organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Amino­phen­yl)-1,3-benzo­thia­zole

aSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China, and bMedical School, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China
*Correspondence e-mail: zy0340907@yahoo.com.cn

(Received 5 September 2008; accepted 30 September 2008; online 4 October 2008)

The title compound, C13H10N2S, contains two independent mol­ecules in its asymmetric unit, with slightly different conformations. In one mol­ecule, the dihedral angle between the benzothia­zole unit and the benzene ring is 6.73 (1)°, while the corresponding angle in the other mol­ecule is 1.8 (1)°. In the crystal structure, the mol­ecules are linked into layers by N—H⋯N hydrogen bonds.

Related literature

For background concerning the medical applications of benzothia­zole compounds, see: Alfred & Sawhney (1968[Alfred, B. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270-273.]); Hutchinson & Jennings (2002[Hutchinson, I. & Jennings, S. A. (2002). J. Med. Chem. 45, 744-747.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2S

  • Mr = 226.29

  • Triclinic, [P \overline 1]

  • a = 8.7038 (5) Å

  • b = 9.5933 (6) Å

  • c = 14.5144 (9) Å

  • α = 70.720 (1)°

  • β = 77.326 (1)°

  • γ = 73.170 (1)°

  • V = 1084.63 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.924, Tmax = 0.948

  • 6984 measured reflections

  • 4199 independent reflections

  • 3123 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.115

  • S = 0.97

  • 4199 reflections

  • 301 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N4i 0.819 (15) 2.644 (18) 3.374 (3) 149 (2)
N1—H1A⋯N3ii 0.850 (15) 2.324 (16) 3.145 (3) 163 (2)
Symmetry codes: (i) x+1, y, z-1; (ii) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzothiazole derivatives that contain five-membered sulfur-containing heterocyclic rings have been drawing great attention due to their antimalarial and antitumor properties (Alfred & Sawhney, 1968; Hutchinson & Jennings, 2002). Our research group is trying to prepare some benzothiazoles to find new antitumor compounds. In this context, we have crystallized the title compound and report its crystal structure.

Related literature top

For background concerning the medical applications of benzothiazole compounds, see: Alfred & Sawhney (1968); Hutchinson & Jennings (2002).

Experimental top

All reagents and solvents were used as obtained without further purification. 4-Aminobenzoic acid (13.7 g, 0.1 mol) and 2-aminothiophenol (12.5 g, 0.1 mmol) were mixed together with polyphosphoric acid (50 g) and heated to 493 K under an N2 atmosphere for 4 h. The reaction mixture was cooled to room temperature and poured into 10% K2CO3(aq) solution. The precipitate was filtered under reduced pressure. Yellow crystals were obtained by recrystallization from methanol. Yield: 90%. Elemental analysis calculated: C 69.03, H 4.42, N 12.39 %; found: C 69.01, H 4.48, N 12.41 %.

Refinement top

All H atoms bound to C atoms were placed in geometrical positions with C—H = 0.93 Å and the Uiso values were constrained to be 1.2 times Ueq of the carrier atoms. Atoms H1A, H1B, H4A and H4B were located in difference Foruier maps and refined with N—H restrained to 0.86 (2) Å and with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two independent molecules in the title compound. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. Packing diagram showing molecules linked by N—H···N hydrogen bonds (dashed lines) into layers in the (001) planes.
2-(4-Aminophenyl)-1,3-benzothiazole top
Crystal data top
C13H10N2SZ = 4
Mr = 226.29F(000) = 472
Triclinic, P1Dx = 1.386 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7038 (5) ÅCell parameters from 2375 reflections
b = 9.5933 (6) Åθ = 2.3–26.3°
c = 14.5144 (9) ŵ = 0.27 mm1
α = 70.720 (1)°T = 298 K
β = 77.326 (1)°Block, blue
γ = 73.170 (1)°0.30 × 0.20 × 0.20 mm
V = 1084.63 (11) Å3
Data collection top
Bruker SMART CCD
diffractometer
4199 independent reflections
Radiation source: fine-focus sealed tube3123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.924, Tmax = 0.948k = 1110
6984 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
4199 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.29 e Å3
4 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H10N2Sγ = 73.170 (1)°
Mr = 226.29V = 1084.63 (11) Å3
Triclinic, P1Z = 4
a = 8.7038 (5) ÅMo Kα radiation
b = 9.5933 (6) ŵ = 0.27 mm1
c = 14.5144 (9) ÅT = 298 K
α = 70.720 (1)°0.30 × 0.20 × 0.20 mm
β = 77.326 (1)°
Data collection top
Bruker SMART CCD
diffractometer
4199 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3123 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.948Rint = 0.036
6984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.29 e Å3
4199 reflectionsΔρmin = 0.23 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1360 (2)0.6101 (2)0.06950 (16)0.0440 (5)
C20.0112 (3)0.7409 (3)0.05957 (19)0.0611 (7)
H20.03680.78330.00220.073*
C30.0402 (3)0.8066 (3)0.1348 (2)0.0679 (7)
H30.12340.89430.12820.081*
C40.0296 (3)0.7447 (3)0.2208 (2)0.0634 (7)
H40.00780.79120.27110.076*
C50.1539 (3)0.6151 (3)0.23330 (18)0.0558 (6)
H50.20070.57360.29110.067*
C60.2066 (2)0.5488 (2)0.15651 (15)0.0427 (5)
C70.3187 (2)0.4164 (2)0.02866 (14)0.0380 (5)
C80.4141 (2)0.3129 (2)0.02870 (14)0.0372 (5)
C90.3726 (2)0.3255 (2)0.11916 (15)0.0449 (5)
H90.28330.40020.14240.054*
C100.4606 (3)0.2302 (2)0.17460 (15)0.0451 (5)
H100.42950.24080.23440.054*
C110.5958 (2)0.1178 (2)0.14273 (15)0.0390 (5)
C120.6382 (2)0.1045 (2)0.05262 (16)0.0452 (5)
H120.72820.03040.02970.054*
C130.5487 (2)0.1994 (2)0.00275 (15)0.0427 (5)
H130.57880.18760.06300.051*
C140.6126 (2)0.2440 (2)0.53255 (15)0.0429 (5)
C150.7512 (3)0.2790 (3)0.54271 (18)0.0551 (6)
H150.80100.22990.59920.066*
C160.8130 (3)0.3879 (3)0.4673 (2)0.0613 (7)
H160.90600.41190.47310.074*
C170.7399 (3)0.4625 (3)0.3830 (2)0.0638 (7)
H170.78430.53570.33320.077*
C180.6027 (3)0.4301 (3)0.37176 (18)0.0601 (7)
H180.55350.48000.31510.072*
C190.5396 (3)0.3201 (2)0.44794 (16)0.0461 (5)
C200.4087 (2)0.1299 (2)0.57195 (14)0.0386 (5)
C210.3035 (2)0.0279 (2)0.62886 (14)0.0386 (5)
C220.3356 (3)0.0669 (2)0.72208 (15)0.0467 (5)
H220.42360.06350.74720.056*
C230.2405 (2)0.1649 (2)0.77762 (16)0.0483 (5)
H230.26500.22690.83960.058*
C240.1078 (2)0.1729 (2)0.74244 (16)0.0440 (5)
C250.0748 (3)0.0791 (2)0.64972 (16)0.0487 (5)
H250.01340.08240.62480.058*
C260.1713 (3)0.0188 (2)0.59423 (16)0.0464 (5)
H260.14720.08020.53210.056*
N10.6820 (2)0.0234 (2)0.19862 (15)0.0554 (5)
N20.20084 (19)0.53292 (18)0.00148 (12)0.0436 (4)
N30.5371 (2)0.13608 (18)0.60184 (12)0.0433 (4)
N40.0104 (3)0.2687 (3)0.80188 (16)0.0600 (6)
S10.35999 (7)0.39025 (6)0.14764 (4)0.04624 (18)
S20.36992 (7)0.25484 (6)0.45569 (4)0.05063 (19)
H1A0.655 (3)0.035 (3)0.2540 (13)0.061*
H1B0.754 (2)0.048 (2)0.1747 (16)0.061*
H4A0.038 (3)0.292 (3)0.7646 (15)0.061*
H4B0.052 (3)0.339 (2)0.8488 (15)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0389 (12)0.0461 (12)0.0501 (14)0.0118 (10)0.0011 (10)0.0207 (10)
C20.0518 (14)0.0641 (15)0.0686 (17)0.0027 (12)0.0137 (12)0.0309 (13)
C30.0492 (14)0.0746 (18)0.086 (2)0.0000 (13)0.0046 (14)0.0468 (16)
C40.0532 (15)0.0781 (17)0.0731 (18)0.0155 (13)0.0060 (13)0.0494 (15)
C50.0573 (15)0.0649 (15)0.0536 (15)0.0189 (12)0.0015 (12)0.0279 (12)
C60.0395 (12)0.0474 (12)0.0452 (13)0.0169 (10)0.0010 (10)0.0170 (10)
C70.0390 (11)0.0404 (11)0.0366 (11)0.0167 (9)0.0025 (9)0.0089 (9)
C80.0369 (11)0.0370 (11)0.0377 (11)0.0124 (9)0.0014 (9)0.0101 (9)
C90.0441 (12)0.0447 (12)0.0411 (12)0.0027 (10)0.0088 (10)0.0110 (10)
C100.0524 (13)0.0480 (12)0.0342 (12)0.0072 (10)0.0096 (10)0.0127 (10)
C110.0380 (11)0.0385 (11)0.0412 (12)0.0124 (9)0.0004 (9)0.0128 (9)
C120.0408 (12)0.0438 (11)0.0485 (13)0.0029 (9)0.0113 (10)0.0130 (10)
C130.0450 (12)0.0459 (12)0.0395 (12)0.0110 (10)0.0099 (10)0.0123 (10)
C140.0477 (12)0.0369 (11)0.0430 (13)0.0072 (10)0.0016 (10)0.0154 (10)
C150.0570 (14)0.0537 (14)0.0592 (15)0.0143 (12)0.0062 (12)0.0222 (12)
C160.0586 (15)0.0556 (14)0.0763 (19)0.0214 (12)0.0015 (14)0.0275 (14)
C170.0738 (18)0.0478 (14)0.0643 (17)0.0206 (13)0.0050 (14)0.0128 (12)
C180.0688 (17)0.0495 (14)0.0535 (15)0.0147 (12)0.0028 (13)0.0066 (12)
C190.0495 (13)0.0382 (11)0.0469 (13)0.0054 (10)0.0010 (10)0.0152 (10)
C200.0432 (12)0.0385 (11)0.0330 (11)0.0027 (9)0.0038 (9)0.0155 (9)
C210.0401 (11)0.0398 (11)0.0358 (11)0.0049 (9)0.0019 (9)0.0167 (9)
C220.0422 (12)0.0530 (13)0.0462 (13)0.0136 (10)0.0106 (10)0.0108 (10)
C230.0478 (13)0.0527 (13)0.0420 (13)0.0140 (10)0.0092 (10)0.0064 (10)
C240.0391 (12)0.0446 (12)0.0490 (13)0.0067 (10)0.0006 (10)0.0203 (10)
C250.0426 (12)0.0585 (14)0.0534 (14)0.0124 (10)0.0099 (11)0.0243 (11)
C260.0494 (13)0.0520 (13)0.0379 (12)0.0059 (10)0.0100 (10)0.0156 (10)
N10.0568 (13)0.0576 (12)0.0497 (13)0.0022 (10)0.0113 (10)0.0237 (11)
N20.0417 (10)0.0446 (10)0.0435 (10)0.0072 (8)0.0050 (8)0.0145 (8)
N30.0491 (11)0.0456 (10)0.0366 (10)0.0102 (8)0.0058 (8)0.0143 (8)
N40.0548 (13)0.0675 (14)0.0621 (15)0.0266 (11)0.0061 (11)0.0147 (11)
S10.0501 (3)0.0474 (3)0.0425 (3)0.0087 (3)0.0085 (3)0.0156 (2)
S20.0553 (4)0.0491 (3)0.0427 (3)0.0094 (3)0.0117 (3)0.0062 (3)
Geometric parameters (Å, º) top
C1—N21.391 (3)C15—C161.375 (3)
C1—C21.391 (3)C15—H150.930
C1—C61.399 (3)C16—C171.384 (3)
C2—C31.367 (3)C16—H160.930
C2—H20.930C17—C181.372 (3)
C3—C41.383 (3)C17—H170.930
C3—H30.930C18—C191.392 (3)
C4—C51.380 (3)C18—H180.930
C4—H40.930C19—S21.732 (2)
C5—C61.390 (3)C20—N31.307 (2)
C5—H50.930C20—C211.460 (3)
C6—S11.730 (2)C20—S21.7543 (19)
C7—N21.305 (2)C21—C261.388 (3)
C7—C81.461 (3)C21—C221.393 (3)
C7—S11.763 (2)C22—C231.370 (3)
C8—C131.390 (3)C22—H220.930
C8—C91.395 (3)C23—C241.392 (3)
C9—C101.371 (3)C23—H230.930
C9—H90.930C24—N41.383 (3)
C10—C111.391 (3)C24—C251.387 (3)
C10—H100.930C25—C261.377 (3)
C11—N11.366 (3)C25—H250.930
C11—C121.392 (3)C26—H260.930
C12—C131.371 (3)N1—H1B0.819 (15)
C12—H120.930N1—H1A0.850 (15)
C13—H130.930N4—H4A0.869 (15)
C14—C191.388 (3)N4—H4B0.844 (15)
C14—N31.390 (3)S1—S24.2373 (8)
C14—C151.391 (3)
N2—C1—C2125.4 (2)C15—C16—H16119.3
N2—C1—C6115.50 (18)C17—C16—H16119.3
C2—C1—C6119.1 (2)C18—C17—C16121.0 (2)
C3—C2—C1119.5 (2)C18—C17—H17119.5
C3—C2—H2120.3C16—C17—H17119.5
C1—C2—H2120.3C17—C18—C19117.8 (2)
C2—C3—C4121.0 (2)C17—C18—H18121.1
C2—C3—H3119.5C19—C18—H18121.1
C4—C3—H3119.5C14—C19—C18121.6 (2)
C5—C4—C3121.3 (2)C14—C19—S2109.70 (16)
C5—C4—H4119.4C18—C19—S2128.71 (19)
C3—C4—H4119.4N3—C20—C21123.87 (18)
C4—C5—C6117.7 (2)N3—C20—S2114.84 (15)
C4—C5—H5121.1C21—C20—S2121.30 (15)
C6—C5—H5121.1C26—C21—C22117.29 (19)
C5—C6—C1121.5 (2)C26—C21—C20123.02 (18)
C5—C6—S1129.30 (18)C22—C21—C20119.69 (18)
C1—C6—S1109.24 (16)C23—C22—C21121.5 (2)
N2—C7—C8124.89 (18)C23—C22—H22119.2
N2—C7—S1114.76 (15)C21—C22—H22119.2
C8—C7—S1120.34 (14)C22—C23—C24120.8 (2)
C13—C8—C9117.06 (19)C22—C23—H23119.6
C13—C8—C7122.61 (18)C24—C23—H23119.6
C9—C8—C7120.33 (17)N4—C24—C25122.4 (2)
C10—C9—C8121.48 (18)N4—C24—C23119.4 (2)
C10—C9—H9119.3C25—C24—C23118.1 (2)
C8—C9—H9119.3C26—C25—C24120.7 (2)
C9—C10—C11120.95 (19)C26—C25—H25119.7
C9—C10—H10119.5C24—C25—H25119.7
C11—C10—H10119.5C25—C26—C21121.5 (2)
N1—C11—C10120.28 (19)C25—C26—H26119.2
N1—C11—C12121.75 (18)C21—C26—H26119.2
C10—C11—C12117.97 (19)C11—N1—H1B117.7 (17)
C13—C12—C11120.69 (19)C11—N1—H1A120.2 (16)
C13—C12—H12119.7H1B—N1—H1A122 (2)
C11—C12—H12119.7C7—N2—C1110.94 (17)
C12—C13—C8121.86 (19)C20—N3—C14110.98 (17)
C12—C13—H13119.1C24—N4—H4A108.7 (16)
C8—C13—H13119.1C24—N4—H4B116.1 (17)
C19—C14—N3115.20 (19)H4A—N4—H4B118 (2)
C19—C14—C15119.69 (19)C6—S1—C789.56 (10)
N3—C14—C15125.1 (2)C6—S1—S290.73 (7)
C16—C15—C14118.5 (2)C7—S1—S2164.85 (6)
C16—C15—H15120.8C19—S2—C2089.27 (10)
C14—C15—H15120.8C19—S2—S195.40 (7)
C15—C16—C17121.4 (2)C20—S2—S1157.02 (7)
N2—C1—C2—C3179.3 (2)S2—C20—C21—C22178.30 (15)
C6—C1—C2—C30.2 (3)C26—C21—C22—C230.2 (3)
C1—C2—C3—C40.2 (4)C20—C21—C22—C23179.62 (19)
C2—C3—C4—C50.3 (4)C21—C22—C23—C240.0 (3)
C3—C4—C5—C60.0 (4)C22—C23—C24—N4177.5 (2)
C4—C5—C6—C10.4 (3)C22—C23—C24—C250.1 (3)
C4—C5—C6—S1178.68 (17)N4—C24—C25—C26177.6 (2)
N2—C1—C6—C5179.73 (18)C23—C24—C25—C260.1 (3)
C2—C1—C6—C50.5 (3)C24—C25—C26—C210.4 (3)
N2—C1—C6—S10.5 (2)C22—C21—C26—C250.4 (3)
C2—C1—C6—S1178.76 (17)C20—C21—C26—C25179.80 (19)
N2—C7—C8—C13173.49 (18)C8—C7—N2—C1179.01 (17)
S1—C7—C8—C135.9 (3)S1—C7—N2—C10.4 (2)
N2—C7—C8—C96.2 (3)C2—C1—N2—C7178.6 (2)
S1—C7—C8—C9174.43 (15)C6—C1—N2—C70.6 (3)
C13—C8—C9—C100.0 (3)C21—C20—N3—C14179.77 (17)
C7—C8—C9—C10179.73 (18)S2—C20—N3—C140.5 (2)
C8—C9—C10—C110.5 (3)C19—C14—N3—C200.5 (3)
C9—C10—C11—N1179.81 (19)C15—C14—N3—C20179.33 (19)
C9—C10—C11—C120.4 (3)C5—C6—S1—C7179.4 (2)
N1—C11—C12—C13179.2 (2)C1—C6—S1—C70.23 (15)
C10—C11—C12—C130.2 (3)C5—C6—S1—S215.8 (2)
C11—C12—C13—C80.7 (3)C1—C6—S1—S2165.07 (14)
C9—C8—C13—C120.6 (3)N2—C7—S1—C60.08 (15)
C7—C8—C13—C12179.14 (18)C8—C7—S1—C6179.33 (16)
C19—C14—C15—C160.7 (3)N2—C7—S1—S291.1 (3)
N3—C14—C15—C16179.4 (2)C8—C7—S1—S289.5 (3)
C14—C15—C16—C170.4 (3)C14—C19—S2—C200.00 (15)
C15—C16—C17—C180.1 (4)C18—C19—S2—C20179.6 (2)
C16—C17—C18—C190.1 (4)C14—C19—S2—S1157.47 (14)
N3—C14—C19—C18179.35 (19)C18—C19—S2—S122.1 (2)
C15—C14—C19—C180.8 (3)N3—C20—S2—C190.31 (16)
N3—C14—C19—S20.3 (2)C21—C20—S2—C19179.97 (17)
C15—C14—C19—S2179.57 (16)N3—C20—S2—S1101.9 (2)
C17—C18—C19—C140.5 (3)C21—C20—S2—S177.8 (2)
C17—C18—C19—S2179.95 (18)C6—S1—S2—C19101.16 (9)
N3—C20—C21—C26177.40 (18)C7—S1—S2—C19167.8 (3)
S2—C20—C21—C262.3 (3)C6—S1—S2—C20157.87 (19)
N3—C20—C21—C222.0 (3)C7—S1—S2—C2066.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N4i0.82 (2)2.64 (2)3.374 (3)149 (2)
N1—H1A···N3ii0.85 (2)2.32 (2)3.145 (3)163 (2)
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC13H10N2S
Mr226.29
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7038 (5), 9.5933 (6), 14.5144 (9)
α, β, γ (°)70.720 (1), 77.326 (1), 73.170 (1)
V3)1084.63 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.924, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
6984, 4199, 3123
Rint0.036
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.115, 0.97
No. of reflections4199
No. of parameters301
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N4i0.819 (15)2.644 (18)3.374 (3)149 (2)
N1—H1A···N3ii0.850 (15)2.324 (16)3.145 (3)163 (2)
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z1.
 

References

First citationAlfred, B. & Sawhney, S. N. (1968). J. Med. Chem. 11, 270–273.  PubMed Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHutchinson, I. & Jennings, S. A. (2002). J. Med. Chem. 45, 744–747.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds