organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8,9-Iso­propyl­idenedi­­oxy-3-p-tolyl-1,6-dioxa-3-aza­spiro­[4.5]decane-2,10-dione

aPharmaceutical College of Henan University, Kaifeng 475004, People's Republic of China, bInstitute of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China, and cCollege of Chemistry and Environmental Engineering, Beijing Technology and Business University, Beijing 100037, People's Republic of China
*Correspondence e-mail: ysywu@126.com

(Received 13 October 2008; accepted 20 October 2008; online 25 October 2008)

In the title compound, C17H19NO6, which may serve as a ketone catalyst for the asymmetric epoxidation of olefins, the crystal packing is consolidated by C—H⋯O inter­actions.

Related literature

For general background, see: Denmark & Wu (1999[Denmark, S. E. & Wu, Z. (1999). Synlett, pp. 847-859.]); Shi (2004[Shi, Y. (2004). Acc. Chem. Res. 37, 488-496.]); Yang (2004[Yang, D. (2004). Acc. Chem. Res. 37, 497-505.]). For the synthesis, see: Zhao et al. (2006[Zhao, M.-X., Goeddel, D., Li, K. & Shi, Y. (2006). Tetrahedron, 62, 8064-8068.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO6

  • Mr = 333.33

  • Monoclinic, P 21

  • a = 11.1268 (8) Å

  • b = 6.3163 (5) Å

  • c = 11.8697 (8) Å

  • β = 94.084 (1)°

  • V = 832.09 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.18 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.987

  • 8821 measured reflections

  • 1795 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 1.06

  • 1795 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.97 2.54 3.093 (3) 116
C14—H14B⋯O4ii 0.97 2.55 3.426 (3) 151
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Dioxiranes generated in situ from chiral ketones are effective for the asymmetric epoxidation of olefins (Denmark & Wu, 1999; Shi, 2004; Yang, 2004). As part of our own studies in this area, we now report the synthesis and structure of the title compound, (I).

The compound (I) consists of a four-ring system, including a phenyl ring, a pyran ring, a dioxolane ring and an oxazolidine ring, and which displays a chair molecular framework (Fig. 1). In the structure of (I), the S(6) ring of O4/C10/C11/C12/C13/C14 is nonplanar, charactrtized by a O4–C10–C11–C12 torsion angle of 61.1 (2) °. The stereogenic centres C10, C12 and C13 were assigned R, S, and S configurations, respectively.

In the crystal, some short C—H···O interactions (Table 1) may help to establish the packing (Fig. 2).

Related literature top

For general background, see: Denmark & Wu (1999); Shi (2004); Yang (2004). For the synthesis, see: Zhao et al. (2006).

Experimental top

The title compound was made by the method of Zhao et al. (2006), starting from D-glucose and 4-methyl-benzenamine to yield colorless blocks of (I). The molecular formula, C17H19NO6, was established by ESI-MS, m/z: 356(M+Na), 334(M+H), 232, 204, 108. Spectroscopic analysis, 1H NMR (400 MHz, CDCl3): δ 7.40 (d, J=5.4 Hz, 2H, ArH), 7.19 (d, J=5.4 Hz, 2H, ArH), 4.87 (d, J=5.7 Hz, 1H), 4.74 (d, J=10.2 Hz, 1H), 4.66–4.61 (m, 2H), 4.27 (d, J=13.8 Hz, 1H), 3.74 (d, J=10.2 Hz, 1H), 2.34 (s, 3H, ArCH3), 1.49 (s, 3H, –CH3), 1.44 (s, 3H, –CH3).

Refinement top

Anomalous dispersion was negligible and Firedel pairs were merged before refinement. The H atoms were gemoetrically placed (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the title compound (I), H atoms are omitted for clarity.
[Figure 3] Fig. 3. The formation of the title compound.
8,9-Isopropylidenedioxy-3-p-tolyl-1,6-dioxa-3-azaspiro[4.5]decane-2,10-dione top
Crystal data top
C17H19NO6F(000) = 352
Mr = 333.33Dx = 1.330 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2y bCell parameters from 2427 reflections
a = 11.1268 (8) Åθ = 2.4–21.1°
b = 6.3163 (5) ŵ = 0.10 mm1
c = 11.8697 (8) ÅT = 296 K
β = 94.084 (1)°Block, colorless
V = 832.09 (11) Å30.18 × 0.15 × 0.13 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1795 independent reflections
Radiation source: fine-focus sealed tube1389 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1313
Tmin = 0.982, Tmax = 0.987k = 77
8821 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.0894P]
where P = (Fo2 + 2Fc2)/3
1795 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.10 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C17H19NO6V = 832.09 (11) Å3
Mr = 333.33Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.1268 (8) ŵ = 0.10 mm1
b = 6.3163 (5) ÅT = 296 K
c = 11.8697 (8) Å0.18 × 0.15 × 0.13 mm
β = 94.084 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1795 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1389 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.987Rint = 0.028
8821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.075H-atom parameters constrained
S = 1.06Δρmax = 0.10 e Å3
1795 reflectionsΔρmin = 0.13 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.89223 (17)0.9579 (3)0.12879 (17)0.0543 (5)
O11.00555 (17)1.2504 (3)0.08456 (16)0.0792 (6)
O20.84070 (14)1.1560 (3)0.02227 (14)0.0588 (5)
O30.70022 (18)0.7396 (3)0.15295 (19)0.0810 (6)
O40.64278 (14)1.1097 (3)0.02397 (14)0.0600 (5)
O50.47051 (15)1.1373 (3)0.18543 (15)0.0665 (5)
O60.59983 (16)1.0190 (4)0.31240 (15)0.0766 (6)
C11.1700 (3)0.5776 (7)0.5018 (3)0.0997 (12)
H1A1.17780.67220.56520.150*
H1B1.24840.54550.47750.150*
H1C1.13160.44920.52350.150*
C21.0944 (3)0.6815 (5)0.4059 (2)0.0705 (8)
C31.0017 (3)0.5773 (5)0.3486 (2)0.0760 (8)
H30.98240.44130.37140.091*
C40.9355 (3)0.6666 (5)0.2580 (2)0.0687 (8)
H40.87270.59070.22120.082*
C50.9620 (2)0.8692 (4)0.2214 (2)0.0534 (6)
C61.0555 (2)0.9785 (5)0.2790 (2)0.0648 (7)
H61.07511.11450.25670.078*
C71.1195 (2)0.8837 (6)0.3702 (2)0.0727 (8)
H71.18150.95900.40860.087*
C80.9231 (2)1.1294 (4)0.0685 (2)0.0563 (6)
C90.7901 (2)0.8463 (4)0.0715 (2)0.0568 (6)
H9A0.72940.81210.12340.068*
H9B0.81560.71750.03570.068*
C100.74453 (19)1.0086 (4)0.0148 (2)0.0524 (6)
C110.7064 (2)0.9266 (4)0.1330 (2)0.0566 (6)
C120.6676 (2)1.0984 (5)0.2160 (2)0.0628 (7)
H120.73811.17590.23890.075*
C130.5811 (2)1.2495 (4)0.1640 (2)0.0647 (7)
H130.57781.38300.20620.078*
C140.6057 (2)1.2941 (4)0.0408 (2)0.0677 (7)
H14A0.66841.40070.03140.081*
H14B0.53351.35170.01140.081*
C150.4747 (2)1.0412 (5)0.2935 (2)0.0696 (8)
C160.4154 (3)1.1789 (7)0.3854 (3)0.1116 (13)
H16A0.33161.19560.37320.167*
H16B0.42341.11360.45760.167*
H16C0.45371.31520.38400.167*
C170.4167 (3)0.8262 (6)0.2888 (3)0.0914 (10)
H17A0.45740.74410.22960.137*
H17B0.42220.75530.35970.137*
H17C0.33350.84220.27390.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0565 (12)0.0435 (12)0.0639 (12)0.0099 (10)0.0112 (10)0.0006 (10)
O10.0775 (12)0.0680 (12)0.0918 (13)0.0344 (12)0.0032 (10)0.0086 (11)
O20.0532 (9)0.0492 (10)0.0746 (11)0.0102 (8)0.0097 (8)0.0076 (9)
O30.0798 (13)0.0514 (12)0.1092 (15)0.0067 (11)0.0109 (11)0.0152 (12)
O40.0554 (9)0.0535 (11)0.0729 (11)0.0052 (9)0.0179 (8)0.0002 (9)
O50.0617 (10)0.0617 (11)0.0763 (12)0.0064 (10)0.0058 (8)0.0065 (11)
O60.0769 (12)0.0874 (14)0.0670 (11)0.0026 (12)0.0163 (10)0.0039 (11)
C10.087 (2)0.131 (3)0.082 (2)0.014 (2)0.0079 (17)0.023 (2)
C20.0640 (17)0.081 (2)0.0681 (18)0.0086 (16)0.0169 (14)0.0026 (16)
C30.089 (2)0.0619 (19)0.0775 (19)0.0032 (17)0.0113 (16)0.0108 (16)
C40.0782 (18)0.0552 (17)0.0727 (18)0.0080 (15)0.0053 (14)0.0008 (16)
C50.0565 (14)0.0485 (15)0.0563 (15)0.0007 (12)0.0131 (12)0.0047 (12)
C60.0637 (16)0.0599 (17)0.0719 (17)0.0069 (14)0.0128 (14)0.0061 (15)
C70.0608 (17)0.088 (2)0.0695 (19)0.0023 (17)0.0066 (14)0.0095 (17)
C80.0560 (14)0.0470 (15)0.0672 (15)0.0056 (14)0.0142 (12)0.0002 (14)
C90.0501 (13)0.0438 (13)0.0771 (16)0.0094 (12)0.0082 (12)0.0038 (13)
C100.0439 (12)0.0439 (13)0.0708 (16)0.0061 (12)0.0147 (11)0.0010 (12)
C110.0418 (13)0.0497 (15)0.0799 (18)0.0014 (11)0.0168 (12)0.0023 (14)
C120.0629 (15)0.0604 (16)0.0671 (16)0.0096 (14)0.0182 (13)0.0037 (14)
C130.0712 (17)0.0429 (14)0.0803 (19)0.0024 (14)0.0080 (14)0.0057 (15)
C140.0699 (17)0.0472 (16)0.086 (2)0.0098 (14)0.0052 (14)0.0095 (15)
C150.0694 (18)0.0691 (19)0.0700 (18)0.0084 (15)0.0032 (14)0.0037 (16)
C160.131 (3)0.108 (3)0.093 (2)0.025 (3)0.012 (2)0.023 (2)
C170.086 (2)0.084 (3)0.104 (2)0.009 (2)0.0007 (18)0.012 (2)
Geometric parameters (Å, º) top
N1—C81.356 (3)C5—C61.387 (3)
N1—C51.415 (3)C6—C71.389 (4)
N1—C91.463 (3)C6—H60.9300
O1—C81.199 (3)C7—H70.9300
O2—C81.374 (3)C9—C101.511 (3)
O2—C101.426 (3)C9—H9A0.9700
O3—C111.205 (3)C9—H9B0.9700
O4—C101.405 (3)C10—C111.528 (4)
O4—C141.440 (3)C11—C121.508 (4)
O5—C151.423 (3)C12—C131.517 (4)
O5—C131.427 (3)C12—H120.9800
O6—C121.417 (3)C13—C141.495 (4)
O6—C151.432 (3)C13—H130.9800
C1—C21.516 (4)C14—H14A0.9700
C1—H1A0.9600C14—H14B0.9700
C1—H1B0.9600C15—C171.506 (4)
C1—H1C0.9600C15—C161.510 (4)
C2—C31.364 (4)C16—H16A0.9600
C2—C71.380 (5)C16—H16B0.9600
C3—C41.380 (4)C16—H16C0.9600
C3—H30.9300C17—H17A0.9600
C4—C51.390 (4)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C8—N1—C5125.5 (2)O4—C10—C11106.10 (18)
C8—N1—C9110.9 (2)O2—C10—C11108.94 (19)
C5—N1—C9122.3 (2)C9—C10—C11116.8 (2)
C8—O2—C10109.46 (18)O3—C11—C12124.6 (3)
C10—O4—C14113.54 (19)O3—C11—C10121.4 (3)
C15—O5—C13106.81 (19)C12—C11—C10113.8 (2)
C12—O6—C15107.8 (2)O6—C12—C11112.6 (2)
C2—C1—H1A109.5O6—C12—C13103.6 (2)
C2—C1—H1B109.5C11—C12—C13110.3 (2)
H1A—C1—H1B109.5O6—C12—H12110.1
C2—C1—H1C109.5C11—C12—H12110.1
H1A—C1—H1C109.5C13—C12—H12110.1
H1B—C1—H1C109.5O5—C13—C14111.3 (2)
C3—C2—C7117.1 (3)O5—C13—C12100.3 (2)
C3—C2—C1121.7 (3)C14—C13—C12116.0 (2)
C7—C2—C1121.2 (3)O5—C13—H13109.6
C2—C3—C4122.3 (3)C14—C13—H13109.6
C2—C3—H3118.9C12—C13—H13109.6
C4—C3—H3118.9O4—C14—C13113.3 (2)
C3—C4—C5120.4 (3)O4—C14—H14A108.9
C3—C4—H4119.8C13—C14—H14A108.9
C5—C4—H4119.8O4—C14—H14B108.9
C6—C5—C4118.2 (3)C13—C14—H14B108.9
C6—C5—N1122.4 (2)H14A—C14—H14B107.7
C4—C5—N1119.4 (2)O5—C15—O6106.1 (2)
C5—C6—C7119.7 (3)O5—C15—C17108.0 (3)
C5—C6—H6120.2O6—C15—C17110.0 (2)
C7—C6—H6120.2O5—C15—C16111.4 (3)
C2—C7—C6122.3 (3)O6—C15—C16108.8 (3)
C2—C7—H7118.9C17—C15—C16112.3 (3)
C6—C7—H7118.9C15—C16—H16A109.5
O1—C8—N1130.1 (2)C15—C16—H16B109.5
O1—C8—O2120.5 (2)H16A—C16—H16B109.5
N1—C8—O2109.4 (2)C15—C16—H16C109.5
N1—C9—C10101.55 (19)H16A—C16—H16C109.5
N1—C9—H9A111.5H16B—C16—H16C109.5
C10—C9—H9A111.5C15—C17—H17A109.5
N1—C9—H9B111.5C15—C17—H17B109.5
C10—C9—H9B111.5H17A—C17—H17B109.5
H9A—C9—H9B109.3C15—C17—H17C109.5
O4—C10—O2110.5 (2)H17A—C17—H17C109.5
O4—C10—C9109.00 (19)H17B—C17—H17C109.5
O2—C10—C9105.54 (17)
C7—C2—C3—C40.6 (4)N1—C9—C10—O217.4 (2)
C1—C2—C3—C4177.1 (3)N1—C9—C10—C11138.56 (19)
C2—C3—C4—C50.2 (4)O4—C10—C11—O3113.6 (3)
C3—C4—C5—C60.6 (4)O2—C10—C11—O3127.4 (3)
C3—C4—C5—N1179.6 (2)C9—C10—C11—O38.0 (3)
C8—N1—C5—C616.7 (4)O4—C10—C11—C1261.1 (2)
C9—N1—C5—C6177.0 (2)O2—C10—C11—C1257.9 (2)
C8—N1—C5—C4164.3 (2)C9—C10—C11—C12177.25 (19)
C9—N1—C5—C41.9 (3)C15—O6—C12—C1195.7 (3)
C4—C5—C6—C70.2 (4)C15—O6—C12—C1323.5 (3)
N1—C5—C6—C7179.2 (2)O3—C11—C12—O612.3 (4)
C3—C2—C7—C61.0 (4)C10—C11—C12—O6162.21 (18)
C1—C2—C7—C6176.7 (3)O3—C11—C12—C13127.5 (3)
C5—C6—C7—C20.6 (4)C10—C11—C12—C1347.0 (3)
C5—N1—C8—O17.5 (4)C15—O5—C13—C14160.6 (2)
C9—N1—C8—O1175.0 (3)C15—O5—C13—C1237.3 (2)
C5—N1—C8—O2173.46 (19)O6—C12—C13—O536.9 (2)
C9—N1—C8—O25.9 (3)C11—C12—C13—O583.8 (2)
C10—O2—C8—O1172.9 (2)O6—C12—C13—C14157.0 (2)
C10—O2—C8—N16.2 (3)C11—C12—C13—C1436.3 (3)
C8—N1—C9—C1014.5 (2)C10—O4—C14—C1356.3 (3)
C5—N1—C9—C10177.48 (19)O5—C13—C14—O473.7 (3)
C14—O4—C10—O253.3 (3)C12—C13—C14—O440.2 (3)
C14—O4—C10—C9168.83 (19)C13—O5—C15—O624.2 (3)
C14—O4—C10—C1164.6 (2)C13—O5—C15—C17142.0 (2)
C8—O2—C10—O4102.5 (2)C13—O5—C15—C1694.1 (3)
C8—O2—C10—C915.2 (3)C12—O6—C15—O50.8 (3)
C8—O2—C10—C11141.4 (2)C12—O6—C15—C17115.8 (3)
N1—C9—C10—O4101.3 (2)C12—O6—C15—C16120.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.543.093 (3)116
C14—H14B···O4ii0.972.553.426 (3)151
Symmetry codes: (i) x+2, y1/2, z; (ii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H19NO6
Mr333.33
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)11.1268 (8), 6.3163 (5), 11.8697 (8)
β (°) 94.084 (1)
V3)832.09 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.18 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.982, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8821, 1795, 1389
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.075, 1.06
No. of reflections1795
No. of parameters220
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.13

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O1i0.972.543.093 (3)116
C14—H14B···O4ii0.972.553.426 (3)151
Symmetry codes: (i) x+2, y1/2, z; (ii) x+1, y+1/2, z.
 

Acknowledgements

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenmark, S. E. & Wu, Z. (1999). Synlett, pp. 847–859.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. (2004). Acc. Chem. Res. 37, 488–496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D. (2004). Acc. Chem. Res. 37, 497–505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, M.-X., Goeddel, D., Li, K. & Shi, Y. (2006). Tetrahedron, 62, 8064–8068.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds