organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N′-(5-chloro-2-hy­droxy­benzyl­­idene)benzohydrazide

aDepartment of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721007, People's Republic of China
*Correspondence e-mail: desuoyang@yahoo.com.cn

(Received 10 August 2008; accepted 11 August 2008; online 16 August 2008)

The mol­ecule of the title compound, C14H10Cl2N2O2, displays a trans configuration with respect to the C=N double bond and has an intramolecular O—H⋯N hydrogen bond. The dihedral angle between the two benzene rings is 1.4 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains running along the a direction.

Related literature

For related structures, see Yang (2006a[Yang, D.-S. (2006a). Acta Cryst. E62, o1395-o1396.],b[Yang, D.-S. (2006b). Acta Cryst. E62, o1591-o1592.],c[Yang, D.-S. (2006c). Acta Cryst. E62, o2365-o2366.],d[Yang, D.-S. (2006d). Acta Cryst. E62, o3755-o3756.],e[Yang, D.-S. (2006e). Acta Cryst. E62, o3792-o3793.], 2007a[Yang, D.-S. (2007a). J. Chem. Crystallogr. 37, 343-348.],b[Yang, D.-S. (2007b). Acta Cryst. E63, o3738.],c[Yang, D.-S. (2007c). Acta Cryst. E63, o3739.]); Yang & Guo (2006[Yang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414-o4415.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Bernardo et al. (1996[Bernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387-396.]); Musie et al. (2001[Musie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336-3341.]); Paul et al. (2002[Paul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803-5809.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2N2O2

  • Mr = 309.14

  • Monoclinic, P 21 /n

  • a = 5.921 (2) Å

  • b = 31.245 (3) Å

  • c = 7.428 (3) Å

  • β = 92.182 (6)°

  • V = 1373.2 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.911, Tmax = 0.924

  • 6465 measured reflections

  • 2239 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.03

  • 2239 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.898 (10) 1.965 (13) 2.826 (2) 160 (2)
O1—H1⋯N1 0.82 1.93 2.647 (2) 145
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds have been of great interest for a long time. These compounds play an important role in the development of coordination chemistry (Musie et al., 2001; Bernardo et al., 1996; Paul et al., 2002). Recently, we have reported a few Schiff base compounds (Yang, 2006a,b,c,d,e, 2007a,b,c; Yang & Guo, 2006). As a further investigation of this work, the crystal structure of the title compound is reported here.

The molecule of the title compound, displays a trans configuration with respect to the CN double bond (Fig. 1). The dihedral angle between the two benzene rings is 1.4 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987). The C7N1 bond length of 1.270 (3) Å conforms to the value for a double bond. The bond length of 1.343 (3) Å between atoms C8 and N2 is intermediate between a N—N single bond and a NN double bond, because of conjugation effects in the molecule. There is a strong intramolecular hydrogen bond between the hydroxyl hydrogen and N1.

In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains running along the a direction (Fig. 2).

Related literature top

For related structures, see Yang (2006a,b,c,d,e, 2007a,b,c); Yang & Guo (2006). For related literature, see: Allen et al. (1987); Bernardo et al. (1996); Musie et al. (2001); Paul et al. (2002).

Experimental top

5-Chlorosalicylaldehyde (0.1 mmol, 15.6 mg) and 4-chlorobenzohydrazide (0.1 mmol, 17.0 mg) were dissolved in MeOH (10 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent over a period of 13 days at room temperature.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with N—H distance restrained to 0.90 (1) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with O—H distance of 0.82 Å, C—H distances of 0.93 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing as viewed along the c axis. Hydrogen bonds are shown as dashed lines.
4-Chloro-N'-(5-chloro-2-hydroxybenzylidene)benzohydrazide top
Crystal data top
C14H10Cl2N2O2F(000) = 632
Mr = 309.14Dx = 1.495 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2553 reflections
a = 5.921 (2) Åθ = 2.5–24.3°
b = 31.245 (3) ŵ = 0.47 mm1
c = 7.428 (3) ÅT = 298 K
β = 92.182 (6)°Block, colourless
V = 1373.2 (7) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2239 independent reflections
Radiation source: fine-focus sealed tube1790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 24.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.911, Tmax = 0.924k = 3635
6465 measured reflectionsl = 86
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5294P]
where P = (Fo2 + 2Fc2)/3
2239 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C14H10Cl2N2O2V = 1373.2 (7) Å3
Mr = 309.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.921 (2) ŵ = 0.47 mm1
b = 31.245 (3) ÅT = 298 K
c = 7.428 (3) Å0.20 × 0.18 × 0.17 mm
β = 92.182 (6)°
Data collection top
Bruker SMART CCD
diffractometer
2239 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1790 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.924Rint = 0.022
6465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
2239 reflectionsΔρmin = 0.25 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.76783 (16)0.49243 (2)0.80632 (14)0.1068 (3)
Cl21.33065 (12)0.06887 (2)0.76621 (10)0.0742 (2)
N10.6688 (3)0.29434 (6)0.6801 (2)0.0488 (4)
N20.8017 (3)0.25847 (6)0.7096 (2)0.0523 (5)
O10.2928 (3)0.33583 (5)0.5861 (2)0.0657 (5)
H10.37210.31460.60450.099*
O20.6020 (3)0.22073 (5)0.5012 (2)0.0640 (5)
C10.6271 (3)0.36918 (6)0.7166 (3)0.0445 (5)
C20.4080 (4)0.37128 (7)0.6396 (3)0.0504 (5)
C30.3035 (4)0.41076 (9)0.6172 (3)0.0665 (7)
H30.15760.41210.56660.080*
C40.4116 (5)0.44766 (9)0.6685 (4)0.0729 (7)
H40.34010.47400.65220.087*
C50.6271 (4)0.44569 (7)0.7444 (3)0.0630 (6)
C60.7329 (4)0.40713 (7)0.7690 (3)0.0528 (5)
H60.87790.40630.82170.063*
C70.7485 (4)0.32942 (7)0.7410 (3)0.0468 (5)
H70.88820.32950.80270.056*
C80.7583 (3)0.22285 (6)0.6132 (3)0.0449 (5)
C90.9091 (3)0.18574 (6)0.6525 (2)0.0424 (5)
C100.8262 (4)0.14516 (7)0.6112 (3)0.0481 (5)
H100.68230.14230.55780.058*
C110.9534 (4)0.10922 (7)0.6479 (3)0.0521 (5)
H110.89580.08210.62180.062*
C121.1670 (4)0.11401 (7)0.7236 (3)0.0489 (5)
C131.2546 (4)0.15368 (7)0.7646 (3)0.0509 (5)
H131.39930.15630.81660.061*
C141.1252 (3)0.18949 (7)0.7278 (3)0.0479 (5)
H141.18400.21650.75380.058*
H20.913 (3)0.2592 (8)0.795 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1184 (7)0.0481 (4)0.1535 (8)0.0066 (4)0.0009 (6)0.0049 (4)
Cl20.0782 (5)0.0561 (4)0.0877 (5)0.0189 (3)0.0070 (4)0.0040 (3)
N10.0507 (10)0.0480 (10)0.0466 (10)0.0072 (8)0.0104 (8)0.0010 (8)
N20.0576 (12)0.0464 (10)0.0512 (11)0.0081 (9)0.0192 (9)0.0064 (8)
O10.0508 (9)0.0777 (11)0.0674 (11)0.0052 (8)0.0123 (8)0.0069 (9)
O20.0722 (11)0.0528 (9)0.0641 (10)0.0025 (8)0.0340 (9)0.0001 (7)
C10.0462 (12)0.0511 (12)0.0361 (11)0.0060 (10)0.0015 (9)0.0039 (9)
C20.0474 (13)0.0632 (14)0.0404 (12)0.0063 (11)0.0003 (10)0.0007 (10)
C30.0538 (14)0.0839 (18)0.0615 (15)0.0244 (14)0.0019 (12)0.0091 (13)
C40.0797 (19)0.0607 (16)0.0786 (18)0.0257 (14)0.0077 (15)0.0111 (13)
C50.0711 (17)0.0483 (13)0.0699 (16)0.0049 (12)0.0069 (13)0.0087 (11)
C60.0535 (13)0.0513 (13)0.0536 (13)0.0026 (11)0.0015 (10)0.0051 (10)
C70.0451 (11)0.0509 (13)0.0439 (12)0.0045 (10)0.0065 (9)0.0019 (9)
C80.0491 (12)0.0444 (11)0.0406 (11)0.0043 (10)0.0066 (10)0.0022 (9)
C90.0468 (12)0.0454 (11)0.0346 (10)0.0013 (9)0.0019 (9)0.0023 (8)
C100.0471 (12)0.0512 (12)0.0455 (12)0.0030 (10)0.0042 (9)0.0049 (10)
C110.0595 (14)0.0447 (12)0.0520 (13)0.0051 (11)0.0036 (11)0.0055 (10)
C120.0548 (13)0.0477 (12)0.0446 (12)0.0083 (10)0.0063 (10)0.0021 (9)
C130.0450 (12)0.0576 (14)0.0499 (13)0.0044 (10)0.0023 (10)0.0070 (10)
C140.0485 (12)0.0460 (12)0.0491 (12)0.0026 (10)0.0014 (10)0.0066 (9)
Geometric parameters (Å, º) top
Cl1—C51.735 (3)C4—H40.9300
Cl2—C121.734 (2)C5—C61.367 (3)
N1—C71.270 (3)C6—H60.9300
N1—N21.382 (2)C7—H70.9300
N2—C81.343 (3)C8—C91.486 (3)
N2—H20.898 (10)C9—C141.382 (3)
O1—C21.352 (3)C9—C101.390 (3)
O1—H10.8200C10—C111.374 (3)
O2—C81.222 (2)C10—H100.9300
C1—C61.390 (3)C11—C121.373 (3)
C1—C21.399 (3)C11—H110.9300
C1—C71.443 (3)C12—C131.373 (3)
C2—C31.387 (3)C13—C141.377 (3)
C3—C41.366 (4)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.376 (4)
C7—N1—N2116.23 (17)N1—C7—H7119.3
C8—N2—N1119.42 (17)C1—C7—H7119.3
C8—N2—H2121.1 (16)O2—C8—N2122.17 (19)
N1—N2—H2119.4 (16)O2—C8—C9121.69 (18)
C2—O1—H1109.5N2—C8—C9116.13 (17)
C6—C1—C2118.39 (19)C14—C9—C10118.74 (19)
C6—C1—C7118.83 (19)C14—C9—C8123.63 (18)
C2—C1—C7122.77 (19)C10—C9—C8117.63 (18)
O1—C2—C3118.4 (2)C11—C10—C9121.0 (2)
O1—C2—C1122.06 (19)C11—C10—H10119.5
C3—C2—C1119.5 (2)C9—C10—H10119.5
C4—C3—C2121.0 (2)C12—C11—C10118.8 (2)
C4—C3—H3119.5C12—C11—H11120.6
C2—C3—H3119.5C10—C11—H11120.6
C3—C4—C5119.6 (2)C11—C12—C13121.6 (2)
C3—C4—H4120.2C11—C12—Cl2119.07 (17)
C5—C4—H4120.2C13—C12—Cl2119.34 (18)
C6—C5—C4120.5 (2)C12—C13—C14119.1 (2)
C6—C5—Cl1119.6 (2)C12—C13—H13120.4
C4—C5—Cl1119.96 (19)C14—C13—H13120.4
C5—C6—C1121.0 (2)C13—C14—C9120.7 (2)
C5—C6—H6119.5C13—C14—H14119.6
C1—C6—H6119.5C9—C14—H14119.6
N1—C7—C1121.45 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.90 (1)1.97 (1)2.826 (2)160 (2)
O1—H1···N10.821.932.647 (2)145
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10Cl2N2O2
Mr309.14
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.921 (2), 31.245 (3), 7.428 (3)
β (°) 92.182 (6)
V3)1373.2 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.911, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
6465, 2239, 1790
Rint0.022
(sin θ/λ)max1)0.580
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03
No. of reflections2239
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.898 (10)1.965 (13)2.826 (2)160 (2)
O1—H1···N10.821.932.647 (2)145.3
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges Key Laboratory Construction Support from the Education Office of Shanxi Province (Project No. 05JS43).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernardo, K., Leppard, S., Robert, A., Commenges, G., Dahan, F. & Meunier, B. (1996). Inorg. Chem. 35, 387–396.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMusie, G. T., Wei, M., Subramaniam, B. & Busch, D. H. (2001). Inorg. Chem. 40, 3336–3341.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Barik, A. K., Peng, S. M. & Kar, S. K. (2002). Inorg. Chem. 41, 5803–5809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006a). Acta Cryst. E62, o1395–o1396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006b). Acta Cryst. E62, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006c). Acta Cryst. E62, o2365–o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006d). Acta Cryst. E62, o3755–o3756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2006e). Acta Cryst. E62, o3792–o3793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2007a). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, D.-S. (2007b). Acta Cryst. E63, o3738.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. (2007c). Acta Cryst. E63, o3739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D.-S. & Guo, J.-B. (2006). Acta Cryst. E62, o4414–o4415.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds