supplementary materials


bg2202 scheme

Acta Cryst. (2008). E64, m1194    [ doi:10.1107/S1600536808026445 ]

Poly[aqua[[mu]-N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetato]neodymium(III)]

X.-H. Huang, X.-H. Xu, W.-B. Pan and R.-H. Zeng

Abstract top

In the title complex, [Nd(C10H13N2O8)(H2O)]n, each NdIII ion is coordinated by six O atoms and two N atoms from one N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetate (edta) ligand and one water molecule, displaying a bicapped trigonal-prismatic geometry. The edta ligands link the neodymium metal centres, forming polymeric chains running along the a axis of the unit cell. These chains are further assembled via intermolecular O-H...O hydrogen-bonding interactions into a three-dimensional supramolecular network.

Comment top

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Zeng et al., 2007; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

As illustrated in Fig. 1, each NdIII centre is in a bicapped trigonal prismatic geometry, defined by six oxygen and two nitrogen atoms from one ethylene-diamine tetraacetate(edta) ligand and one water molecule. The NdIII ions are linked by edta ligands to form an infinite polymeric chain in the a axis direction(Fig.2), and the adjacent Nd···Nd separations are 4.253 (4) and 6.642 (5) Å, respectively. O—H···O hydrogen bonding (Table 1), involving carboxylate groups of edta ligands and the coordinating water molecules, assemble neighbouring chains to form a three-dimensional supramolecular network motif.

Related literature top

For related literature, see: Moulton & Zaworotko (2001); Zeng et al., (2007).

Experimental top

A mixture of Nd2O3 (0.168 g; 0.5 mmol), ethylene-diamine tetraacetic acid (0.292 g; 1 mmol), water (10 ml) in the presence of HNO3 (0.1 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (15 ml, capacity). The autoclave was heated to and maintained at 433 K for 3 days, and then cooled to room temperature at 5 K h-1 to obtain the colorless block crystals.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.84 Å and H···H = 1.35 Å, and with Uiso(H) = 1.5 Ueq(O), and then were treated in riding mode. Carbon-bound H and the carboxylate H4 atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.97 Å, O4-H4: 0.82 and Uiso(H) = 1.2 Ueq(parent).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i)1 + x, y, z; (ii)2 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. View of an infinite polymeric chain of the title complex.
Poly[aqua[µ-N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetato]neodymium(III)] top
Crystal data top
[Nd(C10H13N2O8)(H2O)]F000 = 1768
Mr = 451.48Dx = 2.357 Mg m3
Orthorhombic, PbcaMo Kα radiation
λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7620 reflections
a = 6.6420 (3) Åθ = 2.8–27.8º
b = 14.7273 (6) ŵ = 4.14 mm1
c = 26.0161 (10) ÅT = 296 (2) K
V = 2544.86 (18) Å3Block, colourless
Z = 80.22 × 0.20 × 0.19 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3028 independent reflections
Radiation source: fine-focus sealed tube2647 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 296(2) Kθmax = 27.8º
φ and ω scansθmin = 1.6º
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 7→8
Tmin = 0.42, Tmax = 0.46k = 19→19
22432 measured reflectionsl = 32→34
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.041  w = 1/[σ2(Fo2) + (0.016P)2 + 2.21P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.004
3028 reflectionsΔρmax = 0.71 e Å3
200 parametersΔρmin = 0.54 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods
Crystal data top
[Nd(C10H13N2O8)(H2O)]V = 2544.86 (18) Å3
Mr = 451.48Z = 8
Orthorhombic, PbcaMo Kα
a = 6.6420 (3) ŵ = 4.14 mm1
b = 14.7273 (6) ÅT = 296 (2) K
c = 26.0161 (10) Å0.22 × 0.20 × 0.19 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3028 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2647 reflections with I > 2σ(I)
Tmin = 0.42, Tmax = 0.46Rint = 0.034
22432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0193 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.02Δρmax = 0.71 e Å3
3028 reflectionsΔρmin = 0.54 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd11.075731 (17)0.492979 (7)0.420675 (4)0.01307 (4)
C11.2133 (4)0.64721 (15)0.33465 (8)0.0191 (5)
C21.0901 (4)0.71297 (15)0.36663 (9)0.0223 (5)
H2A1.18050.74980.38720.027*
H2B1.01680.75330.34380.027*
C31.0295 (4)0.38164 (15)0.30802 (9)0.0202 (5)
C40.9158 (4)0.46577 (16)0.29163 (9)0.0206 (5)
H4A1.00850.50960.27700.025*
H4B0.81720.45010.26560.025*
C50.5878 (4)0.44098 (15)0.40469 (9)0.0195 (5)
C60.6307 (4)0.45104 (17)0.34798 (9)0.0226 (5)
H6A0.64600.39110.33310.027*
H6B0.51580.47970.33170.027*
C70.9063 (4)0.66244 (15)0.49694 (9)0.0193 (5)
C80.9167 (4)0.71960 (15)0.44896 (9)0.0223 (5)
H8A0.79330.75440.44610.027*
H8B1.02710.76230.45240.027*
C90.7466 (4)0.65605 (15)0.37536 (9)0.0219 (5)
H9A0.69270.71570.36760.026*
H9B0.65420.62640.39890.026*
C100.7579 (4)0.60141 (15)0.32623 (9)0.0213 (5)
H10A0.62830.60310.30910.026*
H10B0.85650.62860.30340.026*
N10.9454 (3)0.66667 (13)0.40105 (7)0.0189 (4)
N20.8145 (3)0.50536 (12)0.33635 (7)0.0186 (4)
O11.2294 (3)0.56652 (10)0.34990 (6)0.0231 (4)
O21.2979 (3)0.67575 (11)0.29451 (6)0.0268 (4)
O31.0728 (3)0.36869 (11)0.35312 (6)0.0257 (4)
O41.0749 (3)0.32789 (12)0.27038 (6)0.0323 (5)
H41.12850.28190.28170.048*
O50.7375 (3)0.43953 (12)0.43463 (6)0.0263 (4)
O60.4103 (3)0.42845 (11)0.41880 (6)0.0240 (4)
O70.9077 (3)0.57641 (11)0.49218 (6)0.0236 (4)
O80.9002 (3)0.70106 (13)0.53946 (6)0.0317 (4)
O1W1.3251 (3)0.60217 (12)0.46245 (7)0.0298 (4)
H1W1.33430.58830.49390.045*
H2W1.35500.65800.46050.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.01078 (7)0.01511 (7)0.01332 (7)0.00035 (4)0.00070 (4)0.00100 (4)
C10.0148 (12)0.0235 (11)0.0189 (11)0.0010 (9)0.0003 (9)0.0003 (9)
C20.0241 (14)0.0185 (11)0.0243 (12)0.0013 (10)0.0044 (10)0.0024 (9)
C30.0200 (13)0.0200 (11)0.0208 (12)0.0005 (9)0.0011 (9)0.0013 (9)
C40.0230 (13)0.0217 (11)0.0171 (11)0.0025 (10)0.0002 (9)0.0009 (9)
C50.0170 (13)0.0151 (10)0.0265 (12)0.0008 (9)0.0015 (9)0.0009 (9)
C60.0169 (13)0.0260 (12)0.0249 (13)0.0037 (10)0.0012 (10)0.0012 (10)
C70.0134 (13)0.0227 (11)0.0217 (12)0.0018 (9)0.0020 (9)0.0018 (9)
C80.0290 (15)0.0161 (11)0.0216 (12)0.0032 (10)0.0035 (10)0.0016 (9)
C90.0184 (13)0.0201 (11)0.0271 (12)0.0046 (9)0.0002 (10)0.0002 (9)
C100.0188 (13)0.0216 (11)0.0236 (12)0.0046 (9)0.0028 (10)0.0008 (9)
N10.0216 (12)0.0176 (9)0.0176 (10)0.0010 (8)0.0035 (8)0.0011 (7)
N20.0163 (11)0.0199 (10)0.0197 (10)0.0015 (8)0.0014 (7)0.0006 (8)
O10.0221 (10)0.0198 (8)0.0274 (9)0.0024 (7)0.0054 (7)0.0043 (7)
O20.0329 (11)0.0240 (8)0.0236 (9)0.0020 (8)0.0092 (7)0.0018 (7)
O30.0324 (11)0.0245 (9)0.0202 (9)0.0078 (8)0.0044 (7)0.0004 (7)
O40.0511 (14)0.0255 (9)0.0204 (9)0.0149 (9)0.0014 (8)0.0010 (7)
O50.0168 (10)0.0368 (10)0.0252 (9)0.0068 (8)0.0041 (7)0.0059 (7)
O60.0149 (9)0.0252 (9)0.0319 (10)0.0015 (7)0.0027 (7)0.0057 (7)
O70.0273 (10)0.0204 (8)0.0231 (9)0.0058 (7)0.0058 (7)0.0053 (6)
O80.0379 (12)0.0382 (10)0.0191 (9)0.0007 (9)0.0046 (8)0.0050 (8)
O1W0.0329 (12)0.0320 (10)0.0247 (10)0.0054 (8)0.0035 (8)0.0016 (7)
Geometric parameters (Å, °) top
Nd1—O12.3675 (16)C5—O51.263 (3)
Nd1—O52.4078 (18)C5—C61.510 (3)
Nd1—O6i2.4173 (17)C6—N21.490 (3)
Nd1—O7ii2.4892 (16)C6—H6A0.9700
Nd1—O72.4932 (16)C6—H6B0.9700
Nd1—O32.5377 (16)C7—O81.245 (3)
Nd1—O1W2.5516 (18)C7—O71.273 (3)
Nd1—N12.7484 (19)C7—C81.507 (3)
Nd1—N22.803 (2)C8—N11.482 (3)
C1—O11.257 (3)C8—H8A0.9700
C1—O21.258 (3)C8—H8B0.9700
C1—C21.517 (3)C9—N11.488 (3)
C2—N11.480 (3)C9—C101.512 (3)
C2—H2A0.9700C9—H9A0.9700
C2—H2B0.9700C9—H9B0.9700
C3—O31.223 (3)C10—N21.487 (3)
C3—O41.295 (3)C10—H10A0.9700
C3—C41.512 (3)C10—H10B0.9700
C4—N21.465 (3)O4—H40.8200
C4—H4A0.9700O1W—H1W0.85
C4—H4B0.9700O1W—H2W0.85
C5—O61.249 (3)
O1—Nd1—O5131.99 (6)O6—C5—O5124.0 (2)
O1—Nd1—O6i76.58 (6)O6—C5—C6118.7 (2)
O5—Nd1—O6i137.07 (6)O5—C5—C6117.1 (2)
O1—Nd1—O7ii151.30 (6)N2—C6—C5113.9 (2)
O5—Nd1—O7ii76.68 (6)N2—C6—H6A108.8
O6i—Nd1—O7ii79.42 (5)C5—C6—H6A108.8
O1—Nd1—O7123.22 (5)N2—C6—H6B108.8
O5—Nd1—O768.35 (6)C5—C6—H6B108.8
O6i—Nd1—O7128.34 (6)H6A—C6—H6B107.7
O7ii—Nd1—O762.77 (6)O8—C7—O7122.8 (2)
O1—Nd1—O378.15 (6)O8—C7—C8118.8 (2)
O5—Nd1—O382.04 (6)O7—C7—C8118.4 (2)
O6i—Nd1—O373.11 (6)N1—C8—C7114.11 (18)
O7ii—Nd1—O3109.57 (5)N1—C8—H8A108.7
O7—Nd1—O3150.33 (6)C7—C8—H8A108.7
O1—Nd1—O1W76.31 (6)N1—C8—H8B108.7
O5—Nd1—O1W138.37 (6)C7—C8—H8B108.7
O6i—Nd1—O1W70.10 (6)H8A—C8—H8B107.6
O7ii—Nd1—O1W80.92 (6)N1—C9—C10113.05 (19)
O7—Nd1—O1W70.25 (6)N1—C9—H9A109.0
O3—Nd1—O1W138.98 (6)C10—C9—H9A109.0
O1—Nd1—N164.25 (6)N1—C9—H9B109.0
O5—Nd1—N192.20 (6)C10—C9—H9B109.0
O6i—Nd1—N1130.67 (6)H9A—C9—H9B107.8
O7ii—Nd1—N1124.42 (5)N2—C10—C9111.66 (18)
O7—Nd1—N162.54 (5)N2—C10—H10A109.3
O3—Nd1—N1122.70 (5)C9—C10—H10A109.3
O1W—Nd1—N172.37 (6)N2—C10—H10B109.3
O1—Nd1—N268.18 (6)C9—C10—H10B109.3
O5—Nd1—N264.01 (6)H10A—C10—H10B107.9
O6i—Nd1—N2125.37 (6)C2—N1—C8110.47 (18)
O7ii—Nd1—N2140.07 (6)C2—N1—C9110.66 (19)
O7—Nd1—N2105.96 (6)C8—N1—C9108.61 (18)
O3—Nd1—N260.01 (5)C2—N1—Nd1109.67 (13)
O1W—Nd1—N2133.97 (5)C8—N1—Nd1111.94 (13)
N1—Nd1—N266.36 (5)C9—N1—Nd1105.38 (13)
O1—C1—O2122.7 (2)C4—N2—C10110.73 (18)
O1—C1—C2118.4 (2)C4—N2—C6108.90 (18)
O2—C1—C2118.9 (2)C10—N2—C6109.86 (19)
N1—C2—C1112.84 (18)C4—N2—Nd1108.14 (14)
N1—C2—H2A109.0C10—N2—Nd1110.90 (13)
C1—C2—H2A109.0C6—N2—Nd1108.24 (13)
N1—C2—H2B109.0C1—O1—Nd1129.88 (15)
C1—C2—H2B109.0C3—O3—Nd1123.62 (15)
H2A—C2—H2B107.8C3—O4—H4109.5
O3—C3—O4125.1 (2)C5—O5—Nd1129.48 (15)
O3—C3—C4121.0 (2)C5—O6—Nd1iii144.68 (15)
O4—C3—C4113.8 (2)C7—O7—Nd1ii108.69 (14)
N2—C4—C3109.35 (18)C7—O7—Nd1124.50 (14)
N2—C4—H4A109.8Nd1ii—O7—Nd1117.23 (6)
C3—C4—H4A109.8Nd1—O1W—H1W107.9
N2—C4—H4B109.8Nd1—O1W—H2W137.6
C3—C4—H4B109.8H1W—O1W—H2W105.9
H4A—C4—H4B108.3
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1; (iii) x−1, y, z.
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O8iv0.852.102.941 (3)174
O1W—H1W···O5ii0.851.962.778 (2)162
O4—H4···O2v0.821.672.475 (2)166
Symmetry codes: (iv) x+1/2, −y+3/2, −z+1; (ii) −x+2, −y+1, −z+1; (v) −x+5/2, y−1/2, z.
Table 1
Selected geometric parameters (Å)
top
Nd1—O12.3675 (16)Nd1—O32.5377 (16)
Nd1—O52.4078 (18)Nd1—O1W2.5516 (18)
Nd1—O6i2.4173 (17)Nd1—N12.7484 (19)
Nd1—O7ii2.4892 (16)Nd1—N22.803 (2)
Nd1—O72.4932 (16)
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z+1.
Table 2
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O8iii0.852.102.941 (3)174
O1W—H1W···O5ii0.851.962.778 (2)162
O4—H4···O2iv0.821.672.475 (2)166
Symmetry codes: (iii) x+1/2, −y+3/2, −z+1; (ii) −x+2, −y+1, −z+1; (iv) −x+5/2, y−1/2, z.
Acknowledgements top

The authors acknowledge South China Normal University for supporting this work.

references
References top

Bruker (2004). APEX2 and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.