metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1096-m1097

Bis{(E)-2-eth­­oxy-6-[2-(ethyl­ammonio)ethyl­iminometh­yl]phenolato}nickel(II) bis­(perchlorate)

aKey Laboratory of Surface and Interface Science of Henan, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: xuewen_zhu@126.com

(Received 25 July 2008; accepted 27 July 2008; online 31 July 2008)

In the title centrosymmetric mononuclear nickel(II) complex, [Ni(C13H20N2O2)2](ClO4)2, the NiII atom is four-coordinated by the imine N and phenolate O atoms of the zwitterionic forms of two Schiff base ligands in a square-planar coordination geometry. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the a axis.

Related literature

For background to the chemistry of the Schiff base complexes, see: Ali et al. (2008[Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718-m719.]); Biswas et al. (2008[Biswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513-4519.]); Carlsson et al. (2002[Carlsson, H., Haukka, M. & Nordlander, E. (2002). Inorg. Chem. 41, 4981-4983.], 2004[Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252-8262.]); Chen et al. (2008[Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]); Darensbourg & Frantz (2007[Darensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967-5978.]); Habibi et al. (2007[Habibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905-m2906.]); Kawamoto et al. (2008[Kawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095-3104.]); Tomat et al. (2007[Tomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224-6226.]); Wu et al. (2008[Wu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452-3459.]); Yuan et al. (2007[Yuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235-11242.]). For related structures, see: Ma et al. (2008[Ma, H.-B., Jiang, Y.-X. & Lei, J.-T. (2008). Acta Cryst. E64, m597-m598.]); Skovsgaard et al. (2005[Skovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135-m137.]); Zhao (2007[Zhao, X.-F. (2007). Acta Cryst. E63, m704-m705.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H20N2O2)2](ClO4)2

  • Mr = 730.23

  • Monoclinic, P 21 /n

  • a = 8.386 (3) Å

  • b = 8.566 (3) Å

  • c = 21.862 (6) Å

  • β = 99.068 (4)°

  • V = 1550.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.826, Tmax = 0.846

  • 12509 measured reflections

  • 3363 independent reflections

  • 2770 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.04

  • 3363 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 1.836 (2)
Ni1—N1 1.910 (2)
O1i—Ni1—O1 180
O1i—Ni1—N1 87.67 (7)
O1—Ni1—N1 92.33 (7)
N1i—Ni1—N1 180
Symmetry code: (i) -x+2, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.90 2.34 3.013 (3) 131
N2—H2B⋯O1i 0.90 1.97 2.764 (2) 146
N2—H2A⋯O3 0.90 2.56 3.242 (3) 132
N2—H2A⋯O3ii 0.90 2.13 2.916 (3) 145
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have widely been used as versatile ligands in coordination chemistry (Biswas et al., 2008; Wu et al., 2008; Kawamoto et al., 2008; Ali et al., 2008; Habibi et al., 2007), and their metal complexes are of great interest in many fields (Chen et al., 2008; Yuan et al., 2007; Tomat et al., 2007; Darensbourg & Frantz, 2007). Nickel(II) is present in the active sites of urease (Carlsson et al., 2002, 2004). In this paper, a new nickel(II) complex, (I), Fig. 1, with the Schiff base ligand (E)-2-ethoxy-6-((3-(methylamino)propylimino)methyl)phenol has been synthesized and structurally characterized.

Complex (I) consists of a centrosymmetric mononuclear nickel(II) complex cation and two perchlorate anions. The NiII atom in the cation, lies on an inversion centre, with the asymmetric unit made up from one half of the Ni(II) complex and one perchlorate anion. The Ni(II) atom is four-coordinated by two imine N and two phenolate O atoms from two zwitterionic Schiff base ligands in a square-planar coordination geometry. The coordinate bond lengths (Table 1) are typical and comparable to the corresponding values observed in similar nickel(II) Schiff base complexes (Zhao, 2007; Skovsgaard et al., 2005; Ma et al., 2008).

In the crystal structure, molecules are linked through intermolecular N–H···O hydrogen bonds (Table 2), forming chains running along the a axis (Fig. 2).

Related literature top

For background to the chemistry of the Schiff base complexes, see: Ali et al. (2008); Biswas et al. (2008); Carlsson et al. (2002, 2004); Chen et al. (2008); Darensbourg & Frantz (2007); Habibi et al. (2007); Kawamoto et al. (2008); Tomat et al. (2007); Wu et al. (2008); Yuan et al. (2007). For related structures, see: Ma et al. (2008); Skovsgaard et al. (2005); Zhao (2007).

Experimental top

The Schiff base compound was prepared by the condensation of equimolar amounts of 3-ethoxysalicylaldehyde with N-ethylethane-1,2-diamine in a methanol solution. The complex was prepared by the following method. To a methanol solution (5 ml) of Ni(ClO4)2.6H2O (36.6 mg, 0.1 mmol) was added a methanol solution (10 ml) of the Schiff base compound (23.6 mg, 0.1 mmol) with stirring. The mixture was stirred for 30 min at room temperature and filtered. Upon keeping the filtrate in air for a few days, red block-shaped crystals formed at the bottom of the vessel on slow evaporation of the solvent.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level. Unlabelled atoms are at the symmetry positions 2 - x, 1 - y, - z.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis.
Bis{(E)-2-Ethoxy-6-[2-(ethylammonio)ethyliminomethyl]phenolato}nickel(II) bis(perchlorate) top
Crystal data top
[Ni(C13H20N2O2)2](ClO4)2F(000) = 764
Mr = 730.23Dx = 1.564 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3252 reflections
a = 8.386 (3) Åθ = 2.5–25.4°
b = 8.566 (3) ŵ = 0.87 mm1
c = 21.862 (6) ÅT = 298 K
β = 99.068 (4)°Block, red
V = 1550.8 (9) Å30.23 × 0.20 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3363 independent reflections
Radiation source: fine-focus sealed tube2770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.826, Tmax = 0.846k = 1010
12509 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.4599P]
where P = (Fo2 + 2Fc2)/3
3363 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Ni(C13H20N2O2)2](ClO4)2V = 1550.8 (9) Å3
Mr = 730.23Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.386 (3) ŵ = 0.87 mm1
b = 8.566 (3) ÅT = 298 K
c = 21.862 (6) Å0.23 × 0.20 × 0.20 mm
β = 99.068 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3363 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2770 reflections with I > 2σ(I)
Tmin = 0.826, Tmax = 0.846Rint = 0.041
12509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3363 reflectionsΔρmin = 0.34 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.00000.02592 (13)
Cl10.39043 (7)0.71469 (7)0.09059 (3)0.03882 (17)
O11.06353 (18)0.41002 (18)0.07614 (7)0.0333 (4)
O21.1550 (2)0.2125 (2)0.16406 (8)0.0451 (4)
O30.4539 (3)0.6169 (2)0.04665 (9)0.0624 (6)
O40.5075 (2)0.8315 (2)0.11174 (9)0.0547 (5)
O50.3594 (3)0.6194 (2)0.14062 (9)0.0652 (6)
O60.2480 (3)0.7874 (3)0.06108 (13)0.0790 (7)
N10.8973 (2)0.6697 (2)0.03503 (8)0.0272 (4)
N20.6314 (2)0.7051 (2)0.07021 (9)0.0342 (4)
H2A0.60310.62590.04710.041*
H2B0.71390.67180.08860.041*
C10.8960 (3)0.5512 (3)0.13583 (10)0.0307 (5)
C21.0022 (3)0.4303 (3)0.12705 (9)0.0281 (5)
C31.0473 (3)0.3232 (3)0.17637 (10)0.0322 (5)
C40.9828 (3)0.3361 (3)0.22998 (10)0.0385 (6)
H41.01090.26400.26160.046*
C50.8759 (3)0.4560 (3)0.23756 (11)0.0436 (6)
H50.83270.46340.27410.052*
C60.8344 (3)0.5623 (3)0.19183 (11)0.0399 (6)
H60.76440.64330.19760.048*
C70.8602 (3)0.6692 (3)0.09004 (10)0.0308 (5)
H70.80360.75550.10100.037*
C80.8632 (3)0.8182 (2)0.00079 (11)0.0317 (5)
H8A0.93080.82420.03130.038*
H8B0.89230.90440.02910.038*
C90.6887 (3)0.8363 (3)0.02871 (11)0.0333 (5)
H9A0.62190.84360.00360.040*
H9B0.67650.93280.05220.040*
C100.4917 (3)0.7422 (3)0.11922 (13)0.0487 (7)
H10A0.52450.82150.14640.058*
H10B0.46290.64930.14390.058*
C110.3475 (3)0.7982 (4)0.09446 (14)0.0568 (8)
H11A0.31520.72110.06700.085*
H11B0.26100.81580.12810.085*
H11C0.37280.89400.07230.085*
C121.1937 (3)0.0850 (3)0.20663 (12)0.0465 (6)
H12A1.21100.12550.24860.056*
H12B1.29370.03720.19920.056*
C131.0661 (5)0.0355 (4)0.2011 (2)0.0790 (11)
H13A0.96900.00910.21160.119*
H13B1.10070.12010.22880.119*
H13C1.04580.07370.15930.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0286 (2)0.0257 (2)0.0236 (2)0.00323 (15)0.00463 (15)0.00429 (15)
Cl10.0470 (4)0.0310 (3)0.0392 (3)0.0058 (2)0.0091 (3)0.0041 (2)
O10.0407 (9)0.0352 (9)0.0255 (7)0.0112 (7)0.0096 (7)0.0078 (6)
O20.0555 (11)0.0445 (10)0.0376 (9)0.0190 (8)0.0145 (8)0.0175 (8)
O30.1038 (17)0.0375 (10)0.0533 (12)0.0086 (11)0.0357 (11)0.0095 (9)
O40.0541 (12)0.0456 (11)0.0639 (13)0.0157 (9)0.0075 (9)0.0132 (9)
O50.1053 (17)0.0525 (12)0.0438 (11)0.0208 (12)0.0300 (11)0.0021 (9)
O60.0493 (13)0.0656 (14)0.116 (2)0.0016 (11)0.0058 (12)0.0108 (14)
N10.0264 (9)0.0250 (9)0.0292 (9)0.0002 (7)0.0015 (7)0.0020 (7)
N20.0319 (10)0.0294 (10)0.0408 (11)0.0026 (8)0.0038 (8)0.0007 (8)
C10.0301 (11)0.0345 (12)0.0277 (11)0.0006 (9)0.0048 (9)0.0003 (9)
C20.0290 (11)0.0310 (11)0.0244 (10)0.0028 (9)0.0043 (9)0.0013 (9)
C30.0323 (12)0.0354 (12)0.0284 (11)0.0017 (10)0.0030 (9)0.0047 (9)
C40.0413 (14)0.0464 (14)0.0271 (11)0.0036 (11)0.0034 (10)0.0079 (10)
C50.0465 (15)0.0580 (16)0.0288 (12)0.0011 (13)0.0132 (11)0.0006 (11)
C60.0391 (13)0.0466 (14)0.0356 (13)0.0061 (11)0.0107 (10)0.0031 (11)
C70.0292 (11)0.0299 (12)0.0333 (12)0.0024 (9)0.0048 (9)0.0033 (9)
C80.0359 (12)0.0224 (11)0.0362 (12)0.0029 (9)0.0033 (10)0.0010 (9)
C90.0374 (13)0.0232 (11)0.0387 (12)0.0043 (9)0.0042 (10)0.0019 (9)
C100.0474 (15)0.0519 (16)0.0429 (14)0.0002 (13)0.0052 (12)0.0011 (12)
C110.0354 (14)0.0620 (19)0.068 (2)0.0005 (13)0.0059 (13)0.0023 (15)
C120.0508 (16)0.0441 (15)0.0445 (14)0.0123 (12)0.0072 (12)0.0191 (12)
C130.078 (2)0.0510 (19)0.107 (3)0.0058 (18)0.011 (2)0.010 (2)
Geometric parameters (Å, º) top
Ni1—O1i1.836 (2)C4—H40.9300
Ni1—O11.836 (2)C5—C61.357 (4)
Ni1—N1i1.910 (2)C5—H50.9300
Ni1—N11.910 (2)C6—H60.9300
Cl1—O61.410 (2)C7—H70.9300
Cl1—O51.421 (2)C8—C91.512 (3)
Cl1—O41.4268 (18)C8—H8A0.9700
Cl1—O31.4384 (19)C8—H8B0.9700
O1—C21.309 (2)C9—H9A0.9700
O2—C31.365 (3)C9—H9B0.9700
O2—C121.439 (3)C10—C111.481 (4)
N1—C71.289 (3)C10—H10A0.9700
N1—C81.481 (3)C10—H10B0.9700
N2—C91.476 (3)C11—H11A0.9600
N2—C101.492 (3)C11—H11B0.9600
N2—H2A0.9000C11—H11C0.9600
N2—H2B0.9000C12—C131.478 (4)
C1—C21.399 (3)C12—H12A0.9700
C1—C61.405 (3)C12—H12B0.9700
C1—C71.421 (3)C13—H13A0.9600
C2—C31.421 (3)C13—H13B0.9600
C3—C41.370 (3)C13—H13C0.9600
C4—C51.390 (4)
O1i—Ni1—O1180.0C1—C6—H6119.7
O1i—Ni1—N1i92.33 (7)N1—C7—C1127.2 (2)
O1—Ni1—N1i87.67 (7)N1—C7—H7116.4
O1i—Ni1—N187.67 (7)C1—C7—H7116.4
O1—Ni1—N192.33 (7)N1—C8—C9113.63 (18)
N1i—Ni1—N1180.0N1—C8—H8A108.8
O6—Cl1—O5111.19 (15)C9—C8—H8A108.8
O6—Cl1—O4109.16 (13)N1—C8—H8B108.8
O5—Cl1—O4110.69 (13)C9—C8—H8B108.8
O6—Cl1—O3109.13 (15)H8A—C8—H8B107.7
O5—Cl1—O3108.15 (12)N2—C9—C8112.54 (18)
O4—Cl1—O3108.46 (13)N2—C9—H9A109.1
C2—O1—Ni1128.20 (14)C8—C9—H9A109.1
C3—O2—C12119.27 (19)N2—C9—H9B109.1
C7—N1—C8114.76 (18)C8—C9—H9B109.1
C7—N1—Ni1124.19 (15)H9A—C9—H9B107.8
C8—N1—Ni1120.95 (14)C11—C10—N2113.6 (2)
C9—N2—C10114.96 (19)C11—C10—H10A108.8
C9—N2—H2A108.5N2—C10—H10A108.8
C10—N2—H2A108.5C11—C10—H10B108.8
C9—N2—H2B108.5N2—C10—H10B108.8
C10—N2—H2B108.5H10A—C10—H10B107.7
H2A—N2—H2B107.5C10—C11—H11A109.5
C2—C1—C6119.9 (2)C10—C11—H11B109.5
C2—C1—C7119.90 (19)H11A—C11—H11B109.5
C6—C1—C7120.0 (2)C10—C11—H11C109.5
O1—C2—C1123.96 (19)H11A—C11—H11C109.5
O1—C2—C3117.8 (2)H11B—C11—H11C109.5
C1—C2—C3118.25 (19)O2—C12—C13113.0 (2)
O2—C3—C4126.0 (2)O2—C12—H12A109.0
O2—C3—C2113.84 (19)C13—C12—H12A109.0
C4—C3—C2120.2 (2)O2—C12—H12B109.0
C3—C4—C5120.7 (2)C13—C12—H12B109.0
C3—C4—H4119.7H12A—C12—H12B107.8
C5—C4—H4119.7C12—C13—H13A109.5
C6—C5—C4120.2 (2)C12—C13—H13B109.5
C6—C5—H5119.9H13A—C13—H13B109.5
C4—C5—H5119.9C12—C13—H13C109.5
C5—C6—C1120.7 (2)H13A—C13—H13C109.5
C5—C6—H6119.7H13B—C13—H13C109.5
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.902.343.013 (3)131
N2—H2B···O1i0.901.972.764 (2)146
N2—H2A···O30.902.563.242 (3)132
N2—H2A···O3ii0.902.132.916 (3)145
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C13H20N2O2)2](ClO4)2
Mr730.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.386 (3), 8.566 (3), 21.862 (6)
β (°) 99.068 (4)
V3)1550.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.826, 0.846
No. of measured, independent and
observed [I > 2σ(I)] reflections
12509, 3363, 2770
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.04
No. of reflections3363
No. of parameters207
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O11.836 (2)Ni1—N11.910 (2)
O1i—Ni1—O1180.0O1—Ni1—N192.33 (7)
O1i—Ni1—N187.67 (7)N1i—Ni1—N1180.0
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.902.343.013 (3)131
N2—H2B···O1i0.901.972.764 (2)146
N2—H2A···O30.902.563.242 (3)132
N2—H2A···O3ii0.902.132.916 (3)145
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z.
 

References

First citationAli, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m718–m719.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBiswas, C., Drew, M. G. B. & Ghosh, A. (2008). Inorg. Chem. 47, 4513–4519.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252–8262.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCarlsson, H., Haukka, M. & Nordlander, E. (2002). Inorg. Chem. 41, 4981–4983.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDarensbourg, D. J. & Frantz, E. B. (2007). Inorg. Chem. 46, 5967–5978.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHabibi, M. H., Askari, E., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, m2905–m2906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKawamoto, T., Nishiwaki, M., Tsunekawa, Y., Nozaki, K. & Konno, T. (2008). Inorg. Chem. 47, 3095–3104.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMa, H.-B., Jiang, Y.-X. & Lei, J.-T. (2008). Acta Cryst. E64, m597–m598.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkovsgaard, S., Bond, A. D. & McKenzie, C. J. (2005). Acta Cryst. E61, m135–m137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTomat, E., Cuesta, L., Lynch, V. M. & Sessler, J. L. (2007). Inorg. Chem. 46, 6224–6226.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, J.-C., Liu, S.-X., Keene, T. D., Neels, A., Mereacre, V., Powell, A. K. & Decurtins, S. (2008). Inorg. Chem. 47, 3452–3459.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYuan, M., Zhao, F., Zhang, W., Wang, Z.-M. & Gao, S. (2007). Inorg. Chem. 46, 11235–11242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, X.-F. (2007). Acta Cryst. E63, m704–m705.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 8| August 2008| Pages m1096-m1097
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds