (10)0.0240 (9)0.0004 (7)0.0057 (7)0.0006 (9)
C9A0.0240 (8)0.0287 (10)0.0238 (9)0.0026 (7)0.0056 (7)0.0007 (8)
Geometric parameters (Å, º) top
Cl1—C61.7460 (19)C5—C61.371 (3)
O1—C11.231 (2)C6—C71.401 (3)
N9—C8A1.365 (2)C7—C81.373 (3)
N9—C9A1.377 (2)C8—C8A1.392 (3)
N9—H90.82 (2)C2—H2A0.9900
C1—C9A1.441 (3)C2—H2B0.9900
C1—C21.506 (3)C3—H3A0.9900
C2—C31.531 (3)C3—H3B0.9900
C3—C41.512 (3)C4—H4A0.9900
C4—C4A1.495 (3)C4—H4B0.9900
C4A—C4B1.424 (3)C5—H50.9500
C4A—C9A1.381 (2)C7—H70.9500
C4B—C8A1.412 (2)C8—H80.9500
C4B—C51.407 (3)
Cl1···C4Ai3.5299 (19)C8A···H2Avi2.8900
Cl1···H7ii3.1000C9A···H3A3.0000
Cl1···H4Aiii2.8900C9A···H4Bv3.0400
O1···N92.924 (2)H2A···H2Bx2.4900
O1···N9iv2.872 (2)H2A···C8vi2.8900
O1···H4Bv2.6600H2A···C8Avi2.8900
O1···H92.83 (2)H2B···H2Axi2.4900
O1···H9iv2.11 (2)H3A···C9A3.0000
N9···O12.924 (2)H3A···C8vii3.0300
N9···O1iv2.872 (2)H3A···H8vii2.3400
C4A···Cl1i3.5299 (19)H3B···C7xii3.0700
C5···C5i3.549 (3)H4A···Cl1iii2.8900
C5···C6i3.548 (3)H4B···O1xiii2.6600
C6···C5i3.548 (3)H4B···C1xiii2.8800
C9A···C9Avi3.566 (3)H4B···C9Axiii3.0400
C1···H4Bv2.8800H7···Cl1xiv3.1000
C3···H8vii2.8700H8···C3ix2.8700
C7···H3Bviii3.0700H8···H3Aix2.3400
C8···H2Avi2.8900H9···O12.83 (2)
C8···H3Aix3.0300H9···O1iv2.11 (2)
C8A—N9—C9A108.53 (15)C1—C9A—C4A124.38 (17)
C9A—N9—H9127.6 (14)N9—C9A—C1125.83 (16)
C8A—N9—H9123.7 (14)N9—C9A—C4A109.78 (16)
O1—C1—C9A123.29 (17)C1—C2—H2A109.00
O1—C1—C2121.85 (17)C1—C2—H2B109.00
C2—C1—C9A114.85 (16)C3—C2—H2A109.00
C1—C2—C3113.41 (16)C3—C2—H2B109.00
C2—C3—C4112.99 (17)H2A—C2—H2B108.00
C3—C4—C4A110.04 (18)C2—C3—H3A109.00
C4B—C4A—C9A106.44 (16)C2—C3—H3B109.00
C4—C4A—C4B131.28 (17)C4—C3—H3A109.00
C4—C4A—C9A122.24 (17)C4—C3—H3B109.00
C5—C4B—C8A119.51 (17)H3A—C3—H3B108.00
C4A—C4B—C8A106.93 (15)C3—C4—H4A110.00
C4A—C4B—C5133.57 (17)C3—C4—H4B110.00
C4B—C5—C6117.36 (16)C4A—C4—H4A110.00
Cl1—C6—C5119.30 (14)C4A—C4—H4B110.00
Cl1—C6—C7117.70 (15)H4A—C4—H4B108.00
C5—C6—C7123.00 (17)C4B—C5—H5121.00
C6—C7—C8120.30 (19)C6—C5—H5121.00
C7—C8—C8A117.96 (19)C6—C7—H7120.00
N9—C8A—C8129.85 (17)C8—C7—H7120.00
C4B—C8A—C8121.86 (17)C7—C8—H8121.00
N9—C8A—C4B108.29 (16)C8A—C8—H8121.00
C9A—N9—C8A—C4B0.6 (2)C4—C4A—C4B—C8A175.46 (19)
C9A—N9—C8A—C8179.52 (19)C9A—C4A—C4B—C5178.3 (2)
C8A—N9—C9A—C1178.12 (17)C4B—C4A—C9A—N91.7 (2)
C8A—N9—C9A—C4A0.7 (2)C4B—C4A—C9A—C1177.15 (17)
C2—C1—C9A—N9179.78 (17)C4A—C4B—C8A—N91.6 (2)
C2—C1—C9A—C4A1.1 (3)C5—C4B—C8A—C81.3 (3)
O1—C1—C2—C3153.79 (19)C4A—C4B—C8A—C8178.47 (18)
C9A—C1—C2—C327.7 (2)C5—C4B—C8A—N9178.63 (16)
O1—C1—C9A—N91.3 (3)C4A—C4B—C5—C6179.7 (2)
O1—C1—C9A—C4A177.38 (18)C8A—C4B—C5—C60.0 (3)
C1—C2—C3—C453.7 (2)C4B—C5—C6—Cl1178.90 (14)
C2—C3—C4—C4A48.1 (2)C4B—C5—C6—C71.2 (3)
C3—C4—C4A—C4B157.05 (19)Cl1—C6—C7—C8178.99 (16)
C3—C4—C4A—C9A20.1 (3)C5—C6—C7—C81.1 (3)
C4—C4A—C9A—N9176.05 (17)C6—C7—C8—C8A0.2 (3)
C4—C4A—C9A—C15.1 (3)C7—C8—C8A—N9178.52 (19)
C9A—C4A—C4B—C8A2.0 (2)C7—C8—C8A—C4B1.4 (3)
C4—C4A—C4B—C54.2 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z1/2; (iii) x+1, y+2, z; (iv) x, y, z; (v) x, y1, z; (vi) x, y+1, z; (vii) x, y+1/2, z+1/2; (viii) x, y+3/2, z1/2; (ix) x, y+1/2, z1/2; (x) x, y+1/2, z+1/2; (xi) x, y1/2, z+1/2; (xii) x, y+3/2, z+1/2; (xiii) x, y+1, z; (xiv) x+1, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1iv0.82 (2)2.11 (2)2.872 (2)154 (2)
Symmetry code: (iv) x, y, z.

Experimental details

Crystal data
Chemical formulaC12H10ClNO
Mr219.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)10.4211 (5), 5.6851 (3), 17.0824 (10)
β (°) 100.239 (6)
V3)995.93 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.58 × 0.18 × 0.11
Data collection
DiffractometerOxford Diffraction R Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.923, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10695, 3909, 1793
Rint0.072
(sin θ/λ)max1)0.801
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.139, 0.88
No. of reflections3909
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.23

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O1i0.82 (2)2.11 (2)2.872 (2)154 (2)
Symmetry code: (i) x, y, z.
 

Acknowledgements

MS thanks the UGC, New Delhi, for the award of a research fellowship. KJR acknowledges the UGC, New Delhi, India, for the award of Major Research Project grant No. F.No.31–122/2005. AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763–o764.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds