organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl N,N′-(p-phenylene)dioxamate

aSchool of Life Sciences, Northeast Normal University, Changchun 130024, People's Republic of China, and bCollege of Sciences, Shenyang Agricultural University, Shenyang 110161, People's Republic of China
*Correspondence e-mail: liuxiaoyu126@yahoo.cn

(Received 19 August 2008; accepted 23 August 2008; online 30 August 2008)

In the crystal structure, the mol­ecule of the title compound, C14H16N2O6, is located on an inversion centre. The amide –NHCO– plane makes a dihedral angle of 34.08 (9)° with the benzene ring. The mol­ecules are connected via inter­molecular O—H⋯N hydrogen bonds into a two-dimensional network parallel to the bc plane. An intramolecular N—H⋯O hydrogen bond is also observed.

Related literature

For related literature, see: Hashmi et al. (2004[Hashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. (2004). Org. Lett. 6, 4391-4394.]); Navarro et al. (1998[Navarro, E., Aleman, C. & Puiggali, J. (1998). Macromolecules, 31, 408-416.]); Nonoyama et al. (1982[Nonoyama, K., Ojima, H. & Nonoyama, M. (1982). Inorg. Chim. Acta, 59, 275-279.]); Pardo et al. (2003[Pardo, E., Faus, J., Julve, M., Lloret, F., Munoz, M. C., Cano, J., Ottenwaelder, X., Journaux, Y., Carrasco, R., Blay, G., Fernandez, I. & RuizGarci, R. (2003). J. Am. Chem. Soc. 125, 10770-10771.]); Rios-Moreno et al. (2003[Rios-Moreno, G., Aguirre, G., Parra-Hake, M. & Walsh, P. J. (2003). Polyhedron, 22, 563-568.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O6

  • Mr = 308.29

  • Monoclinic, P 21 /c

  • a = 11.328 (5) Å

  • b = 7.769 (5) Å

  • c = 8.372 (5) Å

  • β = 95.566 (5)°

  • V = 733.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 (2) K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.989

  • 5037 measured reflections

  • 1285 independent reflections

  • 1075 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.00

  • 1285 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.85 (2) 2.30 (2) 2.701 (3) 109.0 (19)
N1—H1N⋯O3i 0.85 (2) 2.21 (3) 3.030 (3) 161 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Oxamido ligands were extensively investigated owing to their special biological properties and application prospects (Nonoyama et al., 1982). However, the ligands of oxalamic acid ethyl ester were rarely reported, in which ester group can stabilize the final compounds by producing complexes with main group and transition metals (Rios-Moreno et al., 2003). In this work, the title compound, (I), was characterized by XRD single-crystal diffraction, element analysis and IR.

In the molecule (Fig. 1), the bond lengths containing O and N atoms are all consistent with corresponding values observed in similar systems (Navarro et al., 1998; Hashmi et al., 2004). There exists an intermolecular hydrogen bond involving the carboxamide O atom and the carboxamide N atom with a distance of 3.030 (3) Å, which are in agreement with those found in related compounds. Simultaneously, the molecule units are assembled into two dimensional structure with the intermolecular hydrogen-bond interactions.

Related literature top

For related literature, see: Hashmi et al. (2004); Navarro et al. (1998); Nonoyama et al. (1982); Pardo et al. (2003); Rios-Moreno et al. (2003).

Experimental top

The synthesis method of the title compound is according to the previous literature method (Pardo et al., 2003). Colorless single crystals suitable for experiments were obtained from a methanol solution. Elemental analysis calculated for C14H16N2O6: C 54.54, H 5.23, N 9.09%; found C 54.52, H 5.22, N 9.08%. IR data: 3249 cm-1 (m, N—H), 1682 cm-1 (s, C=O).

Refinement top

The H atom attached to the N atom was located in a different Fourier map and refined freely. Other hydrogen atoms were positioned geometrically with bond lengths C—H = 0.93–0.97 Å, and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the unique atom-labelling scheme. The suffix A corresponds to symmetry code (-x + 2, -y, -z + 2). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen-bonded network in (I). Hydrogen bonds are indicated by dashed lines. All H atoms except the H atoms of imido N atoms have been omitted for clarity.
Diethyl N,N'-(p-phenylene)dioxamate top
Crystal data top
C14H16N2O6F(000) = 324
Mr = 308.29Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2859 reflections
a = 11.328 (5) Åθ = 2.2–27.0°
b = 7.769 (5) ŵ = 0.11 mm1
c = 8.372 (5) ÅT = 295 K
β = 95.566 (5)°Sheet, colorless
V = 733.3 (7) Å30.3 × 0.2 × 0.1 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1285 independent reflections
Radiation source: fine-focus sealed tube1075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1213
Tmin = 0.975, Tmax = 0.989k = 98
5037 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0715P)2 + 0.3357P]
where P = (Fo2 + 2Fc2)/3
1285 reflections(Δ/σ)max = 0.022
104 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H16N2O6V = 733.3 (7) Å3
Mr = 308.29Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.328 (5) ŵ = 0.11 mm1
b = 7.769 (5) ÅT = 295 K
c = 8.372 (5) Å0.3 × 0.2 × 0.1 mm
β = 95.566 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1285 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1075 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.989Rint = 0.017
5037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.33 e Å3
1285 reflectionsΔρmin = 0.19 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70158 (18)0.6118 (2)0.73921 (19)0.0770 (6)
O20.68604 (16)0.3705 (2)0.59603 (19)0.0759 (6)
O30.82720 (14)0.44460 (17)0.97740 (16)0.0564 (5)
N10.84872 (15)0.2185 (2)0.8077 (2)0.0475 (5)
H1N0.826 (2)0.183 (3)0.714 (3)0.058 (6)*
C10.92637 (16)0.1107 (2)0.9062 (2)0.0433 (5)
C20.91424 (18)0.0652 (3)0.8901 (2)0.0530 (5)
H20.85630.10960.81500.064*
C31.01346 (18)0.1763 (3)1.0168 (2)0.0515 (5)
H31.02320.29471.02820.062*
C40.80684 (17)0.3714 (2)0.8486 (2)0.0443 (5)
C50.72433 (18)0.4498 (3)0.7117 (2)0.0503 (5)
C60.6271 (4)0.7022 (4)0.6127 (4)0.1143 (14)
H6A0.67620.74170.53140.137*
H6B0.56890.62270.56220.137*
C70.5702 (4)0.8389 (6)0.6711 (5)0.1472 (19)
H7A0.52450.89660.58460.221*
H7B0.62750.91720.72240.221*
H7C0.51850.79950.74780.221*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1129 (14)0.0571 (10)0.0539 (9)0.0175 (9)0.0278 (9)0.0023 (8)
O20.0842 (12)0.0826 (12)0.0549 (10)0.0192 (9)0.0235 (9)0.0186 (9)
O30.0795 (10)0.0479 (8)0.0392 (8)0.0048 (7)0.0080 (7)0.0032 (6)
N10.0564 (10)0.0515 (10)0.0332 (9)0.0021 (7)0.0034 (7)0.0044 (7)
C10.0476 (10)0.0482 (11)0.0338 (9)0.0006 (8)0.0026 (8)0.0021 (8)
C20.0536 (11)0.0516 (12)0.0507 (12)0.0030 (9)0.0110 (9)0.0099 (9)
C30.0556 (11)0.0422 (11)0.0545 (12)0.0030 (9)0.0054 (9)0.0054 (9)
C40.0523 (10)0.0454 (10)0.0346 (10)0.0041 (8)0.0012 (8)0.0024 (8)
C50.0558 (11)0.0541 (12)0.0400 (11)0.0022 (9)0.0000 (9)0.0005 (9)
C60.176 (4)0.089 (2)0.0665 (17)0.046 (2)0.047 (2)0.0065 (16)
C70.162 (4)0.172 (4)0.102 (3)0.092 (3)0.017 (3)0.032 (3)
Geometric parameters (Å, º) top
O1—C51.310 (3)C2—H20.9300
O1—C61.467 (3)C3—C2i1.379 (3)
O2—C51.193 (2)C3—H30.9300
O3—C41.221 (2)C4—C51.533 (3)
N1—C41.336 (3)C6—C71.358 (5)
N1—C11.419 (2)C6—H6A0.9700
N1—H1N0.85 (2)C6—H6B0.9700
C1—C21.379 (3)C7—H7A0.9600
C1—C31.383 (3)C7—H7B0.9600
C2—C3i1.379 (3)C7—H7C0.9600
C4—N1—C1126.25 (17)C7—C6—O1111.9 (3)
C4—N1—H1N116.1 (15)C7—C6—H6A109.2
C1—N1—H1N117.6 (15)O1—C6—H6A109.2
C5—O1—C6116.2 (2)C7—C6—H6B109.2
O3—C4—N1126.80 (18)O1—C6—H6B109.2
O3—C4—C5121.63 (18)H6A—C6—H6B107.9
N1—C4—C5111.56 (16)C1—C2—C3i121.15 (19)
C2—C1—C3119.26 (18)C1—C2—H2119.4
C2—C1—N1118.55 (17)C3i—C2—H2119.4
C3—C1—N1122.19 (18)C6—C7—H7A109.5
O2—C5—O1125.2 (2)C6—C7—H7B109.5
O2—C5—C4123.3 (2)H7A—C7—H7B109.5
O1—C5—C4111.49 (17)C6—C7—H7C109.5
C2i—C3—C1119.58 (19)H7A—C7—H7C109.5
C2i—C3—H3120.2H7B—C7—H7C109.5
C1—C3—H3120.2
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.85 (2)2.30 (2)2.701 (3)109.0 (19)
N1—H1N···O3ii0.85 (2)2.21 (3)3.030 (3)161 (2)
Symmetry code: (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H16N2O6
Mr308.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.328 (5), 7.769 (5), 8.372 (5)
β (°) 95.566 (5)
V3)733.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.975, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
5037, 1285, 1075
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.00
No. of reflections1285
No. of parameters104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.19

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.85 (2)2.30 (2)2.701 (3)109.0 (19)
N1—H1N···O3i0.85 (2)2.21 (3)3.030 (3)161 (2)
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

We thank the Analysis and Testing Foundation of Northeast Normal University for financial support.

References

First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHashmi, A. S. K., Weyrauch, J. P., Frey, W. & Bats, J. W. (2004). Org. Lett. 6, 4391–4394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNavarro, E., Aleman, C. & Puiggali, J. (1998). Macromolecules, 31, 408–416.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonoyama, K., Ojima, H. & Nonoyama, M. (1982). Inorg. Chim. Acta, 59, 275–279.  CrossRef CAS Web of Science Google Scholar
First citationPardo, E., Faus, J., Julve, M., Lloret, F., Munoz, M. C., Cano, J., Ottenwaelder, X., Journaux, Y., Carrasco, R., Blay, G., Fernandez, I. & RuizGarci, R. (2003). J. Am. Chem. Soc. 125, 10770–10771.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRios-Moreno, G., Aguirre, G., Parra-Hake, M. & Walsh, P. J. (2003). Polyhedron, 22, 563–568.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds