organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Cyclo­pentyl­­idene-2-(2,4-di­nitro­phenyl)­hydrazine

aDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and bDepartment of Materials Science and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: jiningning16@163.com

(Received 30 August 2008; accepted 14 October 2008; online 18 October 2008)

The title compound, C11H12N4O4, was synthesized by the reaction of (2,4-dinitro­phen­yl)hydrazine with cyclo­penta­none. The cyclo­pentyl fragment is disordered over two sites with occupancies of 0.63 (1) and 0.37 (1). An intra­molecular N—H⋯O hydrogen bond helps to establish the conformation. Pairs of mol­ecules are held together by ππ inter­actions between adjacent benzene rings [centroid-to-centroid distance 3.589 (2) Å].

Related literature

For background literature on Schiff bases, see: Liang (2007[Liang, Z.-P. (2007). Acta Cryst. E63, o2943.]). For information on the properties of dinitro­phenyl­hydrazones, see: Baughman et al. (2004[Baughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103-o106.]); Zare et al. (2005[Zare, H. R., Ardakani, M. M., Nasirizadah, N. & Safari, J. (2005). Bull. Korean Chem. Soc. 26, 51-56.]); El-Seify & El-Dossoki (2006[El-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc. 50, 99-106.]); Kim & Yoon (1998[Kim, S. Y. & Yoon, N. M. (1998). Bull. Korean Chem. Soc. 19, 891-893.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N4O4

  • Mr = 264.25

  • Monoclinic, P 21 /n

  • a = 6.962 (3) Å

  • b = 21.840 (10) Å

  • c = 8.162 (4) Å

  • β = 98.528 (9)°

  • V = 1227.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 (2) K

  • 0.15 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.984, Tmax = 0.993

  • 6423 measured reflections

  • 2168 independent reflections

  • 1353 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.129

  • S = 1.02

  • 2168 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O2 0.86 1.99 2.605 (2) 128

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases and their complexes are widely used in the fields of biology, catalysis etc. (Liang, 2007). Especially, the dinitrophenylhydrazones exhibit good nonlinear optical (NLO) and crystalline properties (Baughman et al., 2004). The benzophenone-2,4-dinitrophenylhydrazone derivatives are important because of their significant molecular nonlinearities and remarkable ability to crystallize in non-centrosymmetric crystal systems (Zare et al., 2005; El-Seify & El-Dossoki, 2006; Kim & Yoon, 1998). In order to search for new dinitrophenylhydrazones, the title compound was synthesized and its crystal structure is reported here (Fig. 1). The obtained unrestrained bond lengths and angles are in good agreement with the expected values (Allen et al., 1987) in the non-disordered region. In the crystal structure (Fig. 2), the molecules are stabilized by N—H···O hydrogen bonds (Table 1), C—H···N interactions (C6—H6···N4: 0.93, 2.39, 2.722 (3) Å and 101.1°) and by ππ electron interactions between the benzene rings. The distances between the centroids of the stacked benzene rings are 3.589 (2) Å though the molecules are situated in rather equidistant planes.

Related literature top

For background literature on Schiff bases, see: Liang (2007). For information on the properties of dinitrophenylhydrazones, see: Baughman et al. (2004); Zare et al. (2005); El-Seify & El-Dossoki (2006); Kim & Yoon (1998). For bond-length data, see: Allen et al. (1987); Allen (2002). [Please check added text]

Experimental top

The title compound was synthesized by the reaction of (2,4-dinitro-phenyl)-hydrazine (1 mmol, 198.1 mg) with cyclopentanone (1 mmol, 84.1 mg) in ethanol (30 ml) under reflux conditions (348 K) for 3 h. The solvent was removed and the solid product was recrystallized from tetrahydrofuran. Brown crystals that were suitable for X-ray diffraction study were grown in the course of three days. Yield, 227.2 mg, 86%; m. p. 318–320 K.

Analysis calculated for C11H12N4O4: C 50.00, H 4.58, N 21.20%; found: C 49.97, H 4.52, N 21.15%.

Refinement top

All the H atoms except those attached to the disordered atoms C9, C9', C10 and C10' could have been distinguished in the difference electron density maps. During the refinement the H atoms were situated into idealized positions, constrained and refined as riding atoms. The constraints: Caryl—H = 0.93; Cmethylene—H 0.97 Å, N—H = 0.86 Å; Uiso(H) = 1.2Ueq(carrier atom). The disorder was treated with the following restraints: The distances C9—C10 and C9'—C10' were restrained to 1.485 (10) Å, the distances C8—C9, C8—C9', C10—C11 and C10'—C11 to 1.520 (10) Å and the distances C7—C8, C7—C11 to 1.503 (10) Å. The values of these distances were retrieved from the Cambridge Crystal Structure Database (version 5.29 plus updates to January 2008; Allen, 2002) for the structures that contained the fragment —NH—N cyclopentyl that is present in the title structure. The retrieved structures HULJON, KERWUA, NAQSAZ and RAKHUH are without disorder, errors and with the R-factor < 0.05. The displacement parameters of the atoms C9', C10', C9' and C10' were restrained by the command SIMU with the default parameters (0.04, 0.08, 1.7) of the refinement program SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecular with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The view of the structure. The dashed lines indicate the N—H···O hydrogen bonds and C—H···N interactions as well as ππ ring electron interactions.
1-Cyclopentylidene-2-(2,4-dinitrophenyl)hydrazine top
Crystal data top
C11H12N4O4F(000) = 552
Mr = 264.25Dx = 1.430 Mg m3
Monoclinic, P21/nMelting point = 318–320 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.962 (3) ÅCell parameters from 1213 reflections
b = 21.84 (1) Åθ = 3.1–21.3°
c = 8.162 (4) ŵ = 0.11 mm1
β = 98.528 (9)°T = 295 K
V = 1227.3 (10) Å3Block, brown
Z = 40.15 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube1353 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.984, Tmax = 0.993k = 2026
6423 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.1369P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2168 reflectionsΔρmax = 0.13 e Å3
192 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
64 constraintsExtinction coefficient: 0.008 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H12N4O4V = 1227.3 (10) Å3
Mr = 264.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.962 (3) ŵ = 0.11 mm1
b = 21.84 (1) ÅT = 295 K
c = 8.162 (4) Å0.15 × 0.10 × 0.06 mm
β = 98.528 (9)°
Data collection top
Bruker SMART CCD
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1353 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.993Rint = 0.029
6423 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
2168 reflectionsΔρmin = 0.14 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7332 (3)0.13258 (8)0.3023 (2)0.0970 (6)
O20.6598 (2)0.04170 (8)0.3749 (2)0.0883 (6)
O31.2739 (3)0.17276 (10)0.0323 (3)0.1106 (7)
O41.4641 (3)0.09968 (8)0.0180 (2)0.0979 (6)
N10.7661 (3)0.07782 (10)0.3142 (2)0.0715 (5)
N21.3231 (3)0.11920 (11)0.0400 (2)0.0802 (6)
N30.8813 (2)0.05130 (8)0.3322 (2)0.0643 (5)
H30.77310.04160.36430.077*
N40.9487 (3)0.11105 (8)0.3468 (2)0.0716 (5)
C10.9877 (3)0.00874 (9)0.2673 (2)0.0563 (5)
C20.9367 (3)0.05376 (9)0.2535 (2)0.0583 (5)
C31.0473 (3)0.09546 (10)0.1801 (2)0.0641 (6)
H3A1.01140.13650.17170.077*
C41.2096 (3)0.07577 (10)0.1204 (2)0.0634 (6)
C51.2658 (3)0.01508 (10)0.1343 (3)0.0653 (6)
H51.37770.00240.09440.078*
C61.1586 (3)0.02600 (10)0.2058 (3)0.0631 (6)
H61.19860.06660.21450.076*
C70.8305 (3)0.15004 (10)0.3923 (3)0.0690 (6)
C80.6290 (3)0.14145 (10)0.4287 (3)0.0785 (7)
H8A0.62920.11860.53060.094*
H8B0.55030.11970.33910.094*
C90.5515 (8)0.2067 (3)0.4458 (10)0.0954 (16)0.631 (10)
H9A0.45720.20780.52210.114*0.631 (10)
H9B0.49210.22270.33930.114*0.631 (10)
C100.7337 (8)0.2425 (3)0.5134 (10)0.0972 (15)0.631 (10)
H10A0.71570.28600.49240.117*0.631 (10)
H10B0.76900.23600.63160.117*0.631 (10)
C10'0.7036 (14)0.2469 (4)0.4218 (16)0.090 (2)0.369 (10)
H10C0.63450.25360.31110.108*0.369 (10)
H10D0.72240.28590.47880.108*0.369 (10)
C9'0.5961 (19)0.2020 (4)0.5176 (14)0.087 (2)0.369 (10)
H9'10.45910.21190.50800.105*0.369 (10)
H9'20.65180.20060.63370.105*0.369 (10)
C110.8888 (4)0.21600 (11)0.4170 (4)0.0979 (8)
H11A0.88680.23670.31160.117*
H11B1.01760.21960.48050.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0998 (14)0.0748 (12)0.1191 (15)0.0291 (10)0.0247 (11)0.0028 (10)
O20.0678 (11)0.0882 (12)0.1131 (14)0.0079 (9)0.0276 (10)0.0071 (10)
O30.1313 (17)0.0738 (12)0.1310 (17)0.0164 (11)0.0340 (13)0.0039 (11)
O40.0988 (14)0.1102 (14)0.0911 (13)0.0162 (11)0.0353 (11)0.0015 (11)
N10.0660 (13)0.0744 (14)0.0725 (13)0.0132 (11)0.0047 (10)0.0104 (10)
N20.0869 (15)0.0837 (16)0.0694 (13)0.0160 (13)0.0095 (11)0.0062 (11)
N30.0584 (11)0.0658 (11)0.0695 (12)0.0059 (9)0.0124 (9)0.0045 (9)
N40.0675 (12)0.0604 (11)0.0879 (14)0.0060 (10)0.0151 (10)0.0050 (10)
C10.0544 (12)0.0634 (12)0.0494 (11)0.0002 (10)0.0019 (9)0.0087 (9)
C20.0562 (12)0.0630 (12)0.0535 (11)0.0059 (10)0.0011 (9)0.0108 (10)
C30.0697 (14)0.0613 (13)0.0575 (12)0.0040 (11)0.0025 (11)0.0099 (10)
C40.0685 (14)0.0646 (13)0.0555 (12)0.0088 (11)0.0032 (10)0.0091 (10)
C50.0593 (12)0.0761 (14)0.0610 (13)0.0003 (11)0.0104 (10)0.0106 (11)
C60.0625 (13)0.0638 (13)0.0626 (13)0.0067 (10)0.0080 (11)0.0077 (10)
C70.0733 (14)0.0660 (13)0.0688 (14)0.0015 (12)0.0145 (11)0.0070 (11)
C80.0805 (16)0.0807 (15)0.0784 (15)0.0003 (12)0.0254 (12)0.0018 (12)
C90.104 (3)0.095 (3)0.093 (3)0.023 (2)0.030 (3)0.011 (3)
C100.118 (3)0.076 (3)0.098 (3)0.011 (2)0.016 (3)0.002 (3)
C10'0.110 (4)0.066 (3)0.094 (4)0.012 (3)0.016 (4)0.007 (4)
C9'0.095 (4)0.080 (3)0.090 (4)0.010 (3)0.026 (4)0.007 (4)
C110.1034 (19)0.0699 (15)0.123 (2)0.0041 (14)0.0257 (16)0.0030 (14)
Geometric parameters (Å, º) top
O1—N11.219 (2)C7—C111.502 (3)
O2—N11.234 (2)C8—C91.538 (6)
O3—N21.218 (2)C8—C9'1.542 (10)
O4—N21.227 (3)C8—H8A0.9700
N1—C21.452 (3)C8—H8B0.9700
N2—C41.453 (3)C9—C101.522 (7)
N3—C11.345 (3)C9—H9A0.9700
N3—N41.386 (2)C9—H9B0.9700
N3—H30.8600C10—C111.540 (6)
N4—C71.277 (3)C10—H10A0.9700
C1—C61.409 (3)C10—H10B0.9700
C1—C21.411 (3)C10'—C111.461 (9)
C2—C31.385 (3)C10'—C9'1.519 (2)
C3—C41.364 (3)C10'—H10C0.9700
C3—H3A0.9300C10'—H10D0.9700
C4—C51.382 (3)C9'—H9'10.9700
C5—C61.354 (3)C9'—H9'20.9700
C5—H50.9300C11—H11A0.9700
C6—H60.9300C11—H11B0.9700
C7—C81.488 (3)
O1—N1—O2122.8 (2)C9—C8—H8B110.8
O1—N1—C2118.8 (2)C9'—C8—H8B131.9
O2—N1—C2118.38 (19)H8A—C8—H8B108.9
O3—N2—O4123.3 (2)C8—C9—C10102.9 (5)
O3—N2—C4118.9 (2)C8—C9—H9A111.2
O4—N2—C4117.9 (2)C10—C9—H9A111.2
C1—N3—N4119.05 (18)C8—C9—H9B111.2
C1—N3—H3120.5C10—C9—H9B111.2
N4—N3—H3120.5H9A—C9—H9B109.1
C7—N4—N3115.38 (19)C11—C10—C9103.4 (5)
N3—C1—C6119.90 (19)C11—C10—H10A111.1
N3—C1—C2123.60 (19)C9—C10—H10A111.1
C6—C1—C2116.5 (2)C11—C10—H10B111.1
C3—C2—C1121.43 (19)C9—C10—H10B111.1
C3—C2—N1116.4 (2)H10A—C10—H10B109.0
C1—C2—N1122.1 (2)C11—C10'—C9'102.7 (7)
C4—C3—C2119.3 (2)C11—C10'—H10C111.2
C4—C3—H3A120.3C9'—C10'—H10C111.2
C2—C3—H3A120.3C11—C10'—H10D111.2
C3—C4—C5120.8 (2)C9'—C10'—H10D111.2
C3—C4—N2119.4 (2)H10C—C10'—H10D109.1
C5—C4—N2119.8 (2)C10'—C9'—C8101.1 (7)
C6—C5—C4120.2 (2)C10'—C9'—H9'1111.5
C6—C5—H5119.9C8—C9'—H9'1111.5
C4—C5—H5119.9C10'—C9'—H9'2111.5
C5—C6—C1121.7 (2)C8—C9'—H9'2111.5
C5—C6—H6119.2H9'1—C9'—H9'2109.4
C1—C6—H6119.2C10'—C11—C7103.0 (4)
N4—C7—C8129.9 (2)C7—C11—C10103.5 (3)
N4—C7—C11120.4 (2)C10'—C11—H11A85.0
C8—C7—C11109.8 (2)C7—C11—H11A111.1
C7—C8—C9104.8 (3)C10—C11—H11A111.1
C7—C8—C9'101.3 (4)C10'—C11—H11B134.2
C7—C8—H8A110.8C7—C11—H11B111.1
C9—C8—H8A110.8C10—C11—H11B111.1
C9'—C8—H8A91.1H11A—C11—H11B109.0
C7—C8—H8B110.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.861.992.605 (2)128

Experimental details

Crystal data
Chemical formulaC11H12N4O4
Mr264.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)6.962 (3), 21.84 (1), 8.162 (4)
β (°) 98.528 (9)
V3)1227.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.15 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.984, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
6423, 2168, 1353
Rint0.029
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.129, 1.02
No. of reflections2168
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O20.861.992.605 (2)127.6
 

Acknowledgements

This project was supported by the Postgraduate Foundation of Taishan University (grant No. Y06-2-08).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaughman, R. G., Martin, K. L., Singh, R. K. & Stoffer, J. O. (2004). Acta Cryst. C60, o103–o106.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Seify, F. A. & El-Dossoki, F. I. (2006). J. Korean Chem. Soc. 50, 99–106.  CAS Google Scholar
First citationKim, S. Y. & Yoon, N. M. (1998). Bull. Korean Chem. Soc. 19, 891–893.  CAS Google Scholar
First citationLiang, Z.-P. (2007). Acta Cryst. E63, o2943.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZare, H. R., Ardakani, M. M., Nasirizadah, N. & Safari, J. (2005). Bull. Korean Chem. Soc. 26, 51–56.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds