organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(2-methyl-1H-benzimidazol-1-yl)acetate

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seuwangwei@gmail.com

(Received 17 August 2008; accepted 19 August 2008; online 23 August 2008)

A new benzimidazole compound, C12H14N2O2, has been synthesized by the reaction of 2-methyl-1H-benzimidazole and ethyl 2-bromo­acetate. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into chains. ππ Contacts (centroid⋯centroid distance = 3.713 Å) are observed. A C—H⋯π inter­action is also present. The N—C—C—O torsion angle is 178.4 (2)°.

Related literature

For related literature, see: Aaker et al. (2005[Aaker, C. B., Desper, J. & Urbinam, J. F. (2005). Cryst. Growth Des. 5, 1283-1293.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N2O2

  • Mr = 218.25

  • Monoclinic, P n

  • a = 10.854 (2) Å

  • b = 4.7959 (10) Å

  • c = 11.842 (2) Å

  • β = 111.42 (3)°

  • V = 573.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 (2) K

  • 0.2 × 0.1 × 0.1 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.990, Tmax = 1.000 (expected range = 0.981–0.991)

  • 5696 measured reflections

  • 1323 independent reflections

  • 1085 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.089

  • S = 1.12

  • 1323 reflections

  • 145 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N1i 0.97 2.61 3.532 (3) 159
C8—H8CCg1ii 0.97 2.74 3.633 (5) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) x, y-1, z. Cg1 is the centroid of the imidazole ring.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title compound is shown in Fig. 1. The benzimidazole system is essentially planar, with a dihedral angle of 0.88 (14)° between the planes of the benzene and imidazole rings. The N2—C9—C10—O2 torsion angle is 178.4 (2)°.

In the crystal structure, molecules are connected by weak intermolecular C—H···N hydrogen bonds, forming a polymeric chain (see Table 1 and Fig. 2). A C—H···π contact (see Table 1, Cg1 is the centroid of the imidazole ring) and π···π stacking (centroid···centroid distance = 3.713 Å) between neighboring benzimidazoles further stabilize the structure.

Related literature top

For related literature, see: Aaker et al. (2005). Cg1 is the centroid of the imidazole ring.

Experimental top

The synthesis of 2-methyl-1H-benzimidazole was reported previously (Aaker et al., 2005). Ethyl 2-bromoacetate (1.65 g, 10 mmol) was added to a solution of 2-methyl-1H-benzimidazole (1.32 g, 10 mmol) and NaH (0.6 g, 26 mmol) in THF (30 ml). After the mixture was stirred for 12 h at room temperature, the precipitate was filtered off and the solution was evaporated in vacuum. The crude product was then crystallized from ethanol. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically and were allowed to ride on the atoms to which they are bonded. C—H = 0.93–0.97 Å; Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, with pi···pi stacking along the b axis. Dashed lines indicate hydrogen bonds.
(I) top
Crystal data top
C12H14N2O2F(000) = 232
Mr = 218.25Dx = 1.263 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 6060 reflections
a = 10.854 (2) Åθ = 6.4–55.1°
b = 4.7959 (10) ŵ = 0.09 mm1
c = 11.842 (2) ÅT = 295 K
β = 111.42 (3)°Prism, colorless
V = 573.9 (2) Å30.2 × 0.1 × 0.1 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
1323 independent reflections
Radiation source: fine-focus sealed tube1085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.990, Tmax = 1.000l = 1515
5696 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.018P]
where P = (Fo2 + 2Fc2)/3
1323 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.10 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H14N2O2V = 573.9 (2) Å3
Mr = 218.25Z = 2
Monoclinic, PnMo Kα radiation
a = 10.854 (2) ŵ = 0.09 mm1
b = 4.7959 (10) ÅT = 295 K
c = 11.842 (2) Å0.2 × 0.1 × 0.1 mm
β = 111.42 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1323 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1085 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 1.000Rint = 0.033
5696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.12Δρmax = 0.10 e Å3
1323 reflectionsΔρmin = 0.15 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.14135 (17)0.1457 (4)0.20123 (14)0.0515 (5)
C50.1006 (3)0.1654 (5)0.2701 (2)0.0449 (6)
C10.3029 (2)0.2567 (6)0.0948 (2)0.0471 (6)
H1A0.35720.22190.01480.056*
N20.12080 (19)0.0836 (4)0.10788 (17)0.0412 (5)
C100.1019 (2)0.0363 (5)0.0906 (2)0.0413 (5)
C90.1639 (2)0.1907 (6)0.0146 (2)0.0425 (6)
H9A0.14090.38670.01210.051*
H9B0.25940.17530.05180.051*
N10.0107 (2)0.0004 (5)0.30007 (18)0.0497 (6)
O10.0293 (2)0.1587 (4)0.05777 (18)0.0685 (6)
C40.1383 (3)0.3615 (6)0.3381 (2)0.0576 (8)
H4A0.08500.39600.41840.069*
C60.1845 (2)0.1163 (5)0.1499 (2)0.0390 (6)
C70.0038 (2)0.1447 (5)0.2017 (2)0.0454 (6)
C20.3361 (3)0.4510 (7)0.1649 (2)0.0540 (7)
H2A0.41470.55010.13110.065*
C30.2550 (3)0.5027 (7)0.2850 (3)0.0596 (7)
H3A0.28050.63500.32960.072*
C120.1640 (3)0.1400 (8)0.4080 (3)0.0737 (10)
H12A0.13220.06020.46660.111*
H12B0.15100.33830.40510.111*
H12C0.25650.09990.43060.111*
C80.0919 (3)0.3503 (6)0.1883 (3)0.0598 (8)
H8A0.16660.36350.26320.090*
H8B0.05000.52930.16830.090*
H8C0.12120.29140.12480.090*
C110.0894 (3)0.0179 (7)0.2857 (3)0.0617 (8)
H11A0.10160.18260.28730.074*
H11B0.00440.05680.26170.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0623 (12)0.0550 (11)0.0392 (10)0.0084 (9)0.0209 (9)0.0061 (8)
C50.0512 (15)0.0505 (15)0.0271 (11)0.0146 (12)0.0075 (11)0.0011 (11)
C10.0448 (14)0.0577 (16)0.0327 (12)0.0087 (12)0.0070 (10)0.0014 (12)
N20.0423 (11)0.0447 (12)0.0312 (10)0.0065 (9)0.0069 (8)0.0003 (9)
C100.0419 (13)0.0418 (13)0.0383 (13)0.0019 (11)0.0126 (10)0.0012 (11)
C90.0452 (14)0.0437 (15)0.0345 (12)0.0095 (11)0.0095 (10)0.0074 (10)
N10.0493 (12)0.0502 (13)0.0363 (12)0.0092 (11)0.0000 (9)0.0043 (10)
O10.0865 (15)0.0659 (14)0.0564 (12)0.0334 (12)0.0301 (11)0.0148 (10)
C40.0744 (19)0.0620 (18)0.0291 (13)0.0186 (16)0.0102 (13)0.0110 (13)
C60.0432 (13)0.0434 (14)0.0283 (12)0.0123 (11)0.0104 (10)0.0010 (10)
C70.0426 (14)0.0450 (14)0.0395 (14)0.0087 (12)0.0041 (11)0.0077 (11)
C20.0499 (15)0.0627 (19)0.0483 (17)0.0003 (14)0.0166 (13)0.0013 (14)
C30.0726 (19)0.0613 (18)0.0468 (17)0.0082 (15)0.0242 (15)0.0129 (14)
C120.083 (2)0.095 (3)0.0472 (17)0.0068 (19)0.0283 (16)0.0017 (17)
C80.0515 (16)0.0546 (16)0.0659 (19)0.0001 (14)0.0127 (14)0.0089 (14)
C110.0716 (19)0.073 (2)0.0508 (18)0.0011 (16)0.0346 (15)0.0009 (15)
Geometric parameters (Å, º) top
O2—C101.329 (3)C4—C31.370 (5)
O2—C111.451 (3)C4—H4A0.9300
C5—N11.380 (4)C7—C81.482 (4)
C5—C41.393 (4)C2—C31.395 (4)
C5—C61.401 (3)C2—H2A0.9300
C1—C21.380 (4)C3—H3A0.9300
C1—C61.385 (4)C12—C111.497 (4)
C1—H1A0.9300C12—H12A0.9600
N2—C61.376 (3)C12—H12B0.9600
N2—C71.379 (3)C12—H12C0.9600
N2—C91.446 (3)C8—H8A0.9600
C10—O11.193 (3)C8—H8B0.9600
C10—C91.502 (3)C8—H8C0.9600
C9—H9A0.9700C11—H11A0.9700
C9—H9B0.9700C11—H11B0.9700
N1—C71.315 (3)
C10—O2—C11116.5 (2)N1—C7—C8125.7 (2)
N1—C5—C4130.8 (2)N2—C7—C8122.1 (2)
N1—C5—C6110.3 (2)C1—C2—C3121.8 (3)
C4—C5—C6118.8 (3)C1—C2—H2A119.1
C2—C1—C6116.5 (2)C3—C2—H2A119.1
C2—C1—H1A121.7C4—C3—C2120.9 (3)
C6—C1—H1A121.7C4—C3—H3A119.5
C6—N2—C7107.06 (19)C2—C3—H3A119.5
C6—N2—C9126.07 (19)C11—C12—H12A109.5
C7—N2—C9126.7 (2)C11—C12—H12B109.5
O1—C10—O2124.6 (2)H12A—C12—H12B109.5
O1—C10—C9125.3 (2)C11—C12—H12C109.5
O2—C10—C9110.04 (19)H12A—C12—H12C109.5
N2—C9—C10112.00 (19)H12B—C12—H12C109.5
N2—C9—H9A109.2C7—C8—H8A109.5
C10—C9—H9A109.2C7—C8—H8B109.5
N2—C9—H9B109.2H8A—C8—H8B109.5
C10—C9—H9B109.2C7—C8—H8C109.5
H9A—C9—H9B107.9H8A—C8—H8C109.5
C7—N1—C5105.4 (2)H8B—C8—H8C109.5
C3—C4—C5119.0 (3)O2—C11—C12107.0 (3)
C3—C4—H4A120.5O2—C11—H11A110.3
C5—C4—H4A120.5C12—C11—H11A110.3
N2—C6—C1132.1 (2)O2—C11—H11B110.3
N2—C6—C5105.0 (2)C12—C11—H11B110.3
C1—C6—C5122.9 (2)H11A—C11—H11B108.6
N1—C7—N2112.2 (2)
C11—O2—C10—O11.1 (4)C2—C1—C6—C50.2 (3)
C11—O2—C10—C9180.0 (2)N1—C5—C6—N20.1 (3)
C6—N2—C9—C1093.6 (3)C4—C5—C6—N2179.8 (2)
C7—N2—C9—C1080.8 (3)N1—C5—C6—C1179.1 (2)
O1—C10—C9—N22.6 (4)C4—C5—C6—C10.8 (4)
O2—C10—C9—N2178.4 (2)C5—N1—C7—N20.6 (3)
C4—C5—N1—C7179.5 (3)C5—N1—C7—C8179.1 (2)
C6—C5—N1—C70.4 (3)C6—N2—C7—N10.6 (3)
N1—C5—C4—C3179.0 (3)C9—N2—C7—N1175.9 (2)
C6—C5—C4—C30.9 (4)C6—N2—C7—C8179.1 (2)
C7—N2—C6—C1178.6 (3)C9—N2—C7—C83.9 (4)
C9—N2—C6—C13.3 (4)C6—C1—C2—C30.2 (4)
C7—N2—C6—C50.3 (2)C5—C4—C3—C20.5 (4)
C9—N2—C6—C5175.6 (2)C1—C2—C3—C40.1 (4)
C2—C1—C6—N2179.0 (3)C10—O2—C11—C12170.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N1i0.972.613.532 (3)159
C8—H8C···Cg1ii0.972.743.633 (5)155
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H14N2O2
Mr218.25
Crystal system, space groupMonoclinic, Pn
Temperature (K)295
a, b, c (Å)10.854 (2), 4.7959 (10), 11.842 (2)
β (°) 111.42 (3)
V3)573.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.990, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5696, 1323, 1085
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.090, 1.12
No. of reflections1323
No. of parameters145
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.15

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N1i0.972.613.532 (3)158.6
C8—H8C···Cg1ii0.972.74153.633 (5)154.8
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1, z.
 

Acknowledgements

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAaker, C. B., Desper, J. & Urbinam, J. F. (2005). Cryst. Growth Des. 5, 1283–1293.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds