metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,1,3-benzoselena­diazole-κN)di­chloridozinc(II)

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 13 August 2008; accepted 15 August 2008; online 20 August 2008)

In the title complex, [ZnCl2(C6H4N2Se)2], the ZnII center is tetra­coordinated by a Cl2N2 donor set in a distorted tetrahedral geometry. Some of the distortion from the ideal tetrahedral geometry might be ascribed to two agostic Z⋯H interactions The two 2,1,3-benzoselenadiazole ligands are each essentially planar and form a dihedral angle of 35.06 (9)°. An interesting feature of the crystal packing is the observation of short intermolecular contacts between Se and Se, Se and N, and N and N atoms. These arise as a result of three-center bridging of adjacent molecules into chains along the b axis. The crystal structure is stablilized by ππ inter­actions [minimum centroid–centroid distance = 3.5694 (18) Å].

Related literature

For related literature and applications of the 2,1,3-benzo­selenadiazole mol­ecule and its metal complexes, see, for example: Galet et al. (1994[Galet, V., Bernier, J.-L., Henichart, J.-P., Lesieur, D., Abadie, C., Rochette, L., Lindenbaum, A., Chalas, J., Faverie, J.-F. R., Pfeiffer, B. & Renard, P. (1994). J. Med. Chem. 37, 2903-2911.]); Grivas (2000[Grivas, S. (2000). Curr. Org. Chem., 4, 707-726.]); Iwaoka & Tomoda (1994[Iwaoka, M. & Tomoda, S. (1994). J. Am. Chem. Soc. 116, 2557-2561.], 2000[Iwaoka, M. & Tomoda, S. (2000). Top. Curr. Chem., 208, 55-80.]); Saiki et al. (1997[Saiki, T., Goto, K. & Okazaki, R. (1997). Angew. Chem. Int. Ed. 36, 2223-2224.]); Zhou et al. (2005[Zhou, A. J., Zheng, S. L., Fang, Y. & Tong, M. L. (2005). Inorg. Chem. 44, 4457-4459.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C6H4N2Se)2]

  • Mr = 502.43

  • Triclinic, [P \overline 1]

  • a = 7.5593 (2) Å

  • b = 9.7269 (3) Å

  • c = 10.6083 (3) Å

  • α = 95.103 (1)°

  • β = 92.581 (1)°

  • γ = 101.713 (1)°

  • V = 759.15 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.76 mm−1

  • T = 297 (2) K

  • 0.48 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.141, Tmax = 0.236 (expected range = 0.079–0.132)

  • 17787 measured reflections

  • 4425 independent reflections

  • 3836 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.094

  • S = 1.06

  • 4425 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected interatomic distances (Å)

Se1⋯Se2i 3.7002 (4)
Se1⋯N4i 2.893 (2)
Se2⋯N2ii 2.918 (2)
N2⋯N4i 2.882 (3)
Se1⋯Cl1 3.4111 (8)
Se2⋯Cl2 3.4192 (9)
Cl1⋯N1 3.293 (2)
Zn1⋯H2B 3.23
Zn1⋯H8B 3.26
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Metal complexes of 2,1,3-benzoselenadiazole continue to attract the interest of inorganic chemists (e.g. Grivas, 2000). Organoselenium derivatives stabilized by non-bonded Se···N interactions (Galet et al., 1994); Iwaoka & Tomoda, 1994; 2000; Saiki et al., 1997) are also of interest because of their vital roles in many chemical phenomena, such as molecular recognition and molecular packing in crystal phases as well as due to their biological roles (Zhou et al., 2005). The reaction of 2,1,3-benzoselenadiazole with ZnCl2 results in the formation of the title zinc(II) complex (I).

The structure of (I) comprises a neutral ZnCl2L2 molecule (L= 2,1,3-benzoselenadiazole ligand), Fig. 1. The ZnII ion is tetra-coordinated by two Cl- ions and two N atoms derived from the L ligands. The L ligands are each essentially planar with the maximum deviation of 0.028 (2)Å being for atom N1 in one ligand and 0.044 (2) Å for the N3 atom in the other ligand. The dihedral angle between the their mean planes is 35.06 (9)°. The distorted tetrahedral geometry can be indicated by the bond angles subtended at Zn: N—Zn—N = 111.13 (9)°, Cl—Zn—Cl = 122.58 (4)°, and N—Zn—Cl in the range of 100.70 (6) - 110.81 (7)°. Some of the distortion from the ideal tetrahedral geometry might be ascribed to two agostic Zn···H interactions, Table 1.

The interesting feature of the crystal packing is the observation of short intermolecular contacts between Se and Se, Se and N, and N and N atoms (Table 1). These arise as a result of three-center bridging of adjacent molecules into chains along the b-axis, Fig. 2. The crystal is further stabilized by ππ interactions with the shortest of these being 3.5694 (18) Å for Cg(C7/C12/N4/Se2/N3)···Cg(C7–C12)i for i: -x, 2-y, -z.

Related literature top

For related literature and applications of the 2,1,3-benzoselenadiazole molecule and its metal complexes, see, for example: Galet et al. (1994); Grivas (2000); Iwaoka & Tomoda (1994, 2000); Saiki et al. (1997); Zhou et al. (2005).

Experimental top

A slurry of 2,1,3-benzoselenadiazole (1 g, 5.4 mmol) and anhydrous zinc chloride (270 mg, 2.72 mmol) in dry methanol (15 ml) was heated at 343–353 K for 2 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the precipitate (I) was collected by filtration. Recrystallization of (I) from 40% methanol in chloroform afforded a yellow microcrystalline solid (1.16 g, 85% yield).

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93 Å, and with Uiso=1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the c axis showing chains running along the [0 1 0] direction. Intermolecular contacts are shown as dashed lines (see Comment).
Bis(2,1,3-benzoselenadiazole-κN)dichloridozinc(II) top
Crystal data top
[ZnCl2(C6H4N2Se)2]Z = 2
Mr = 502.43F(000) = 480
Triclinic, P1Dx = 2.198 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5593 (2) ÅCell parameters from 4425 reflections
b = 9.7269 (3) Åθ = 1.9–30.0°
c = 10.6083 (3) ŵ = 6.76 mm1
α = 95.103 (1)°T = 297 K
β = 92.581 (1)°Block, yellow
γ = 101.713 (1)°0.48 × 0.32 × 0.30 mm
V = 759.15 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4425 independent reflections
Radiation source: fine-focus sealed tube3836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.9°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1313
Tmin = 0.141, Tmax = 0.236l = 1414
17787 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.3045P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4425 reflectionsΔρmax = 0.79 e Å3
191 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0238 (15)
Crystal data top
[ZnCl2(C6H4N2Se)2]γ = 101.713 (1)°
Mr = 502.43V = 759.15 (4) Å3
Triclinic, P1Z = 2
a = 7.5593 (2) ÅMo Kα radiation
b = 9.7269 (3) ŵ = 6.76 mm1
c = 10.6083 (3) ÅT = 297 K
α = 95.103 (1)°0.48 × 0.32 × 0.30 mm
β = 92.581 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4425 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3836 reflections with I > 2σ(I)
Tmin = 0.141, Tmax = 0.236Rint = 0.035
17787 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.06Δρmax = 0.79 e Å3
4425 reflectionsΔρmin = 0.54 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.28675 (5)0.75148 (3)0.25160 (3)0.04191 (10)
Se10.12303 (4)0.41702 (3)0.29459 (2)0.04073 (9)
Se20.15677 (4)1.04989 (3)0.33867 (3)0.04686 (10)
Cl10.27521 (13)0.62664 (8)0.06430 (7)0.05663 (19)
Cl20.53270 (11)0.90507 (8)0.33168 (8)0.05477 (18)
N10.2184 (3)0.5929 (2)0.3668 (2)0.0382 (4)
N20.1617 (3)0.3407 (2)0.4366 (2)0.0440 (5)
N30.0973 (3)0.8770 (2)0.2511 (2)0.0423 (5)
N40.0058 (3)1.1149 (2)0.2476 (2)0.0439 (5)
C10.2687 (3)0.5849 (3)0.4871 (2)0.0369 (5)
C20.3457 (4)0.7016 (3)0.5778 (3)0.0484 (6)
H2B0.36420.79370.55610.058*
C30.3908 (5)0.6740 (4)0.6958 (3)0.0549 (7)
H3A0.43960.74940.75580.066*
C40.3669 (4)0.5338 (4)0.7330 (3)0.0529 (7)
H4B0.40250.52030.81530.063*
C50.2933 (4)0.4204 (3)0.6502 (3)0.0495 (6)
H5A0.27800.32950.67470.059*
C60.2399 (4)0.4432 (3)0.5250 (2)0.0385 (5)
C70.0380 (4)0.8768 (3)0.1657 (2)0.0391 (5)
C80.1276 (4)0.7592 (3)0.0802 (3)0.0453 (6)
H8A0.09620.67170.08110.054*
C90.2595 (4)0.7790 (3)0.0020 (3)0.0495 (6)
H9A0.32170.70250.05640.059*
C100.3070 (4)0.9128 (4)0.0086 (3)0.0513 (7)
H10A0.39620.92170.06870.062*
C110.2262 (4)1.0266 (3)0.0700 (3)0.0448 (6)
H11A0.25821.11330.06390.054*
C120.0907 (4)1.0119 (3)0.1627 (2)0.0393 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.05150 (19)0.03211 (16)0.04206 (17)0.00843 (12)0.00312 (13)0.00397 (11)
Se10.04956 (16)0.03208 (14)0.03864 (14)0.00715 (10)0.00216 (10)0.00116 (9)
Se20.05777 (18)0.03321 (15)0.04748 (16)0.00941 (12)0.00718 (12)0.00210 (10)
Cl10.0774 (5)0.0494 (4)0.0440 (3)0.0175 (4)0.0075 (3)0.0020 (3)
Cl20.0527 (4)0.0431 (4)0.0637 (4)0.0004 (3)0.0045 (3)0.0012 (3)
N10.0460 (11)0.0290 (9)0.0388 (10)0.0070 (8)0.0016 (8)0.0008 (8)
N20.0537 (13)0.0324 (10)0.0454 (11)0.0082 (9)0.0022 (10)0.0035 (8)
N30.0533 (13)0.0281 (9)0.0442 (11)0.0069 (9)0.0002 (9)0.0010 (8)
N40.0498 (12)0.0323 (10)0.0494 (12)0.0090 (9)0.0025 (10)0.0020 (9)
C10.0375 (11)0.0341 (11)0.0383 (11)0.0067 (9)0.0021 (9)0.0014 (9)
C20.0534 (15)0.0393 (13)0.0474 (14)0.0017 (11)0.0018 (12)0.0048 (11)
C30.0552 (17)0.0569 (18)0.0453 (14)0.0023 (14)0.0042 (13)0.0100 (13)
C40.0503 (16)0.0693 (19)0.0377 (13)0.0110 (14)0.0035 (11)0.0038 (12)
C50.0568 (16)0.0506 (15)0.0433 (13)0.0138 (13)0.0006 (12)0.0110 (12)
C60.0402 (12)0.0366 (12)0.0390 (11)0.0084 (9)0.0028 (9)0.0043 (9)
C70.0423 (12)0.0319 (11)0.0413 (12)0.0034 (9)0.0053 (10)0.0032 (9)
C80.0503 (15)0.0334 (12)0.0494 (14)0.0038 (11)0.0075 (12)0.0019 (10)
C90.0450 (14)0.0497 (15)0.0477 (14)0.0010 (12)0.0041 (11)0.0080 (12)
C100.0436 (14)0.0647 (19)0.0455 (14)0.0127 (13)0.0015 (11)0.0025 (13)
C110.0437 (13)0.0465 (14)0.0464 (13)0.0132 (11)0.0058 (11)0.0071 (11)
C120.0416 (12)0.0340 (11)0.0421 (12)0.0066 (9)0.0070 (10)0.0032 (9)
Geometric parameters (Å, º) top
Zn1—N12.052 (2)C3—C41.433 (5)
Zn1—N32.062 (2)C3—H3A0.9300
Zn1—Cl22.2169 (8)C4—C51.353 (5)
Zn1—Cl12.2231 (8)C4—H4B0.9300
Se1—N21.776 (2)C5—C61.420 (4)
Se1—N11.803 (2)C5—H5A0.9300
Se2—N41.777 (2)C7—C81.427 (4)
Se2—N31.809 (2)C7—C121.451 (3)
N1—C11.328 (3)C8—C91.349 (4)
N2—C61.330 (3)C8—H8A0.9300
N3—C71.335 (4)C9—C101.425 (4)
N4—C121.324 (4)C9—H9A0.9300
C1—C21.428 (4)C10—C111.344 (4)
C1—C61.447 (3)C10—H10A0.9300
C2—C31.347 (5)C11—C121.425 (4)
C2—H2B0.9300C11—H11A0.9300
Se1···Se2i3.7002 (4)Se2···Cl23.4192 (9)
Se1···N4i2.893 (2)Cl1···N13.293 (2)
Se2···N2ii2.918 (2)Zn1···H2B3.23
N2···N4i2.882 (3)Zn1···H8B3.26
Se1···Cl13.4111 (8)
N1—Zn1—N3111.13 (9)C5—C4—H4B119.5
N1—Zn1—Cl2110.81 (7)C3—C4—H4B119.5
N3—Zn1—Cl2101.44 (7)C4—C5—C6118.6 (3)
N1—Zn1—Cl1100.70 (6)C4—C5—H5A120.7
N3—Zn1—Cl1110.32 (7)C6—C5—H5A120.7
Cl2—Zn1—Cl1122.58 (4)N2—C6—C5124.0 (2)
N2—Se1—N192.42 (10)N2—C6—C1115.9 (2)
N4—Se2—N392.48 (11)C5—C6—C1120.1 (2)
C1—N1—Se1108.40 (16)N3—C7—C8125.9 (2)
C1—N1—Zn1130.93 (18)N3—C7—C12114.2 (2)
Se1—N1—Zn1118.64 (11)C8—C7—C12119.9 (2)
C6—N2—Se1108.54 (17)C9—C8—C7117.9 (3)
C7—N3—Se2108.30 (17)C9—C8—H8A121.1
C7—N3—Zn1129.73 (18)C7—C8—H8A121.1
Se2—N3—Zn1117.85 (13)C8—C9—C10122.4 (3)
C12—N4—Se2108.45 (18)C8—C9—H9A118.8
N1—C1—C2125.9 (2)C10—C9—H9A118.8
N1—C1—C6114.7 (2)C11—C10—C9121.8 (3)
C2—C1—C6119.4 (2)C11—C10—H10A119.1
C3—C2—C1118.0 (3)C9—C10—H10A119.1
C3—C2—H2B121.0C10—C11—C12118.8 (3)
C1—C2—H2B121.0C10—C11—H11A120.6
C2—C3—C4122.9 (3)C12—C11—H11A120.6
C2—C3—H3A118.6N4—C12—C11124.3 (2)
C4—C3—H3A118.6N4—C12—C7116.5 (2)
C5—C4—C3121.0 (3)C11—C12—C7119.2 (2)
N2—Se1—N1—C10.83 (19)C3—C4—C5—C60.0 (5)
N2—Se1—N1—Zn1164.72 (14)Se1—N2—C6—C5178.8 (2)
N3—Zn1—N1—C195.1 (2)Se1—N2—C6—C11.4 (3)
Cl2—Zn1—N1—C116.9 (2)C4—C5—C6—N2178.1 (3)
Cl1—Zn1—N1—C1148.1 (2)C4—C5—C6—C11.6 (4)
N3—Zn1—N1—Se1103.20 (13)N1—C1—C6—N22.2 (3)
Cl2—Zn1—N1—Se1144.82 (10)C2—C1—C6—N2177.7 (2)
Cl1—Zn1—N1—Se113.67 (13)N1—C1—C6—C5178.0 (2)
N1—Se1—N2—C60.4 (2)C2—C1—C6—C52.0 (4)
N4—Se2—N3—C71.8 (2)Se2—N3—C7—C8178.1 (2)
N4—Se2—N3—Zn1157.59 (14)Zn1—N3—C7—C825.8 (4)
N1—Zn1—N3—C7100.4 (2)Se2—N3—C7—C122.9 (3)
Cl2—Zn1—N3—C7141.8 (2)Zn1—N3—C7—C12153.21 (19)
Cl1—Zn1—N3—C710.4 (3)N3—C7—C8—C9178.6 (3)
N1—Zn1—N3—Se2105.33 (13)C12—C7—C8—C90.4 (4)
Cl2—Zn1—N3—Se212.50 (13)C7—C8—C9—C102.1 (4)
Cl1—Zn1—N3—Se2143.86 (10)C8—C9—C10—C112.1 (5)
N3—Se2—N4—C120.16 (19)C9—C10—C11—C120.6 (4)
Se1—N1—C1—C2178.1 (2)Se2—N4—C12—C11177.8 (2)
Zn1—N1—C1—C218.7 (4)Se2—N4—C12—C71.5 (3)
Se1—N1—C1—C61.8 (3)C10—C11—C12—N4177.9 (3)
Zn1—N1—C1—C6161.37 (18)C10—C11—C12—C72.9 (4)
N1—C1—C2—C3179.3 (3)N3—C7—C12—N43.1 (3)
C6—C1—C2—C30.8 (4)C8—C7—C12—N4177.8 (2)
C1—C2—C3—C40.8 (5)N3—C7—C12—C11176.2 (2)
C2—C3—C4—C51.3 (5)C8—C7—C12—C112.9 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C6H4N2Se)2]
Mr502.43
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)7.5593 (2), 9.7269 (3), 10.6083 (3)
α, β, γ (°)95.103 (1), 92.581 (1), 101.713 (1)
V3)759.15 (4)
Z2
Radiation typeMo Kα
µ (mm1)6.76
Crystal size (mm)0.48 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.141, 0.236
No. of measured, independent and
observed [I > 2σ(I)] reflections
17787, 4425, 3836
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.06
No. of reflections4425
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.54

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
Se1···Se2i3.7002 (4)Se2···Cl23.4192 (9)
Se1···N4i2.893 (2)Cl1···N13.293 (2)
Se2···N2ii2.918 (2)Zn1···H2B3.23
N2···N4i2.882 (3)Zn1···H8B3.26
Se1···Cl13.4111 (8)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

We thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM and SM thank the Government of India for their fellowships. The authors also thank the Malaysian Government and Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGalet, V., Bernier, J.-L., Henichart, J.-P., Lesieur, D., Abadie, C., Rochette, L., Lindenbaum, A., Chalas, J., Faverie, J.-F. R., Pfeiffer, B. & Renard, P. (1994). J. Med. Chem. 37, 2903–2911.  CrossRef CAS PubMed Web of Science Google Scholar
First citationGrivas, S. (2000). Curr. Org. Chem., 4, 707–726.  Web of Science CrossRef CAS Google Scholar
First citationIwaoka, M. & Tomoda, S. (1994). J. Am. Chem. Soc. 116, 2557–2561.  CSD CrossRef CAS Web of Science Google Scholar
First citationIwaoka, M. & Tomoda, S. (2000). Top. Curr. Chem., 208, 55–80.  CrossRef CAS Google Scholar
First citationSaiki, T., Goto, K. & Okazaki, R. (1997). Angew. Chem. Int. Ed. 36, 2223–2224.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, A. J., Zheng, S. L., Fang, Y. & Tong, M. L. (2005). Inorg. Chem. 44, 4457–4459.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds